
 
 

Numerical analysis of small scale axial and radial
turbines for solar powered Brayton cycle
application
Daabo, Ahmed; Mahmoud, Saad; Al-Dadah, Raya; Al Jubori, Ayad; Bhar Ennil, Ali

DOI:
10.1016/j.applthermaleng.2017.03.125

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Daabo, AM, Mahmoud, S, Al-dadah, RK, Al Jubori, AM & Bhar Ennil, A 2017, 'Numerical analysis of small scale
axial and radial turbines for solar powered Brayton cycle application', Applied Thermal Engineering, vol. 120, pp.
672-693. https://doi.org/10.1016/j.applthermaleng.2017.03.125

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1016/j.applthermaleng.2017.03.125
https://research.birmingham.ac.uk/portal/en/publications/numerical-analysis-of-small-scale-axial-and-radial-turbines-for-solar-powered-brayton-cycle-application(1aff6783-7a8b-4cf1-a95c-7af958f4e4dc).html


Accepted Manuscript

Numerical Analysis of Small Scale Axial and Radial Turbines for Solar Powered

Brayton Cycle Application

Ahmed M. Daabo, Saad Mahmoud, Raya K. Al-Dadah, Ayad Al Jubori, Ali

Bhar Ennil

PII: S1359-4311(17)32054-9

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.03.125

Reference: ATE 10129

To appear in: Applied Thermal Engineering

Received Date: 13 July 2016

Revised Date: 10 March 2017

Accepted Date: 28 March 2017

Please cite this article as: A.M. Daabo, S. Mahmoud, R.K. Al-Dadah, A. Al Jubori, A. Bhar Ennil, Numerical

Analysis of Small Scale Axial and Radial Turbines for Solar Powered Brayton Cycle Application, Applied Thermal

Engineering (2017), doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.03.125

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.applthermaleng.2017.03.125
http://dx.doi.org/10.1016/j.applthermaleng.2017.03.125


  

Numerical Analysis of Small Scale Axial and Radial Turbines for Solar 

Powered Brayton Cycle Application 
 

Ahmed M. Daabo
a,b

*, Saad Mahmoud
a
, Raya K. Al-Dadah

a
, Ayad Al Jubori

a,c
, Ali Bhar Ennil

a
  

 
a 
The University of Birmingham, School of Engineering,  

Edgbaston, Birmingham, B15-2TT, UK 
*
Email: axd434@bham.ac.uk, ahmeddaboo@yahoo.com 

b
 The University of Mosul, Mechanical Engineering Department, Ninawa, Iraq 

c
 University of Technology, Baghdad, Iraq 

Abstract 

In the current work two types of turbines, axial and radial turbine, with their three 

configurations, Single Stage Axial, Dual Stage Axial and Single Stage Radial turbines, for solar 

Brayton cycle applications have been parametrically investigated with the aim of figuring out their 

performance in terms of efficiency and power output. The mean line design for each turbine was 

effectively completed in order to figure out the initial guess for the dimensions, the power output and 

the efficiency. Consequently, the Computational Fluid Dimension CFD analysis was employed for the 

sake of visualising the 3-Dimentions behaviour of the fluid inside the turbine as well as determining 

the main output like the power output and the efficiency at different boundary conditions. These 

boundary conditions were selected to be compatible with a small scale solar powered Brayton cycle. 

An evaluation for some types of losses such as tip clearance and trailing edge losses as well as the 

total loss coefficient of the rotor of each configuration, in terms of pressure losses, has been 

established as well. The current paper deals with Small Scale Turbines SST ranged from 5 to 50 kW 

as a power output. The outcomes showed that the Dual stage axial turbine performances better at the 

off design conditions. By contrast, the single stage radial turbine achieved higher power output during 

the same operating conditions. The results of the CFD analysis have been successfully validated 

against the experimental work done by the researchers for small scale (axial) compressed air turbine 

in the lab. 

Keywords: 1D& 3D analysis, Single stage and dual stages, Axial turbine, Radial turbine, Brayton 

cycle. 

1- Introduction 

In spite of the ease of use technical solutions, about1.3 billion people are still suffering from the 

lack of having any form of electricity and around 3 billion people are still using open fires for 

cooking. In spite of the fact that renewable energy is considered one of the main solutions because it 

is cheap, available, sustainable and environmentally friendly, solar radiation which hits our earth’s 

surface is still not successfully harnessed. Recently, this type of energy is getting more attention by 

researches, designers and provides companies. As researchers, many papers that include in details 

different techniques and methods on how to achieve maximum advantages from the solar energy have 

been published. The considerable benefits from renewable energy and the accelerated importance of 

its role cannot be denied. As stated by Makower et al [1], that about $51 billion and $52 billion was 

spent, as an investment, by each China and the USA only in 2011 in spite of the world economic 

crisis.  Moreover, by 2026, it is expected to have about 26% from the overall electricity consumed in 

the worldwide comes from the renewable energy while it was only around 13% in 2012 [2]. One of 

the main methods to benefit from the renewable energy is to use it in some power cycles such as 

Brayton, Rankine and even in the hybrid cycles which have been recently used in different scales. 

Because of its relative low maintenance and initial cost and simple construction, Small Scale Turbines 
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SST has become one of the promising technologies. It is commonly accepted that the power output is 

the factor used when it is needed to classify the turbines scales, so, this scale is from 5 – 500kW or 

below 200 kW [3, 4] respectively. 

Some papers on the cycle’s analysis and optimization have been published as those in [5, 6]. 

However, there was nothing in the mentioned researches regarding the turbines’ role. Other 

components of the cycle such as the thermal receiver have been intensively studied and recently 

published [7-9].  Even though some studies on the cycle analysis did investigate and considered the 

turbine such as those in [10, 11], however, they have deal with different scale, large scale. One of the 

main reasons for carrying out the current study is the unavailability, from the published studies, that 

investigate in depth the performance in both; on design and off design conditions with this range of 

turbine power outputs. In current study a comparison, with a range of around 5 to 45 kW for small 

scale Dual Stage Axial Turbine (DSAT) and small scale Single Stage Radial Turbine (SSRT) was 

considered. From the application’s view point, it is essential to design an appropriate turbine, from the 

mentioned categories, which is capable to work in an efficient way especially at the off design 

circumstances.  

With the aim of decreasing losses of small scale axial turbine by using the multi-objective function, 

Bahr Ennil et al [12] uses and improved some loss correlations. They concluded that the Kacker & 

Okapuu loss model is able to predict effectively the closest losses to those from the CFD in the SSAT. 

