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Abstract

The information contents of an unknown qubit system is usually read using

sharp measurement. Sharp measurement is an irreversible operation that will

cause the superposition to collapse to one of the two possible states in a prob-

abilistic way. This paper will propose a quantum algorithm to read the infor-

mation contents of an unknown qubit without applying sharp measurement on

that qubit. A quantum feedback control scheme will be introduced where sharp

measurement will be applied iteratively on an auxiliary qubit weakly entangled

with the unknown qubit. It will shown that the information contents can be

read by counting the outcomes from the sharp measurement on the auxiliary

qubit which will make the amplitudes of the superposition move in a random

walk manner. The effect of this operation on the unknown qubit can be reversed

to decrease the disturbance introduced to the system. The strength of the weak

measurement can then be defined and can be controlled using an arbitrary num-

ber of dummy qubits (virtual qubits) µ to be added to the system. This can

slowdown the measurement process to an arbitrary scale to reach the effect of

the sharp measurement after O(µ2) measurements on the auxiliary qubit.
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1. Introduction

Reading the information contents of an unknown qubit system is essential

during any computation process, e.g. examining the contents and quantum er-

ror corrections. The reading process of a quantum system is usually done by

measurements. Quantum Measurement, strong measurement, or sharp mea-5

surement is widely believed to be an irreversible [9] operation that produce a

probabilistic outcome by projecting the superposition of the possible states into

a single state. Using strong measurement will destroy the original information

contents of a qubit and might act as an error in this context.

It was shown in [17, 18, 19] that a measurement process can be logically or10

physically reversible. A measurement process is said to be logically reversible

[17, 18] when the information about the pre-measurement state is preserved dur-

ing the measurement [16] and can be recovered from the post-measurement state

only if the post-measurement density operator and the outcome of the measure-

ment can be used to fully calculate the pre-measurement density operator of the15

measured system, and so we can construct a logically reversible measurement for

any sharp measurement that continuously approaches that sharp measurement

with a decrease in the measurement error. A quantum measurement is said

be physically reversible [18, 19] if the pre-measurement state can be restored

from the post-measurement state in a probabilistic way using another reversing20

measurement so that the information about the system is preserved during the

measurement process and the original state can be recovered using a physical

process.

A physically reversible quantum measurement can be seen as a weak mea-

surement where it was shown in [8, 6] that a quantum state post a partial-25

collapse measurement (weak measurement) can be recovered (uncollapsed) by

adding a rotation and a second partial measurement with the same strength so

that the extracted information from the partial-collapse measurement is erased,

canceling the effect of both measurements. Physically reversible quantum mea-
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surement has been used in [12] on a spin-1/2 system using a spin-1/2 probe30

trying to completely specify an unknown quantum state of a single system (see

also erratum of Ref. [12]).

Quantum feedback control was first studied in quantum optics [21, 4, 14].

Quantum feedback control was shown to have many applications, e.g. cool-

ing an atom in an optical cavity [15], measuring optical phase using adaptive35

measurements [11], the stabilization of a single qubit, prepared in one of two

nonorthogonal states against dephasing noise [3], quantum error correction [7],

entanglement generation using measurement[13], and quantum communication

[5].

It was shown in [14, 3, 20, 1, 2] that to obtain information about a quantum40

system, quantum feedback control using weak measurement can be used where

the timescale of the measurement process can be extended where it takes the

form of a random walk towards the final outcome such that the more the system

is disturbed by the measurement, the more information is obtained about that

system.45

In this paper, a quantum algorithm will be proposed to acquire an unknown

qubit system in order to obtain information about it without applying sharp

measurement. The algorithm will read the content of that qubit using a quan-

tum feedback control scheme where the sharp measurement on an auxiliary

qubit will give the effect of weak measurement on the unknown qubit due to50

weak entanglement. The algorithm will make the amplitudes of the superposi-

tion move in a random walk manner to decrease the disturbance on the system

where the opposite steps of the random walk will have a reversal effect on that

system. The proposed algorithm will show that the strength of the weak mea-

surement can be controlled by controlling the amount of disturbance introduced55

by adding an arbitrary number of dummy qubits to the system. This can slow-

down the measurement process to an arbitrary scale according to the amount of

information needed such that the more we disturb the superposition, the more

information we gain about it.

