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Abstract 

Microbial keratitis is a severe ocular condition and one of the most prevalent causes of corneal scarring 

and associated blindness worldwide. Risk factors include contact lens use, ocular trauma, ocular 

surface disease and immunosuppression. Initial clinical management mandates intensive (hourly or 

more frequent) topical administration of broad spectrum antimicrobial therapy for at least 48 hours, 

which may require hospital admission, followed by tailored therapy based on microbiological 

investigation and the institution of strategies to reduce inflammation and promote healing. In this 

work we report an ocular wound dressing which can encapsulate and give sustained release of 

different antibiotics. The use of this dressing would allow patients to have eye drops on a 4 hourly 

basis, thereby facilitating treatment compliance and reducing hospital admissions. 

Keywords: Wound dressing, hydrogel, antibiotic delivery, ocular drug delivery 

Highlights:  

• Chitosan/ β-glycerolphosphate gels can be used to incorporate antibiotics such as 

moxifloxacin and gentamicin. 

• The antibiotics are released from the gels 

• The gels are not toxic to ocular cells in vitro 

• The antibiotic loaded gels can successfully kill bacteria both alone and in co-culture with 

human ocular cells.  



 

1. Introduction 

A healthy and intact ocular surface is critical for maintaining the transparency of the cornea and 

enabling clarity of vision. Infectious or non-infectious disease processes which compromise the ocular 

surface may lead to abnormalities in corneal structure, with loss of integrity of the normal parallel 

alignment of collagen fibrils resulting in severe visual impairment. Corneal infection (microbial 

keratitis) rarely occurs in the healthy human eye due to complex host defence mechanism1. However, 

interruption of the corneal surface epithelium and/or an abnormal ocular tear film allows the 

introduction of micro-organisms, such as bacteria, fungi and protozoa, into the corneal stroma, where 

they are able to proliferate and cause inflammation and toxin release that contributes to destruction 

of the corneal substance2. Microbial keratitis is a serious ocular condition, and presents a significant 

disease burden that may result in severe visual disability3. Bacterial infection is the most common 

cause of infection with contact lens wear the biggest predisposing factor to corneal infection, although 

other risk factors are also associated, including recent ocular surgery, trauma, ocular surface disease, 

lid margin abnormalities, impaired corneal sensation, chronic use of topical steroids and systemic 

conditions such as diabetes mellitus, vitamin A deficiency and immunocompromised states3. Bacterial 

keratitis requires prompt treatment with intensive antimicrobial therapy to prevent sight threatening 

complications, such as scarring, corneal perforation and endophthalmitis2. Aims of treatment include 

initial rapid sterilisation of the infective pathogen, followed by reduction in the inflammatory 

response, prevention of corneal scarring, and facilitation of epithelial healing4. The avascular corneal 

tissue precludes effective local response from systemic administration of antimicrobial agents, and 

thus the initial sterilisation phase of treatment typically consists of frequent (hourly or more frequent) 

topical antibiotics5; hospital admission may be necessary where treatment compliance is unlikely or 

assistance is required with intensive topical therapy. Intensity of topical administration can then be 

tapered according to clinical response. As laboratory isolation of the infective pathogen may take 

some time, initial broad spectrum empirical antibiotic therapy is instituted to cover both Gram positive 

and Gram negative organisms. Topical fluoroquinolones (e.g. ofloxacin, levofloxacin and moxifloxacin) 

are both well tolerated and effective as monotherapy. Alternatively, dual antimicrobial therapy with 

fortified cephalosporin, such as cefuroxime 5%, and aminoglycoside (e.g. gentamicin 1.5%) are also 

effective6. Moreover, prolonged use of aminoglycoside may delay epithelial repair or cause local 

ocular surface to fluoroquinolone monotherapy may be more effective than dual therapy and is better 

tolerated7,8,3. Moxifloxacin is a fourth generation fluoroquinolone antibiotic, with broad-spectrum 

activity against Gram negative and Gram positive bacteria. The mechanism of action of moxifloxacin 

involves inhibition of DNA gyrase and topoisomerase IV enzymes required for the replication, 

transcription and repair of bacterial DNA9,10,11. In S. pneumoniae, it has been shown that moxifloxacin 

is a poor substrate for active efflux, hence its efflux from bacterial cells is reduced12, therefore 

increasing its antibacterial potency, it has also been shown to have lower MIC than fortified antibiotics 

against ocular pathogens12. Gentamicin is an aminoglycoside which inhibits bacterial growth by 

targeting the bacterial ribosome. It is a broad spectrum antibiotic and is especially effective against 