Moreover, the authors concluded that the optimization technique can be employed to reduce total loss 

by enhancing the overall design for the all turbine. However, in the mentioned research, the axial 

turbine and also only single stage was the one of interest by the authors. Similar studies about various 

types of losses’ models that associated with different types of turbines were comprised in the literature 

[13- 15]. 

Similarly, single stage axial turbine for ORC cycle was studied by Martins at al [16] in order to 

analysis and enhances its performance. The authors were able to propose a loss model for clarifying 

the flow losses and they concluded that the profile of convergent-divergent nozzle has a better 

performance especially at high working temperature of the evaporator.  

Recently, the thermodynamic analysis for hybrid, gas, ORC and absorption refrigeration, cycles has 

been achieved by Mohammadi et al [17]. In their study different parameters such as pressure ratio, 

inlet fluid temperatures were investigated. The authors concluded that at the on design conditions, the 

studies system was able to form up to 30kW and around 8kW cooling power with about overall 

efficiency of about 67%. However, the authors mainly focused on the cycle analysis without any 

simulation to any of the system’s components and also they did not considerate to the design of 

turbine.  

Some studies tried to optimize the turbine performance by considering single or multi objective 

function optimization through both the stator and rotor for the two types of turbines [18-20].  Those 

studies have showed a valuable enhancement in the turbine efficiency by modifying the blade shapes 

and their numbers where the highest efficiency was achieved in [19]. With a 4.58 inches rotor 

diameter and 7 pressure ratio of radial gas turbine, the power output ranged from 50 to 100 hp was 

achieved in the study done by Jones [21]. Up to 88% and 86% total to total and total to static 

efficiencies respectively for the studied radial turbine were achieved.    

The exergy and energy analyses for combined cycles under the off design conditions was 

accomplished by Chen et al [22]. The authors found that the off design conditions give more accurate 



  

results in terms of the investigated cycle performance. However, in their study neither the turbine 

design nor the any CFD simulation was considered.    

An intensive parametric study to the three types of micro turbine, single stage axial, radial inflow and 

radial outflow turbines, for ORC cycle and Brayton cycle applications has recently been established 

by Al Jubori et al and Daabo et al respectively [23- 25].  The authors studied different parameters for 

both the turbine and cycle with the sake of improving the cycle performance by escalating the turbine 

efficiency. In their study different working fluids were also examined for the ORC cycle.  

The performance of radial turbine working on two different working fluids, R245fa and R1233zd, for 

truck application was experimentally investigated by Guillaume et al [26]. In their study the authors 

evaluated the ORC turbine performance in terms of the reduction in the mass of working fluid with 

respect to pressure ratio, produced power from turbine and the net output power from the cycle.   

In this work, an integrated methodology is established. It chains mean line design and 3D CFD 

simulation of efficient Small Scale Turbines SST. Furthermore, it compares two types of SST in, Dual 

Stage Axial Turbine DSAT and Single Stage Radial Turbine SSRT in order to figure out the 

performance of each style using various boundary conditions. By the end of this study the most 

suitable type, for the solar Brayton cycle application, of the three investigated configurations, in both 

the on and the off-designs conditions, can be known. To determine the preliminary dimensions and 

performance of each type the mean line proposal design for each turbine’s type was established using 

the Engineering Equation Solver (EES) code [27]. After, the mean line has been integrated with 

ANSYS CFX [28] in order to comprehend the 3D turbines and assess the performance of each one. 

As a result, the values of their efficiencies were built depending on the thermodynamic operating 

conditions and then directed to the cycle in order to pick up their influence on the overall cycle 

thermal efficiency. All in all, this study pursues to identify a suitable turbine to come across all the 

operating conditions of the cycle and identify the effect of each; the turbine and the compressor on the 

cycle performance. Furthermore, a brief studying on some types of losses such as the trailing edge and 

the tip clearance as well as evaluating the overall losses in terms of the loss coefficient have also been 

covered in the present study.  

2- Brayton Cycle 

One of the main advantages of conventional thermal Brayton cycle is using the compressed air as a 

working fluid so it is accounted as a clean cycle and does not affect the environment. However, the 

compressed air needs to be at high level of temperature in order to achieve the potential energy which 

is required to raise the fluid enthalpy. This heat off course can be applied through the combustion 

chamber which uses different types of fuel and as a result, this cycle in its current characteristic, does 

not considered as complete environmentally friendly cycle.   

As shown in figure 1, the proposal reheated solar thermal Brayton cycle contains: a compressor to 

raise the pressure of the working fluid; a thermal receiver for heating the compressed air (instead of 

combustion chamber); a turbine to transfer the air potential energy to mechanical energy; and final 

component is recuperator which is a heat exchanger to take advantage from the exhaust energy, if not, 

it would be lost to the environment. In figure (1A) the T-s (temperature-entropy) diagram is 

demonstrated [29]. 

The main function of the recuperator is to preheat the incoming air which is normally cold before pass 

into the heat source. The power required by the compressor can be calculated using the following 

equation [30]: 



  

   
        

    

  
                                                                                                                                            

Where Cp is the air specific heat constant at constant pressure, T1 is the air temperature at the 

compressor inlet, RC= P2/ P1 is the compressor pressure ratio,   is the specific heat ratio and    is the 

compressor efficiency. 

The specific heat, working fluid per unit mass, supplied from the thermal solar receiver is: 

                                                                                                                                                                                           

The working fluid going away from solar receiver would have the required potential energy from 

both; the compressor and the thermal receiver will passes through the turbine in order to generate 

power output which is given by: 

               
                                                                                                                                         

Where   , is the turbine efficiency, T4 is the air temperature left the turbine, RT= P4 / P5 is the 

pressure ratio in the turbine and K is γ-1/γ.  

Supposing that the coefficient of pressure loss is X, and then equation 3 will be written as: 

                                                                                                                                                  

 

When the working fluid leaves the turbine to the atmosphere, it will move across the recuperator. The 

heat gained (QG) by incoming compressed air and the heat rejected (QR) through the leaving air is 

given by the next two equations respectively:  

                                                                                                                                                                        

                                                                                                                                                                        

The effectiveness, ε, can be defined as following: 

  
     

    
                                                                                                                                                                        

The net, useful, power output that can be gained from the preheated Brayton cycle can be determined 

by using the next formula: 

                                                                                                                                                                 

The above equation can be reformulated to become: 

                         
          

  
                                                                                       

The efficiency of the thermal Brayton cycle (   ) is:  

 

    
    

    
                                                                                                                                                                

 



  

Equation 10 can also be written in terms of pressure ratio, turbine efficiency, compressor efficiency, 

recuperator effectiveness and temperatures to be as following [30]:   

    
            

       
  

   

  
 

                   
                 

  
   

  
  

                                                        

    

As it is shown in the above equations as well as figure 1, the cycle components; each component of 

these elements needs to be sensibly designed so that the overall cycle efficiency increases. In this 

research only the choice of the best design parameters of the turbine, which leads to higher turbine 

isentropic efficiency and power output, will be discussed. This without doubt will improve the overall 

efficiency of the all system performance.  