The paper is organized as follows: Section 2 defines the problem to be solved60
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by the proposed algorithm. Section 3 defines the partial negation operator

that will be used to create weak entanglement between the unknown qubit and

an auxiliary qubit. Section 4 proposes the algorithm to read the information

contents of an unknown qubit without applying sharp measurement on that

qubit. Section 5 shows that weak measurement applied on the unknown qubit65

by applying iterative measurements on the auxiliary qubit has a reversal effect

when the random walk moves in opposite directions. Section 6 shows that the

algorithm will preserve the stability state so that the random walk converges

to the correct destination even if the random walk moves up to some specific

number of steps in the wrong direction. Section 7 defines the strength of the70

weak measurement and shows that this strength can be controlled based on the

number of dummy qubits added to the system. Section 8 discusses the case of

partial gain of information about the unknown qubit. The paper ends up with

a conclusion in Section 9.

2. Problem statement75

Given a qubit |ψ〉 with unknown φ as follows,

|ψ〉 = cos (φ) |0〉+ sin (φ) |1〉 . (1)

It is required to know how close the qubit to either |0〉 or |1〉without too much

disturbance to the superposition, i.e. no projective measurement is allowed on

that qubit since projective measurement will make the qubit collapses to either

|0〉 with probability cos2(φ) or to |1〉 with probability sin2(φ).80

3. Partial negation operator

Let X be the Pauli-X gate which is the quantum equivalent to the NOT

gate. It can be seen as a rotation of the Bloch Sphere around the X-axis by π

radians as follows,

4
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Figure 1: Quantum circuits for the Mx operator followed by a partial measurement then reset

the auxiliary qubit |ax〉 to state |0〉.

X =


 0 1

1 0


 . (2)

The cth partial negation operator V is the cth root of the X gate and can85

be calculated using diagonalization as follows,

V = c
√
X =

1
2


 1 + t 1− t

1− t 1 + t


 , (3)

where t = c
√
−1, and applying V for d times on a qubit is equivalent to the

operator,

V d =
1
2


 1 + td 1− td

1− td 1 + td


 , (4)

such that if d = c, then V d = X .

The V gate will be used to define an operator Mx as follows [22], Mx is an90

operator on n+ 1 qubits register that applies V conditionally for n times on an

auxiliary qubit initialized to state |0〉 and will be denoted as |ax〉. The number

of times the V gate is applied on |ax〉 is based on the 1-density of a vector

|x0x1 . . . xn−1〉, where the 1-density of a state vector is the number of qubits in

state |1〉, as follows (as shown in Fig. 1),95
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Mx = Cont V (x0; ax)Cont V (x1; ax) . . . Cont V (xn−1; ax), (5)

where the Cont V (xj ; ax) gate is a 2-qubit controlled gate with control qubit

|xj〉 and target qubit |ax〉. The Cont V (xj ; ax) gate applies V conditionally on

|ax〉 if |xj〉 = |1〉, so, if d is the 1-density of |x0x1 . . . xn−1〉 then,

Mx (|x0x1...xn−1〉 ⊗ |0〉) = |x0x1...xn−1〉 ⊗
(

1 + td

2
|0〉+

1− td

2
|1〉

)
, (6)

and the probabilities of finding the auxiliary qubit |ax〉 in state |0〉 or |1〉 when

measured is respectively as follows,100

Pr(|ax〉 = |0〉) =
∣∣∣ 1+td

2

∣∣∣
2

= cos2
(

dπ
2c

)
,

P r(|ax〉 = |1〉) =
∣∣∣ 1−td

2

∣∣∣
2

= sin2
(

dπ
2c

)
.