Gram positive Staphylococcus and Gram negative bacteria. Although effective, one of the major 

challenges in topically administered drugs is that they are cleaved and washed away rapidly, that is 

they remain on the cornea for less than two minutes, thus reducing their efficacy and needing 

frequent administrations by the patient on a daily basis. To enhance the efficacy of moxifloxacin on 

the corneal surface, various drug delivery systems such as hydrogel based gels have been evaluated. 



Gellan, alginate, karageenan and chitosan for example have shown to tailor the release of moxifloxacin 

over a longer time period and therefore reducing the need for frequent administration of the drug.  

Chitosan is an aminopolysaccharide derived from the partial depolymerisation and deacetylation of 

chitin, a component found in the exoskeletons of crustacean shells13. Chitosan has been proven to 

be advantageous for medical applications due to its biocompatibility, biodegradability and low 

cytotoxicity, and has received much attention as the basis of a drug delivery system14. In 2000, 

Chenite et al. developed an injectable, thermosensitive, pH-dependent solution based on the 

neutralisation of chitosan by addition of β-glycerolphosphate15. The resulting solution is a reversibly 

thermosensitive polymer which is a liquid at room temperature, but a gel at 37°C16. 

Thermoresponsive materials have gained increasing importance in potential treatments. These are 

usually formed from co-block polymers17,18. These materials are then used to incorporate 

therapeutics which can be released in situ19,20. Further developments in this field have moved 

towards utilising these polymer systems as smart materials where they can be tuned to respond to 

multiple stimuli or can act as a reporting device in situ21,22. Loh et al have previously reported the use 

of a thermogelling system to deliver natamycin to the eye using poly(F127/PTHF urethane) 

hydrogels23. The thermosensitivity of the chitosan β-glycerolphosphate system is biomedically 

relevant in wound healing as the liquid can be applied to the front of the eye and flow over the 

complex topography of the wounded eye before the transforming into a protective, transparent, gel 

wound dressing24. 

The aim of this work is to develop a flowable wound dressing for the eye which can be administered 

as a liquid eye drop but forms a firm gel dressing on contact with the cornea. The gel has antibacterial 

drug, such as moxifloxacin or gentamicin, incorporated to eliminate bacteria which have colonised the 

wound and also acts as an occlusive dressing to protect the cornea. 

 

2. Materials and Methods 

All materials used in this project were purchased from Sigma (Poole, UK) unless stated otherwise.  

2.1 Bacterial strains. 

The bacteria used in this study were clinical isolates from patients at the Queen Elizabeth Hospital, 

Birmingham, UK;  

2.2 Hydrogel Preparation 

This was carried out as previously described by Chenite et al15. Briefly, chitosan was dissolved in (0.1 

M) HCl solution using a magnetic stirrer for 3 hours. The resulting solution was then chilled at 4°C for 

3 hours. β-glycerolphosphate dissolved in deionised water was added drop-wise to the chilled chitosan 

solution whilst stirring to produce a clear, homogenous liquid solution. The solution was incubated at 

37 °C to form a gel. For antibiotic loaded samples, moxifloxacin (100 µL, 0.25 µM) or gentamicin (100 

µL, 1 % v/v) were added to the Chitosan/β-glycerolphosphate liquid solution, vortexed for 30 seconds 

and incubated at 37 °C to form a gel.  

2.3 Rheological characterisation 



A parallel plate rheometer (TA instruments ARES system) was used to characterise the gelation 

process. The plate diameter was 35 mm and the frequency was 1 Hz. Chitosan (Heppe-Medical 

Chitosan, Halle, Germany) / β-glycerolphosphate solution was prepared as previously described. 

Temperature scans were performed on the hydrogel to characterise the thermosensitive gelation 

process, gelation was indicated by an increase in the storage modulus (G’). 