  

3- Axial and Radial Turbines  

There are many factors need to be carefully studied when one wants to determine whether the 

axial or the radial turbine is the one of interest in a specific application. Possibly the manufacturing 

constraints, the cost production, the suitability to the specific application and the mechanical integrity, 

are among the main factors which determine which type will be more suitable. The following table, 

Table 1, gives the most important and brief differences between the axial and radial turbines [31-37].  

 

Table1. Main features of SST. 

Efficiency The peak efficiency levels for the 

two stages are nearly identical, 

capability of the work done per 

stage. 

For low mass flowrate, its efficiency is 

higher than the axial flow turbine. The two 

stage types offer similar efficiency 

possibility. 

Power output Greater flow capacity per unit 

frontal area of the axial-flow stage. 

However, the work done is lower 

than the radial flow turbine. 

Is able to extract higher output power as a 

result of the high length and curvature of the 

rotor blades. This contributes in having 

greater pressure ratio, 4 per stage, with 

lesser flow rate values 

Manufacturing It can reach a higher level of 

efficiency but higher the blade 

profile precision level will be then 

required. 

Attractive for small units such as 

turbochargers and micro-turbines. It is very 

compact.  

Design The rotor tip diameter is the factor 

used in defining the axial-flow 

stage’s frontal area. 

The nozzle outer diameter is the parameter 

used for determining the radial-inflow stage. 

Analysis The aerofoil analysis, which two 

dimensional analysis, is the one 

followed during the analysis.  

The one-dimensional or preliminary design 

method is the most effective approach in   

analysing its performance. 



  

Operational life Higher operational life compared to 

the radial flow turbine.  

Higher operational life as a result of being 

lesser mechanical and thermal stress because 

the fluid hits the rotating shaft 

perpendicularly.  

Commercial 

availability 

Both; the multi stage and the single 

stage are commercially available 

Single stage applications are more common 

than the multi stage. 

Cost The single stage has lower cost, 

lower design complexity and ease 

of maintenance. 

The one-dimensional or preliminary design 

method is the most effective approach in   

analysing its performance.  

mechanical 

integrity 

Greater flow capacity per unit 

frontal area of the axial-flow stage. 

Fewer blades per blade row, which can offer 

a major cost advantage, in particular in the 

smaller sized units. 

Off design 

conditions 

At low blade rotational speed the 

SSAT has the ability to behave 

better than the SSRT at the off 

design conditions. 

The optimum achieved efficiency for the 

SSRT corresponds to a higher rotational 

speed than that for the axial one. 

 

 

4- Governing Equations 

 4.1 Mean line Design of the Axial Turbine  

 The first and the essential step in the turbines’ design procedure is the mean line, the one 

dimensional analyses. So, the three dimensionless factors (flow coefficient, loading coefficient and 

degree of reaction) are essential to be selected and in this manner the preliminary velocity and 

triangles efficiency will be determined. Figure (2) shows the velocity triangles in both the axial and 

the radial turbines. The working fluid, compressed air, comes in the nozzle with an absolute velocity 

(C1) and a flow angle (α1) and then departs it at absolute velocity and flow angle (C2) and (α2). The 

other remaining sides and angles represent are the inlet and outlet relative velocities and angles (w2, 

w3, β2 and β3 respectively). Some of the most relating correlations and equations which have been 

used in the axial turbine design are arranged below [31-41]: 

The loading coefficient   and flow coefficient   can be determined by equations 12& 13 

respectively.  

   
   

  
                                                                                                                                                                    

   
   

  
                                                                                                                                                                    

The inlet, outlet blade angles and flow angles can then be obtained using equations 14 and 15 

respectively.    



  

 
      

       

  
  

      
        

   
 
 

 
 

                                                                                                                                         

 
      

             

 
 

      
            

 
 
                                                                                                                                                          

The nozzle loss coefficient ( 
   and the manufacture losses such as the tip clearance   one can be 

defined in equations 16 to 18. Where           represented the axial and radial clearances 

respectively,  
 
 are nozzle loss coefficient value.  

 
            

 

   
 
 
                                                                                                                                                          

                                                                                                                                                                                                              

   
 
     

              
 

 
                                                                                                                

Similarly, the associated loss coefficient in the rotor part of the turbine  
 
is sorted in equations 19. 

   
 
     

              
 

 
                                                                                                                

The losses in pressure can be evaluated using the correlations of pressure coefficients for each the 

stator and the rotor are shown in equations 20& 21: 

   
         

        
                                                                                                                                                               

   
                 

            
                                                                                                                                          

After calculating all the associated losses in the both parts of the axial turbine, the total to total, in 

case of more than one stage, can be calculated as in equations 22 and total to static, in case of single 

stage turbine, can be determined using equation 23. 

    
 

     
  

       
  

        
                                                                                                             

    
 

     
  

       
  

     
  
  

    
       

                                                                                    

The blade number and height are Z and H respectively can be specified using the next two formulas: 



  

   
 

  
                                                                                                                                               

                                                                                                                                                                       

Where rt and rh represented the tip and the hub radius values of blades.  

4.2 Mean line Design of the Radial Turbine 

Using the same approach of that mentioned in the axial turbine, the loading coefficient and the flow 

coefficient of the radial turbine should be firstly determined as a starting point in the design 

procedure, as showing in equations 26 and 27 respectively[28-38]:    

   
        

  
                                                                                                                                                            

       

   
   

  
                                                                                                                                                                    

 

The tip diameter and the rotor vanes number can be calculated using equations 28 and 29 respectively 

   
  

  

 
      

                                                                                                                                                    

      

        
 

  
                                                                                                                                       

 

The enthalpy drop because of the tip clearance is consisting of the axial clearance and radial 

clearance. The value of this drop can be determined by using the next correlation:  

                
  

        

  
                                                                                        

 

The two values of clearance can be calculated after calculating the axial and radial values of the 

absolute velocity, as shown in the next two equations:  

  

   
   

     

  
 

      
                                                                                                                                                      

       

    
     

  
  

          

        
                                                                                                                                      

 

Where the rotor length can be determined using the formula shown in equation 33  

    

                                                                                                                                                          

 

So, using the following correlation, the two values of clearance can be computed: 

     

                                                                                                                                                    



  

 

The secondary losses are estimated by using the next equation:     

            
  

    

         
                                                                                                                                        

      

The loss value associated with the exit kinetic can be assessed using the following equation, 

  

            
                                                                                                                                                          

         
 

Regarding the loss from the nozzle, this loss can be determined after tracking down the moody chart 

and find out the value of friction factor , the differences in the enthalpy due to the friction effect.  