(7)

4. The proposed algorithm

4.1. Register preparation

Given an unknown qubit |ψ〉 = cos (φ) |0〉 + sin (φ) |1〉, append a quantum

register of µ+ 1 qubits to |ψ〉 , where the µ qubits are all initialized to state |1〉
and a single auxiliary qubit |ax〉 initialized to state |0〉 as follows,105

|ψext〉 = |ψ〉 ⊗ |1〉⊗µ ⊗ |0〉
= cos (φ)

(
|0〉 ⊗ |1〉⊗µ ⊗ |0〉

)
+ sin (φ)

(
|1〉 ⊗ |1〉⊗µ ⊗ |0〉

)

= cos (φ) (|ψ0〉 ⊗ |0〉) + sin (φ) (|ψ1〉 ⊗ |0〉) .

(8)

The number of the µ qubits is a free parameter that will be used to adjust

the accuracy of the proposed algorithm according to our purposes as will be

shown later.

4.2. The algorithm

When the operator Mx is applied on |ψext〉, it gives,110
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Mx |ψext〉 = cos (φ)
(
|ψ0〉 ⊗

(
1+td0

2 |0〉+ 1−td0

2 |1〉
))

+ sin (φ)
(
|ψ1〉 ⊗

(
1+td1

2 |0〉+ 1−td1

2 |1〉
))

,
(9)

where d0 is the 1-density of the state |ψ0〉 and d1 is the 1-density of the state

|ψ1〉, then d0 = µ and d1 = µ+1, the probabilities of finding the auxiliary qubit

|ax〉 in state |0〉 or |1〉 when measured is respectively as follows,

Pr0 (|ax〉 = |0〉) = sin2 (φ) cos2 (θ1) + cos2 (φ) cos2 (θ0) , (10)

Pr0 (|ax〉 = |1〉) = sin2 (φ) sin2 (θ1) + cos2 (φ) sin2 (θ0) , (11)

where θ0 = πd0
2c and θ1 = πd1

2c .

Applying the Algorithm on |ψext〉 for j ≥ 1 iterations with j = j0 + j1,115

such that j0 counts how many times we found |ax〉 = |0〉 and j1 counts how

many times we found |ax〉 = |1〉, then the amplitudes of the system will be

updated after each iteration according to the following recurrence relations, let

the system at iteration j ≥ 1 is as follows,

∣∣∣ψj
ext

〉
= αj |ψ0〉+ βj |ψ1〉 , (12)

with α0 = cos(φ) and β0 = sin(φ). The probability to find |ax〉 = |0〉 or120

|ax〉 = |1〉 is as follows,

Prj (|ax〉 = |0〉) = α2
j cos2 (θ0) + β2

j cos2 (θ1) , (13)

Prj (|ax〉 = |1〉) = α2
j sin2 (θ0) + β2

j sin2 (θ1) . (14)

When measurement is applied on |ax〉, if we find |ax〉 = |0〉 then the ampli-

tudes of the system will be updated as follows,

αj+1 =
αj cos (θ0)√
Prj (ax = 0)

, (15)
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Algorithm 1 Measurement Based Quantum Random Walk
1: Prepare |ψext〉
2: Let j0 = 0

3: Let j1 = 0

4: for counter = 1 → r do

5: Apply the operator Mx on |ψext〉.
6: Measure |ax〉
7: if |ax〉 = |1〉 then

8: j1 = j1 + 1

9: else

10: j0 = j0 + 1

11: end if

12: Reset |ax〉 to state |0〉
13: end for

14: if j1 > j0 then

15: The qubit |ψ〉 is closer to state |1〉
16: else

17: The qubit |ψ〉 is closer to state |0〉
18: end if

8



βj+1 =
βj cos (θ1)√
Prj (ax = 0)

, (16)

and if we find |ax〉 = |1〉 then the amplitudes of the system will be updated as125

follows,

αj+1 =
αj sin (θ0)√
Prj (ax = 1)

, (17)

βj+1 =
βj sin (θ1)√
Prj (ax = 1)

. (18)

The following equations are the closed forms of the above recurrence relations

such that Prj(|ψ0〉) = α2
j and Prj(|ψ1〉) = β2

j . The probabilities of finding the

auxiliary qubit |ax〉 in state |0〉 or |1〉 when measured is respectively as follows,130