2.4 Antimicrobial efficacy testing of the hydrogel 

The Chitosan/ β-glycerolphosphate gels with and without moxifloxacin and gentamicin were prepared 

as previously described and inoculated with S. aureus from an overnight culture in Lennox Broth (LB) 

broth (10 µL, ~1x106 cells). Six gels were prepared per treatment and set in a 24 well plate at 37 °C 

and LB Broth added to the well. The gels were incubated overnight at 37 °C. The gels were removed 

from the incubator and the broth removed. The gels were vortexed to break up the structure and 

serially diluted in sterile phosphate buffered saline (PBS) and then plated out on LB Agar. The plates 

were incubated overnight at 37 °C and the visible colony forming units counted.   

 

2.5 Release of moxifloxacin and gentamicin from chitosan/ β-glycerolphosphate gels  

Chitosan/ β-glycerolphosphate gels were loaded with antibiotics, moxifloxacin (100 µL, 0.25 µM) and 

gentamicin (100 µL, 1 % v/v) and gelled at 37°C. The gels were suspended in PBS (1 mL). At each time 

point the PBS was removed and fresh PBS added to the vial. The release of moxifloxacin was measured 

using absorbance at 293 nm according to literature procedures25. The release of gentamicin was 

measured using absorbance at 202 nm according to literature procedures26. The cumulative release 

was obtained by the summation of the previous absorbance values.  

 

2.6 Antibacterial efficacy of released antibiotics 

The solutions obtained from the release study were then tested for antimicrobial efficacy. S. aureus 

was grown overnight in LB Broth. The solutions were then diluted in LB Broth (1:1) and inoculated with 

S. aureus followed by incubation overnight at 37 °C. The solutions were serially diluted with sterile 

water and plated out on LB agar and the plates incubated at 37 °C overnight. The number of colonies 

on the plate were counted.   

 

2.7 Cytotoxicity of gels to primary corneal fibroblast cells. 

Primary human corneal fibroblast cells were isolated from donor human corneas under ethics 

(08/H1206/165). The cells were cultured in DMEM substituted with fetal calf serum (10 % v/v) and 

penicillin/streptomycin (1 % v/v). Cells were harvested at confluency by removal of the media and the 

cell monolayer washed three times with PBS (5 mL) and then incubated in trypsin:EDTA (2 mL) for 5 

minutes at 37 °C. Once the cells were detached from the culture flask the trypsin:EDTA was blocked 

using cell media and the cells seeded into a 24 well plate at a density of 50,000 cells/ well and 6 wells/ 

treatment group. The cells were cultured to confluency in the well, the media was removed and the 

cells washed 5 times to remove and residual penicillin/streptomycin. Fresh media with no penicillin 



was added to the cells and the gels added on top of the cell monolayer. The cultures were incubated 

at 37 °C overnight and the cell viability measured using established protocols for the alamar blue 

metabolic assay27.  

 

2.8 Efficacy of antibiotic loaded gels in a co-culture of human corneal fibroblasts and S. aureus. 

Cells were seeded and plated as described above. Once the cells reached confluence, the cell media 

was removed and the cell monolayer was washed 5 times with PBS to remove and residual 

penicillin/streptomycin. Fresh DMEM substituted only with fetal calf serum (10 %) was added to each 

well (1 mL), the wells were then inoculated with S. aureus in LB broth (10 µl, ~100,000 cells). Gels were 

then added to each of the wells in the following treatment groups: 1) Cell monolayer with bacteria 

(Untreated), 2) Cell monolayer with bacteria and an unloaded gel (Chitosan), 3) Cell monolayer with 

bacteria and a gel loaded with gentamicin (Chitosan + Gentamicin), 4) Cell monolayer with bacteria 

and a gel loaded with moxifloxacin (Chitosan + Moxifloxacin), 5) Cell monolayer with bacteria and 

gentamicin added directly to the cell media, no gel present (Gentamicin 5 µL, 1 % v/v), 6) Cell 

monolayer with bacteria and moxifloxacin (5 µL, 0.005 µM)added directly to the cell media, no gel 

present (Moxifloxacin). All the treatments were incubated overnight at 37 °C. The media and the gels 

were removed from the system and vortexed to break up the structure and the cell monolayer washed 

with PBS. The media, PBS wash and gel were mixed and serially diluted using sterile water before being 

plated on LB agar to determine the bacteria levels. The cell monolayer was washed a further 3 times 

and incubated in trypsin:EDTA (250 µL) at 37 °C for 5 minutes and the cells counted using a 

haemocytometer.   