 

   

 
 
 
 
 

 
 

  
 
  

 

 

          
 

 
 
   

   

       

  

  

  
     

      
 
  

 

 

    

 
 
 
 
 

 
  

                                       

 

                              
           

           
                                                                                                       

 

 

The losses which are accompanying to the volute geometry can be valued using the following 

correlation:     

              
         

 

 
                                                                                                                                        

 

After finding all of the earlier mentioned losses, the total enthalpy losses will be determined by via 

equation 40.       

                                                             

 

                                                                                                                                                  

 

 

Finally, the total to total efficiency will be calculated as shown in equation 41.  

 

                      
 

        

                     
                                                                                             

 

The mentioned correlations and equations are the most famous ones which can be used in order to 

design and estimate the overall turbine efficiency. The flow chart of preliminary design is presented in 

figure 3. The boundary conditions BCs and the dimensions of each turbine’s geometry are organized 

in table 2 and table 3 respectively. Moreover, the full details of the blade angles and dimensions are 

explained in figure 4. 

5- Numerical Analysis 

5.1Blade Generation  



  

Once the mean line design has been performed, the next step was to build the geometry of 

each blade. That can be achieved by employing the three dimensional blade generations, Blade-Gen, 

in ANSYS Workbench. This feature was used to visualize blade of both the stator and rotor for the 

SSAT, DSAT and SSRT in two as well as three dimensions as shown in figures 5A, B and C 

respectively and to construct the complete stage geometry of each turbine’s configuration. The fluid 

domain at the inlet and exit of each; the stator and the rotor and also the fluid passage both the stator 

and the rotor for each stage and turbine should be specified and applied in this step specifically. The 

solution quality, the accuracy and the computational costs, is influenced significantly by the domain 

discretization. 

5.2 Mesh Generation  

Once the overall geometry and mean line results being satisfied, the geometry of each blade 

transfers to what is called CFX Turbo-Grid feature in the ANSYS Workbench.  The main function for 

the Turbo-Grid is to divide both the blade geometry and the fluid domain which was initiated in the 

Blade-Gen in to the required number of elements. Figures 6A, B and C show the 3 dimensional 

meshes for the used blade to blade passage for each; the SSAT, DSAT and SSRT respectively. 

It is worth to mention that the grid size was varying depending on the zone of the blade, for example 

the grid size was refined in the areas near the surfaces of blades and the walls in order to keep up an 

acceptable compromise between computational costs and solution accuracy. In order to make sure that 

the satisfied element size has been chosen, the grid sensitivity investigation with respect to turbine 

efficiency was established as shown in figure 7.  

 

5.3 Numerical Solution 

It is well known that choosing the correct model for solving the required equations is one of 

the crucial tasks which need to be carefully considered. A wall treatment was automatically applied 

during the simulation in order to take in consideration the effects of all the walls. The main function 

of this wall treatment is to ensure smooth shift between low-Reynolds number and wall functions 

formulation through computational grids without any deficiency in accuracy [42]. In order to examine 

the distance between the first node and the wall, a dimensionless distance from the wall called y
+ 

is 

initiated. This method enables users from correctly specifying the near wall spacing according to the 

required value of y
+
 for example near the passage or hub/ shroud tip. It can be defined as shown in 

equation 42: 

     
      

              
     

          (42) 

 

Where     is the specified target   value, L is the blade chord,    is near wall spacing,     and 

     are Reynolds number values based chord length and the distance along the chord, computed 

from the leading edge, respectively.  

 

Even though some models such as the Baseline BSL model has the ability to consider the 

advantages of other models in terms of the solution accuracy, it is still in fact unable to accurately 

predict the exact amount of separation especially for smooth surfaces. Moreover, the main problem 

with Wilcox model is its high sensitivity to the freestream conditions. By contrast the k-ω based on 

SST model is able to precisely predict the mention phenomena under pressure gradients.        

For the current study and based on the turbulence model, the Shear Stress Transport (SST) k-

ω model was employed to take into consideration the flow separation effect on the turbulent viscosity 

(eddy-viscosity).  

 



  

The k-w based SST model is more accurate and reliable for a wide range of flows like airfoil, adverse 

pressure gradient and transonic shock waves. The k-ω transport equations are: 
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                            (44) 

 

Where Gk , Yk and Sk are the generation of turbulent kinetic energy, the fluctuating dilation and the 

source term of the k-w turbulence model. Similarly Gw, Yw and Sw represent the dissipation rate of 

turbulent kinetic energy, the fluctuating dilation in compressible turbulence and are the source term of 

the k-w turbulence model. 

 

 

5.4 CFD Simulation  

By choosing the correct element type, element size and the solver, the model becomes ready 

to be simulated by using the 3D turbulent viscous flow in ANSYS-CFX solver. The used setting and 

the assumptions are suggested by [43] and they are as follows: 

 

1- In the ANSYS-CFX solver each; the machine type (whether it is axial or radial), the rotation axis 

and the analysis type (whether it is steady state or transient) was selected from the basic settings [28].  

2- The component (whether it is stator or rotor) definition is the next step where the passages 

alignment, the flow direction, wall configuration (whether there is a tip clearance at the shroud and 

the hub or not) and the rotor rotational speed were arranged. 

3- Next, the fluid viscosity, phase and compressibility were put to rights. Furthermore, the compressed 

air as an ideal gas and the first order upwind advection scheme was chosen for the topology as it is 

numerically stable [28].  

4- The Generalized Grid Interface GGI feature of CFX was selected to connect the components of the 

stage (stator and rotor in SSAT and SSRT) or even stages together (as in the case of DSAT) to make it 

ready for the shear stress turbulence model and with Navier-Stokes equations [28]. 

5-   In order to enhance simulation accuracy, the mean value of y
+
 was kept back at around unity as 

recommended in the CFX-Solver theory guide [28].  

6- In the physics definition scheme, air as ideal gas for the working fluid type was selected and the 

chosen inlet and outlet boundary conditions are: the total pressure, the total temperature and the flow 

direction as inlet conditions. By contrast, the static pressure was selected to characterize the outflow 

[28].  

The procedure for the CFD simulation steps is shown as block diagram in figure 8. 

 

The convergence standards for the residuals of the velocity, the continuity and the energy equations 

were set to the order of 10
−5

, 10
−5

 and10
−6

 respectively and once the solutions were met with the 

convergence criteria, the results became ready to be analysed. 