 

2.9 Statistical Analysis  

All statistical analysis was carried out using SPSS 17.0 (IBM SPSS Inc., Chicago, IL) and data was 

presented as mean ± SEM. The Shapiro-Wilk test was used to ensure all data was normally distributed 

before parametric testing using a one-way ANOVA with Tukey post-hoc test. Statistical significance 

threshold was p<0.05.   

 

3. Results 

3.1 Thermal gelation of Chitosan/ β-glycerolphosphate gels 

Chitosan (500 kDa) with a 95 % degree of deactylation showed thermosensitivity when mixed with β-

glycerol phosphate. At temperatures < 29°C the chitosan exists as a stable viscous liquid. At 29°C the 

sol-gel transition initiates and the G’ of the solution increases over 9°C until it plateaus at 38°C when 

full gelation had occurred (Figure 1). 

 

3.2 Antibacterial Efficacy of the Gels 

The gels were tested for antibacterial efficacy against S. aureus, both antibiotics could significantly 

inhibit the bacteria growth with no colony forming units seen after culturing bacteria with 



moxifloxacin or gentamicin (Figure 2). When the antibiotics were loaded into the gels, the same 

inhibition was seen and no colony forming units were observed. However, when unloaded gels were 

used bacterial colony forming units (cfu) of 421 ± 116 and 380 ± 84 as the gel could not inhibit bacterial 

growth alone. These were significantly higher than antibiotic loaded gels (p<0.000) and not 

significantly different from controls 292 ± 130 cfu and 362 ± 89 cfu. 

 

3.3 Release of Antibiotics from the Gel 

The gels show a sustained cumulative release of both antibiotics over the 4 hour period (Figure 3a). 

At 30 minutes both antibiotic loaded gels showed significantly higher absorbance unit (a.u.) values 

than control (0.09 ± 0.01 a.u.)  with moxifloxacin and gentamicin displaying values of (1.53 ± 0.01 a.u.) 

and (0.52 ± 0.04 a.u.) respectively. The absorbance readings for both antibiotic loaded gels increase 

over the 4 hour period finishing at 6.18 ± 0.36 a.u. (moxifloxacin) and 1.22 ± 0.01 a.u. (gentamicin) 

both significantly higher than control levels (p<0.00). The antimicrobial efficacy of the solutions were 

then tested against S. aureus (Figure 3b). This showed that at 0.5 hours, both antibiotic loaded gels 

had released enough antibiotic to impact bacterial survival. Bacterial colonies grew on gentamicin 

loaded gels (2.44 ± 2.1 cfu) and on moxifloxacin loaded gels (0.66 ± 0.70 cfu). Although this was not 

complete inhibition, it was significantly lower than unloaded gels (1121 ± 575 cfu). At all later times 

complete inhibition was observed for both antibiotics at release solutions 0.5,1,2 and 4 hours, unlike 

unloaded gels which showed bacterial counts at 1 hour (653 ± 301 cfu), 2 hours (1233 ± 777 cfu) and 

4 hours (182 ± 34 cfu). 

 

3.4 Cytotoxicity of chitosan gels 

The gels were tested for toxicology in corneal fibroblast cells (Figure 4). The number of surviving cells 

following incubation with both antibiotic loaded and unloaded gels for 24 hours was measured. The 

alamar blue assay (linked to cell number) showed no differences between the cells exposed to the gel 

and cells which had not been exposed to the gel. The antibiotics also showed no cytotoxic effects on 

the cells.   