The best distributions of the velocity through all the stage for the each of the three configurations, 

SSSSAT, DSSSAT and SSSSRT, is achieved and presented in figures 9 A, B and C correspondingly. 

In the same way the pressure distribution, Blade-to-Blade view, along each complete stage of three 

earlier configurations of the studied turbines have shown in figures 10 A, B and C respectively. 

Moreover, the load distributions on each the Pressure Side (PS) and the Suction Side (SS) through the 

all stage of the non-dimensional meridional coordinate at the studied pressure ratios (2, 3 and 4) for 



  

the SSAT, DSAT and SSRT respectively are also presented figures 11 A, B and C. In these figures the 

differences between the pressure of the SS and PS is in fact represents the amount of load occurs on 

blades which has been increased with increasing the pressure ratio. Also, it is clear that the behaviour 

is dissimilar between the three investigated of turbine configurations. Moreover, it can be seen that the 

differences between SS and PS is varying through the stage and at each specific turbine’s 

configuration. For example, the heaviest load, the highest difference, was noticed to be at the shroud 

region for the axial turbine; however, the opposite is the case in the hub area. The temperature 

spreading, Blade-to-Blade views, along each complete stage of three previous configurations of the 

considered turbines have shown in figures 12 A, B and C in that order. 

 

 

6- Validation of the current study 

Even though the Computational Fluid Dynamics CFD is considered as a one of the most reliable 

methods which cover the analysis for different fields, it is still a general simulation tool which needs 

to be validated experimentally.  Hence, the results obtained from the current study by using these 

tools are not reliable unless they are compared an experimental work either for the same model or 

with the experimental models of some other researchers. So, in order to justify the current results and 

because the experimental work of the current research has not been completed yet, the authors have 

successfully modelled the complete design for two different experimental studies from literature [44 

& 45]. Among the many experimental studies found in literature [44-51], only two studies have been 

chosen to get on to the validation of the present study. The two mentioned studies were specifically 

chosen as a result of having a relatively sufficient data in order to make the mission of designing and 

modelling their prototype is reachable. Here, it is worth to mention that the experimental study which 

has been found in reference [44], which has been established in the lab using small scale axial turbine, 

was modelled and analysed using the a full three dimensions analysis. Furthermore, the second 

validation, with reference [45], the full three dimensions analysis was established as most of the 

required data were on paper of that study. Figures 13 A displayed the results of the comparison 

between the current three dimensions CFD model and the experimental work done using the lab found 

in [44]. By contrast, the results of the three dimensions analysis were figured out in figure 14 B. All in 

all, the validation results showed an excellent agreement has been achieved between the current work 

and the two chosen ones especially with the model of [44] with no more 16.5 % and less than 10 % 

deviation values for the second model. At this point it is worth to mention that the uncertainty in the 

results belongs to some errors such as the blade’s surface roughness, state flow condition, which is not 

purely steady in reality, and some unconsidered losses, by the CFD model, like the mechanical losses. 

 

7- Results and Discussions 

This section will figure out and analyse the results of the 3D turbulent viscous flow model for the 

three configurations of the SST by using ANSYS-CFX solver. Consequently, the on design and the 

off design conditions for each of the three different patterns at different factors such as the rotational 

speed, inlet temperature and pressure ratio were investigated in order to figure out the performance of 

each turbine in terms of its efficiency and power output.   

 

7.1 Boundary conditions  

              Assessing the power output, it has been seen that in general, this factor has shown a strong 

dependence on the value of the pressure ratio and that was for the studied inlet air temperatures of 

(400K to 600K). Moreover, this factor, the pressure ratio, has almost same influence on the two 

configurations of the studied SST. As for the rotor rotational speed, it can be noticed that the power 



  

output of each turbine increased until a certain value of rotational speed, which seems to be the 

optimum value, and then begins to decline. Moreover, comparing to its lowest rotational speed, at 

60,000 RPM, the power output developed to be about 130% of the power output at the optimum value 

of the rotor rotational speed. Furthermore, the value of optimum rotational speed varies depending on 

the turbine configuration and its supplied pressure ratio value.  

For the sake of accuracy, the power out form has been divided by the mass flow rate of the working 

fluid, compressed air, for all the following results, as there was a slight difference in the mass flow 

rate value.  

Figure 14 displays the consequence of the rotor rotational speed on the turbine power efficiency and 

output for the DSAT and SSRT at a temperature of 400K and a turbine pressure ratio ranged from 2 to 

4. In comparison with SSRT it was noticed that the DSAT demonstrated higher efficiency for all the 

rotational speeds and at all the investigated inlet temperature values. This indicates its ability to work 

more effectively at the off-design conditions. The reason for that could relate to the peripheral speed 

which is high so, the turbine exit flow will be supersonic. The difference between the SSAT and 

DSAT became higher which might be because of the higher Mach numbers at the trailing edge part of 

the blade which leads to a fall in the efficiency at higher PR.  In other words, the peripheral speed will 

be high and that means that the exit flow will experience supersonic which might not be the case for 

the DSRT. This can indicated the relation between the losses and both rotational speed and the 

pressure ratio as well. 

As the rotational speed increased the difference between the two efficiency trend lines relatively 

decreased. That is because increasing the rotational speed of SSRT allows a reduction in both the 

secondary and leakage losses. The maximum efficiency for SSRT, at 70 KRPM, was approximately 

81.5% at PR of 2. However, it can be also seen that the tipping point was at 100 KRPM and the 

maximum divergence from the optimum efficiency was recorded to be about 17 % for the SSRT with 

only about 3% for the DSAT.   

Although the Small Scale Axial Turbines DSATs displayed higher efficiencies, its power output of 

experienced lower values compared to SSRT through all the rotational speeds, except 110 KRPM. 

The reason for that was the ability of radial turbine of extracting higher power at the same value of 

mass flowrate. The maximum variance in the power output between both turbines was noticed at 

minimum rotational speed of 60 KRPM was ranged from 60 KRPM to 90 KRPM for the three studied 

values of pressure ratio. Similarly, as the rotational speed increased the difference between the value 

of power output decreased, until they were closely matched at and after 107 KRPM. That was because 

of the sudden drop of the out power for SSRT. The peak power output, as a specific work, at a 

pressure ratio of 2 were around 49 J/s and 55 J/s at 90 KRPM and 75 KRPM for the SSDSAT and 

SSRT respectively. As for the PR of 3 and 4, the corresponding values of the specific work extracted 

from the three patterns were approximately 61 J/s and 66 J/s, 85 J/s and 100 J/s for the SSDSAT and 

SSRT respectively. This indicates the importance of pressure ratio in terms of the amount of obtained 

power for all the two turbines’ pattern.  

Similarly, figure 15 displays the effect of the rotor speed on the turbine efficiency and power output 

for the DSAT and SSRT at PR from 2 to 4 and compressed air inlet temperature of 500 K. In this 

figure, it can be noticed that in spite of the efficiency value the DSAT hit the top at rotational speed of 

90, KRPM with about 84.5%. The performance of the SSRT on the other hand was not good in terms 

of the efficiency which was increased from about 67% to 81% during the investigated range of rotor 

rotational speed at PR of 2 while the its efficiency hit the tip at PR of 3 with around 84.5% as it was 



  

working with the on-design conditions.  Again the DSAT showed better behaviour during the off 

design conditions than the other investigated type of turbines. The other important outcome from this 

figure is that the advantage switched to the SSRT after the rotational speed of 95 KRPM because of 

the low values of both the secondary and leakage losses at higher rotational speed values. 

As for the extracted power from the studies turbines, it can be seen that generally the power of the 

SSRT was the highest during all the investigated pressure ratio values. Specifically, at PR of 2 the 

power for DSRT and SSRT were approximately 57 J/s and 71 J/s. In the same way the trends of 

output power values for the two turbines’ types were represented in the same figure to show around 

13% and about 23% maximum differences during the off design operation. Having said that the 

maximum power output in terms of Enthalpy were about 76 J/s and 99 J/s at the same rotational speed 

of 90 KRPM, indicating that the two turbines were working at their nominal conditions. For PR of 4, 

the increment in the amount of power output at high rotational speed has shown higher differences 

between the one extracted from the SSRT compared to the DSAT. In terms of numbers, the maximum 

corresponding extracted specific work for each; the DSAT and SSRT were in the region of 81 J/s and 

113 J/s respectively.   

The outcome of changing the rotor rotational speed on the turbine power efficiency and output for the 

two features DSAT and SSRT at a temperature of 600K and a turbine inlet temperature ranged from 2 

to 4 is figured out in figure 16. General speaking, at this specific level of fluid temperature it can be 

seen that the high level of efficiency was switched to the SSRT especially at the high rotor rotational 

speed with a certain fluctuation point, normally higher than 95 KRPM. Again this gives an indication 

on the relation between the losses and both pressure ratio and the rotational speed. As for the other 

turbine, the results showed that at 3 and 4 the radial demonstrated relatively higher efficiency 

especially between 70 KRPM and 90 KRPM.  

During all the studied values of pressure ratio, a maximum of about 11 % differences between the 

highest and lowest values of turbine efficiency was put on show at a very low rotational speed of 60 

KRPM. As the rotational speed increased the difference between the two efficiency trend lines 

diminished, until they were closely matched at around 105 KRPM. That was because increasing the 

rotational speed of SSRT allows a reduction in both the secondary and leakage losses. The efficiency 

pointed for DSAT at 90 KRPM was approximately 83.5%; this may be due to that this range of the 

rotational speed was with the limit of nominal conditions, whilst for SSRT the maximum was noticed 

at 70 KRPM with approximately 81% at PR of 2. However, it can be also seen that the tipping point 

was at 100 KRPM and the maximum divergence from the optimum efficiency was recorded to be 

about 11% for the SSRT compared to around 6% for the DSAT.   

Even though the DSAT demonstrated higher efficiencies, the achieved power output had lower values 

compared to SSRT through all the rotational speeds especially at higher rotational speed, more than 

95 KRPM. The reason for that was the ability of radial turbine of extracting higher power at the same 

value of mass flowrate in particular at high fluid temperature. As the rotational speed increased the 

difference between the value of power output increased. In terms of number, the extracted output 

power for the SSRT reached approximately 1.7X of that achieved by the DSAT.  Furthermore, the 

ultimate power output values, as a specific work, at a pressure ratio of 2 were around 67 J/s and 85 J/s 

at 90 KRPM for the DSAT and SSRT respectively. As for the PR of 3 and 4, the corresponding values 

of the specific work extracted from the three patterns were approximately 91 J/s and 93 J/s, 128 J/s 

and 135 J/s for the DSAT and SSRT respectively. This indicates the importance of pressure ratio in 

terms of the amount of obtained power for all the two turbines’ pattern.   



  

7.2 Tip Clearance and Trailing Edge Losses  

One of the main restrictions in the small scale turbines industry is the limitation of the 

manufacture concerns such as the tip leakage losses which is reflected directly to the amount of 

pressure losses and as a result on the their efficiencies. Losses in any real system are inevitable. One 

indicator of losses can be the property of entropy or the entropy generation which leads to decrease 

the overall system efficiency or performance, see for example the difference between the two flow 

behaviours in figure 17. In gas turbines losses are associated with either the turbine structure like the 

skin friction losses or the flow circumstances of the turbine working fluid like the endwall flows 

which is one of the forms of the secondary flows which are the main sources of recirculating flow and 

generating what is known as passage vortex. Like this flow behaviour occurs mainly in the radial flow 

turbines as a result of their blades’ complexity compared to the axial flow turbines. To tackle this 

problem, both; the blade geometry and the rotor rotational speed need to be carefully studied.  

Before starting the effect of some parameters on the dual stage turbine, figure 18 gives an indicator 

about the ratio of power output at each stage of the DSAT at different rotational speed values. The 

amount of power extracted from the second stage was higher because of the higher pressure ratio in 

this stage. The effect of each the stator trailing edge and the rotor shroud tip clearance on the amount 

of losses are established in the section to see their effect on both the efficiency of the power output of 

the dual stage axial turbine where this effect has higher influence because of the connection between 

the two stages. It is worth to mention that this analysis has been done at only one boundary condition 

i.e. the nominal design condition for the sake of abbreviation.  In figure 19; both the efficiency and the 

power output of each stage alone was higher with low tip clearance and lower values of stator trailing 

edge, having said that, the dual stage configuration showed higher influence to the stators’ trailing 

edge values than those of the rotors’ tip clearance. The reason for that is the importance of matching 

the stator trailing edge of the first stage with the rotor leading edge of the second stage which 

otherwise motivates other types of losses such as the secondary losses which arise during the flow 

turning inside the passage. The other outcome from this investigation is that while the efficiency of 

each stage separately was relatively higher influenced than the dual stage. On the other hand, as there 

is only single stage radial turbine analysed in this study, the rotor’s tip clearance was by far the most 

influence parameter on the performance of the SSRT.  