 

3.5 Efficacy and toxicity in bacteria-fibroblast co-cultures. 

The bacteria number and cell number in the co-culture were recorded to determine the toxicity and 

antibacterial efficacy (Figure 5a-b). The data showed that without treatment there was no inhibition 

of bacterial growth (1.9 x 106 ± 8.6 x 105 cfu) but there had been a significant reduction in corneal 

fibroblast cell number (7.8 x 104 ± 4.7 x 103 cells /mL) compared to the other treatment groups 

(p<0.001). In cultures with the unloaded gel some inhibition of bacterial growth was observed with a 

significant reduction to (1.7 x 105 ± 7.5 x 104 cfu). This also showed a corresponding increase in the 

number of corneal fibroblasts cells surviving (1.2 x 105 ± 3.6 x 103 cells/mL), which was not significantly 

different from the other treatment groups. Both antibiotic loaded gels significantly reduced bacterial 

growth with moxifloxacin loaded gel treated wells showing 1.88 ± 0.87 colony forming units and 

gentamicin loaded gel treated wells showing 2.22 ± 1.28 colony forming units. These are both 



significantly lower than control samples (p<0.000). These also showed significantly higher corneal 

fibroblast cell numbers than control (1.2 x 105 ± 1.3 x 104 and 1.1 x 105 ± 1.4 x 104 gentamicin loaded 

gel and moxifloxacin loaded gel, respectively). Finally, both gentamicin and moxifloxacin showed 

complete inhibition of bacterial growth with no colony forming units seen, significantly lower than 

controls, but not significantly lower than the antibiotic loaded gels. They also demonstrated higher 

cell growth than controls with moxifloxacin treated cells showing a cell number of 1.2 x 105 ± 1.7 x 104 

and gentamicin treated wells showing 1.1 x 105 ± 1.0 x 104.   

 

4. Discussion  

The treatment of bacterial keratitis using topical administration of antibiotics is well established5,6. 

However, the delivery of the eye drops, every 15 minutes for up to 48 hours represents a significant 

problem to the health and wellbeing of the patients4. Accordingly this study has investigated the use 

of hydrogels to deliver the antibiotics to the eye over time, while also acting as an occlusive dressing 

protecting the damaged cornea. Here we have demonstrated the release, antibacterial efficacy and 

low in vitro toxicity of the antibiotic loaded chitosan/β-glycerolphosphate gels. 

Chitosan is a polymeric material with the ability to form a thermosensitive, hydrogel which is a viscous 

liquid at room and a gel at body temperature. This unique ability makes it a suitable biomaterial for 

application as wound dressing28. Rheological temperature sweep indicates that the chitosan β-

glycerolphosphate solution can be gelled at 38°C. Subsequent to this the gel existed as a stable viscous 

liquid at temperatures < 29 °C, while sol/gel transition temperature ranged from 29 – 37°C. This was 

similar to studies by Cheng et al.,29 where gelation temperature of chitosan/β glycerol phosphate was 

found to be at 37°C. As was suggested by Cho et al.,16 the main molecular forces responsible for the 

sol/gel formation include electrostatic force, hydrogen bonding and electrostatic force interactions 

between chitosan chains and β-glycerolphosphate.  

Due to its position as an external surface, the temperature of the cornea can be affected by the body 

core temperature, the ambient temperature, as well as changes in blinking rate. In humans, corneal 

temperature has been found to peak at 37 ºC regardless of any increases in body temperature30, but 

reaches a maximum of 36.5 - 37ºC when ambient temperature is between 32.0 - 34.5ºC. The 

association between changes in corneal temperature and the occurrence of eye diseases has been 

identified31,32. From our experiments, the ability of the gel to attain gel consistency at 37ºC will be 

advantageous for application since the cornea is at this same temperature irrespective of ambient or 

body heat.  

There are been several reports that highlight chitosan’s intrinsic antimicrobial properties. These 

properties are associated with the ability of chitosan to destabilise the outer membrane of Gram 

negative bacteria and permeabilise other microbial membranes. No et al.,33 showed that chitosan had 

greater antimicrobial effects against Gram positive bacteria than Gram negative bacteria and when at 

lower pH. Further, Raafat et al.,34 demonstrated that the antimicrobial efficacy of chitosan is not 

dependent on a single target but that chitosan binds to teichoic acids, leading to extraction of 

membrane lipids, cell lysis and eventually bacterial cell death35. They showed the occurrence of 

multiple changes transcriptional expression of genes responsible for regulation of stress, autolysis and 

energy metabolism in Staphylococcus aureus, when bacteria are treated with chitosan. In our study 



we compared the antimicrobial efficacy of chitosan hydrogel with and without an antibiotic loading. 