In terms of number, it can be seen that while the maximum difference in the efficiency values in each 

stage separately was around 1.5 % when tip clearance increased from 0.3 to 0.4 mm, while this 

difference reached less than 1% in the dual stage. Similarly the efficiency of each stage separately was 

around 1.3 % when trailing edge thickness became 0.5 mm while this factor did make larger effect in 

the dual stage efficiency when the relevant difference in the efficiency was about 2.2 %. This 

however, indicates the important of matching the trailing edge of the first stage rotor, which was fixed 

at 0.3 mm during this study, with the leading edge values of the second stage stator. The relevant 

figures of the power output of each stage separately as well as the dual stage have been attached near 

the figures of the efficiency.  Similarly, the maximum sacrifice in the efficiency value in the SSRT 

was less than 0.2 % by increasing the stator trailing edge but this value became around 1.5 % with 

increasing the rotor tip clearance. The power output showed almost similar influence to each; the 

trailing edge and tip clearance with about 275 and 199 W lower when they increased to 0.5 mm each.  

7.3 Loss Coefficient  

Finally the overall losses coefficients of each of the three configurations at different boundary 

conditions have been briefly discussed in this section. Many studies have been published on the both 

the characterizations and the methods of calculation for different types through various correlations as 



  

previously shown in section 3. In turbines, losses can be divided to those which takes place in the 

stator and those happens in the rotor part, more details can be found in [12, 52-55]. In the current 

study the loss coefficients in terms of pressure losses, as one significant indicator of losses, for each of 

three configurations and at different working circumstances will be evaluated and discussed next. 

Using the equations mentioned in section 3, the pressure loss coefficients have been used to predict 

the losses in the total pressure for both the stator and rotor of each of the three investigated turbine 

features for the numerous examined boundary conditions is presented in figures 20 A-C. 

The overall indications of these figures showed that by increasing each the fluid inlet pressure 

temperature, the value of pressure coefficient increase. Moreover, these values experienced their 

lowest magnitudes at certain rotor rotational speed.   

8- Brayton Cycle Results  

 After this long study the main outcomes from such as the turbine efficiency and the studied 

boundary conditions have been used as input parameters with the aim of predicting the Brayton cycle 

efficiency as offered in figures 21 A-C. The performances of some other cycle components for 

instance the compressor efficiency and the thermal receiver have also figured out.  

It is clear from figure 21 that the maximum turbine efficiency the highest cycle efficiency is achieved. 

However, to have a relative At this point it is worth emphasising the importance of having relatively 

long-standing turbine efficiency, working at its designed is not applicable in reality. So, the other 

important factor is to investigate the off-design conditions at different boundary conditions and cycle 

components’ efficiencies which have direct effect on the overall cycle efficiency. It is well known that 

the higher temperature at specific value of pressure ratio values the better overall efficiency of the 

cycle can be achieved. For the sake of accuracy, the effect of compressor efficiency on the overall 

cycle efficiency has been highlighted in this section. From the cycle analysis, it was found that at 

compressor efficiency of 95%, the cycle efficiency can be increased by about 4.5 % and 9.5 % by 

enhancing the efficiencies of the turbine from 80% to 90% when the fluid inlet temperature are 500 K 

and 600 K respectively. Of course these values can be changed based on the cycle boundary 

conditions such as the pressure ratio and the inlet temperature of the compresses air increased. On the 

other hand, the performance of the cycle can deteriorated up to around 7.5% if the compressor 

efficiency decreased from 95% to 85%. 

9- Conclusion 

          In this paper, the performance of small scale turbines with two different patterns named as 

DSAT and SSRT working on compressed air as a working fluid have been considered and analysed at 

different boundary conditions with the aim of picking out the most appropriate turbine for the current 

application, small scale solar powered Brayton cycle. Their performance at both the on and the off 

design conditions were also examined. The results of the current work are confirmed using the results 

from the experimental work which has been established in the lab as well as other experimental work 

found in literature. From this extensive study some essential spots can be briefly offered below: 

1- The dual stage axial turbine has the ability to behave better than the other two turbines at the 

off design conditions and this can achieve a relatively stable efficiency for the cycle. Having 

said that, the extracted output power was not sufficient when it is compared to the radial 

turbine.  

 

2- The single stage radial turbine is superior when the main concern is to provide more output 

power compared to the other turbine at almost all the studied inlet temperature pressure ratio. 



  

The output power reaches up to 1.7X of that extracted from the dual stage axial turbine 

especially at high pressure ratio. 

 

3- The radial turbine is much affected by the tip clearance rather than trailing edge thickness. 

The tip clearance and trailing edge losses together contributed up to around 4 % and the latter 

can be reduced in the dual stage by carefully matching the rotor trailing edge of the first stage 

and the stator leading edge of the second stage.   

 

4- The loss analysis showed that increasing each the fluid temperature and pressure ratio 

contribute in increasing the rotor total loss coefficients. Moreover, the SSAT showed the 

highest values for the mentioned coefficients and the SSRT experienced the lowest at certain 

rotational speed values.  

 

5- At 95% compressor efficiency, the maximum improvement in the cycle thermal efficiency 

ranges from about 5% to 10%, depending on other boundary conditions, can be achieved if 

the turbine efficiency increased from 80% to 90% at fixed other boundary conditions. By 

contrast, a variation in the cycle efficiency reached up to 7.5% was noticed by changing the 

compressor efficiency between 95% and 85%. 

After this study it is clear that the competition now is between the SSDSAT and the SSRT which 

could open the door for adding new configuration of turbine i.e. the Small Scale Dual Stage Radial 

Turbine SSDSRT which might be the topic of the future studies.   

 

 



  

NOMECLATURE 

Symbols 

 Creek Symbols  

A       Area α Absolute flow angle (deg.) 

b Blade width (m) β   Relative flow angle (deg.) 

B Axial chord (mm) θ Tangential/circumferential direction 

c Absolute velocity (m/sec) ε Clearance (m) 

d Diameter (m) η Efficiency (%) 

f Friction factor γ Specific heat ratio 

h Enthalpy (J/kg) υ Velocity ratio (-) 

H Blade height (mm) ρ Density (kg/m
3
) 

i Incident angle (deg.) φ Flow coefficient (-) 

k 

K 

Loss coefficient (-),  

γ-1/γ 

ψ Loading coefficient (-) 

l Length (m)  Acentric factor (-) 

m  Mass flow rate (kg/sec), 

Meridional 
  Losses (-) 

p Pressure (Pa)  
 