Accordingly, we report that chitosan based gels can decrease bacterial load. However, to obtain 

complete bacterial inhibition the gels require antibacterial agents to be incorporated. 

In antibiotic loaded hydrogels, we observed inhibition of viability S. aureus which was successfully 

inhibited by moxifloxacin and gentamicin released from the gels, as no viable colonies were retrieved. 

Similarly, work by Nayak and colleagues36 investigating the antimicrobial activities of moxifloxacin 

loaded hydrogel formulations consisting polyacrylic acid (Carbopol 934) and propyl methyl cellulose 

(k15M), showed inhibition on agar plates with S. aureus.   

In the release assays, our data showed that moxifloxacin and gentamicin were successfully and 

steadily released from the chitosan gels over a 4 hour time period.  Release of the antibiotics did not 

follow a slow, time dependent course, however, showed a sustained release of drug over time as 

previously observed by Nanjwade et al.,37. We determined the concentration of moxifloxacin released 

at 4 hours compared to stock concentrations was approximately 0.6mg/ml released from gels 

containing. This result is comparable with Bajgrowicz et al., who showed the concentration of 

moxifloxacin released form daily disposable contact lenses was up to 0.2 mg/ml38. 

Chitosan based materials have been reported extensively in the literature for medical applications 

especially wound dressing39,40,41. Similarly, to literature sources, in tissue culture, we report no toxicity 

from the chitosan based gels. Moxifloxacin and gentamicin are MHRA approved for the treatment of 

microbial keratitis and as such are not expected to induce a toxic effect in corneal cells42,43. This 

supports our data that neither antibiotic is toxic to the cells. In co-culture experiments the data 

showed a significant decrease in cell survival in the untreated control. This shows the demonstrated 

in vitro the ability of the bacteria to affect the corneal cells. The presence of the antibiotic loaded gels 

had the same effect as antibiotic drops at inhibiting the growth of the bacteria and producing a more 

permissive environment for corneal cell growth. This supports the use of the hydrogel as inclusion of 

the antibiotics in the gel does not hinder their efficacy.  

 

5. Conclusions 

In summary, the hydrogels exist as a chitosan/β-glycerolphosphate solution which can be 

administered as an eye drop that will form a transparent dressing on the front of the eye. The dressing 

will deliver a sustained release of antibiotics killing bacteria, but not harming the cells in the cornea. 

This will ensure that the patient could be treated at much longer time points, meaning that patients 

could be treated as outpatients, reducing hospital admissions.   
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Figure Legends 



Figure 1 Variation of G’ and G” with temperature showing the gelation of the chitosan/β-Glycerol 

phosphate blend, n=3, error bars show standard error of the mean. 

Figure 2 Antimicrobial activity of chitosan gels with and without antibiotics moxifloxacin/gentamicin, 

n=6, error bars show standard error of the mean, *** denotes statistical significance <0.000 

Figure 3 a) Release of moxifloxacin and gentamicin from the hydrogel over 4 hour period, n=3, error 

bars show standard error of the mean. b) antibacterial efficacy testing of the solutions from the 

release studies at each time point. 

Figure 4 Cytotoxicity of chitosan/β-glycerol phosphate gels, chitosan/β-glycerol phosphate gels with 

antibiotics and antibiotics in solution. Analysed using resazurin, with values shown representing 

averages of three biological replicates, p>0.05 

Figure 5 Cytotoxicity and bacterial efficacy in co-cultures of human corneal fibroblasts and S. aureus. 

a) Cytotoxicity of bacterial co-cultures with chitosan/β-glycerolphosphate gel with and without 

antibiotics. b) Bacterial efficacy of chitosan/β-glycerolphosphate gel with and without antibiotics in 

co-culture with human corneal fibroblasts. Values shown representing averages of three biological 

replicates, p>0.05 
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