 Nominal loss factor 

PR Pressure ratio Subscripts  

r Radius (m) 1-6 Station 

   Mean radius of curvature c                     Compressor 

Rc Compressor pressure ratio G 

h 

        Gained 

          Hub 

Re Reynolds No. (-) hyd        Hydraulic 

   Degree of Reaction m Meridional direction 

s Entropy (J/kg.K) r Radial, Rotor, 

SC Swirl coefficient (-) Rej Rejected 

T  Temperature (K) rel relative 

U Rotor blade velocity (m/s) s Isentropic, Stator 

w Relative velocity (m/sec) t Total, Stagnation, Turbine, tip 

W Power (W) th Thermal 

x Pressure loss coefficient ts Total to static 

Z Blade number in radial turbine  x Axial component 

Acronyms    

BCs 

SST 

Boundary Conditions  

Shear Stress Transport 

DSAT 

SSDSAT 

Dual Stage Axial Turbine 

Small Scale  Dual Stage Axial 

Turbine 

CFD Computational Fluid Dynamics SSRT Single Stage Radial Turbine 

PD Preliminary Design SST Small Scale Turbines,   

https://www.grc.nasa.gov/www/k-12/airplane/ratio.html
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 (A) (B) 

 

Fig.1A: Schematic diagram of concentrated solar power with Brayton cycle system and the T-S diagram 

of the cycle in B. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
                                         (A)                                                                              (B) 

 

Fig. 2: The mean line velocity triangle of; (A) axial turbine and (B) radial turbine [18].  

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Algorithm procedure used in the designed turbines. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The definition of the dimensions and the angles with Blade-to- Blade view. 



  

 

 

 

  

 

 

 

 

 

 

 

 (A)    (B)          (C) 

Fig. 5: 2D and 3D view for the blade of both the stator and rotor for the SSAT, DSAT and SSRT A, B and 

C respectively. 

 

 

 

 

 

 

 

 

 

 (A)    (B)          (C) 

Fig. 6: 3D view for the all domains showing only the hub, the blades with their mesh lines of both the 

stator and rotor for the SSAT, DSAT and SSRT A, B and C respectively. 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 Fig. 7: Mesh sensitivity based on turbine efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 8: CFD modelling procedure for the designed turbines. 
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 (A)    (B)          (C) 

 

Fig. 9: Velocity distribution of stage, stator and rotor, for the SSAT, DSAT, 1
st 

up, and SSRT A, B and C 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 (A)    (B)          (C) 

Fig. 10: Pressure distribution of stage, stator and rotor, for the SSAT, DSAT and SSRT A, B and C 

respectively. 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 (A)    (B)          (C) 

Fig. 11: Blade load distribution along the rotors for the SSAT, DSAT, 1
st 

up, and SSRT A, B and C 

respectively. 

 

 

  

 

 

 

 

 

 

 (A)    (B)          (C) 

Fig. 12: Temperature distribution of stage, stator and rotor, for the SSAT, DSAT and SSRT A, B and C 

respectively. 
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Fig. 13: The efficiency of the current work against two experimental works [44, 45]. 
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                                      (C)           (C) 

Fig. 14: The turbine specific work and efficiency for the three turbines at different rotational speed, inlet 

temperature of 400 K and pressure ratio of; (A): 2, (B): 3 and (C): 4. 
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                                       (C)           (C) 

Fig. 15: The turbine specific work and efficiency for the three turbines at different rotational speed, inlet 

temperature of 500 K and pressure ratio of; (A): 2, (B): 3 and (C): 4. 
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Fig. 16: The turbine specific work and efficiency for the three turbines at different rotational speed, inlet 

temperature of 600 K and pressure ratio of; (A): 2, (B): 3 and (C): 4. 

 

 

 

 

 



  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Velocity distribution (left) and entropy generation for two different flow circumstances. 

 

  

 

 

 

 

 

 

 

 

Fig. 18: The power output of each stage of the DSAT at different rotation speed, 60 KRPM matches the 

12% and 110 KRPM matches the 17%. 
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 (E)  (F) 

 

 

 

 

 

 

 (G)  (H) 

Fig. 19: The effect of stators’ trailing edge values and tip clearance values on the efficiency, (A), and 

power output, (B), of the first stage of the DSAT, on the efficiency, (C), and power output, (D), of the 

second stage of the DSAT, the efficiency, (E), and power output, (F), of the DSAT and the efficiency, (G), 

and power output, (H), of the SSRT respectively at rotational speed of 90 KRPM, inlet temperature of 

500 K and pressure ratio of 3. 
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Fig. 20: Rotor total loss coefficient during the all studied boundary conditions for the SSAT, DSAT and 

SSRT A, B and C respectively. 
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Fig. 21: The effect of the turbine (A&B) and compressor efficiency (C) on the overall cycle 

efficiency at various pressure ratio inlet temperature of: (A) 500 K, (B) 600 K and (C) 600 K. 

 

 



  

Table2. Input parameter of the three configurations for the mean line design. 

 Value                       

Axial                                                           Radial 

Output power (Target)   5.0- 45              5.0- 45                               5.0- 45            kW 

Flow coefficient ()   0.8-1.4             0.4-1, 0.6-1.3                      0.6-1.2             - 

Hub/tip radius ratio (rh/rt)     0.52                    0.52                                  0.3                 - 

Total PR      2-4                     2-4                                      2-4              Bar 

Reaction (Rn)      0.6                    0.9, 1.6                            0.7 -1.5             - 

Rotational speed    60-110                60-110                             60-110    1000*RPM 

Total inlet temperature  400-600                  400-600                          400-600         K 

Working fluids       air                         air                                     air               -      

 

 

 

Table3.  The dimensions from the mean line design. 

Parameter       Value 

 SSAT                DSAT               SSRT 

Hub diameter (Dh) 20                         20                         20       mm 

Tip diameter (Dt) 38                           38                           -          mm 

Rotor number of blade 9                           8,9                           11-19    - 

Stator number of blade 8                           11,8                           22-30    - 

Rotor Stagger angle 45                          45, 45                          39      Degree 

Stator Stagger angle  45                           35,45                           41      Degree 

Tip clearance  0.45                       0.45, 45                       0.45   mm 

Tip Width   -                             -                           1.95   mm 

Blade height (H) 15                            15, 12                            -         mm 

Relative Inlet flow angle (β2) 21                      63, 66                       10      Degree 

Relative outlet flow angle (β3) -45                     -63, -56                      -79     Degree 

Absolute inlet flow angle (α1) 66                           63, 66                           0.0     Degree 

Absolute outlet flow angle (α2) -43                       3, -43                      71      Degree 
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Highlights: 

 
D and 3D CFD analysis for compressed air turbines was carried out. 

 

Small scale single stage and dual stage axial turbine. 

 

 Small scale single stage radial turbine. 

 

 Loss assessment for the three configurations has been achieved.  

 

 Enhancing their performance for solar powered Brayton cycle application. 

 

 

 
 