Prj (|ax〉 = |0〉) =
sin2 (φ) cos2(j0+1) (θ1) sin2j1 (θ1) + cos2 (φ) cos2(j0+1) (θ0) sin2j1 (θ0)

sin2 (φ) cos2j0 (θ1) sin2j1 (θ1) + cos2 (φ) cos2j0 (θ0) sin2j1 (θ0)
(19)

Prj (|ax〉 = |1〉) =
sin2 (φ) cos2j0 (θ1) sin2(j1+1) (θ1) + cos2 (φ) cos2j0 (θ0) sin2(j1+1) (θ0)

sin2 (φ) cos2j0 (θ1) sin2j1 (θ1) + cos2 (φ) cos2j0 (θ0) sin2j1 (θ0)
(20)

and the probabilities of states |ψ0〉 and |ψ1〉 will be changed according to the

outcome of the measurement on |ax〉, i.e. j1 will be incremented by 1 if |ax〉 =

|1〉, and j0 will be incremented by 1 if |ax〉 = |0〉, so the probabilities of states

|ψ0〉 and |ψ1〉 after j ≥ 1 iterations will be as follows,

Prj (|ψ0〉) =
cos2 (φ) cos2j0 (θ0) sin2j1 (θ0)

sin2 (φ) cos2j0 (θ1) sin2j1 (θ1) + cos2 (φ) cos2j0 (θ0) sin2j1 (θ0)
(21)

Prj (|ψ1〉) =
sin2 (φ) cos2j0 (θ1) sin2j1 (θ1)

sin2 (φ) cos2j0 (θ1) sin2j1 (θ1) + cos2 (φ) cos2j0 (θ0) sin2j1 (θ0)
(22)

The first aim of the algorithm is to make the measurement on |ax〉 has a135

weak effect on the probabilities of |ψ〉, i.e. weak measurement. This can be

done by setting c in Mx such that c > d1 so that finding |ax〉 = |0〉 will not

9



make |ψ1〉 disappear from the superposition. One more benefit from using weak

measurement is that weak measurement can be reversed as will proved later.

The second aim is to get j0 > j1 with high probability if sin2 (φ) < cos2 (φ),140

and vice versa, and since the value of φ is unknown, so we need to make

Pr (|ax〉 = |1〉) and Pr (|ax〉 = |0〉) as close as possible to 0.5 so that the im-

pact of φ appears on the probabilities of |ax〉. Setting the probabilities of |ax〉
as close as possible to 0.5 will also make the measurement on |ax〉 has a small

impact on the probabilities of |ψ〉.145

To satisfy the above two aims, we need to set θ0 = π
4 − ε and θ1 = π

4 + ε for

small ε > 0. This can be done by setting the parameters as follows,

d0 = µ,

d1 = µ+ 1,

c = 2µ+ 1,

(23)

so that,

θ0 = πµ
2(2µ+1) ,

θ1 = π(µ+1)
2(2µ+1) .

(24)

The µ dummy qubits appended to the system will be used later to define the

strength of the weak measurement, so that the scale of the weak measurement150

can be extended by adding more dummy qubits. The effect of the number

of the dummy qubits will appear only in the definition of the Mx operator, so,

instead of adding the dummy qubits physically to the system, they can be added

virtually as a parameter in the Mx operator to save the physical resources and

the dummy qubits can be seen as virtual qubits, so, |ψext〉 can be redefined as155

follows,

|ψext〉 = |ψ〉 ⊗ |0〉 , (25)

and the Mx operator can be redefined as follows,

Mx = |0〉 〈0| ⊗ U0 + |1〉 〈1| ⊗ U1, (26)

10



where U0 and U1 are defined as follows,

U0 =
1
2


 1 + td0 1− td0

1− td0 1 + td0


 , U1 =

1
2


 1 + td1 1− td1

1− td1 1 + td1


 . (27)

5. Reversibility of weak measurement

During the run of the proposed algorithm, repetitive measurement on |ax〉160

will slightly change the probabilities of |ψ0〉 and |ψ1〉. If after an arbitrary

measurement, we find |ax〉 = |0〉, then the probability of |ψ0〉 will increase, and

if we find |ax〉 = |1〉, then the probability of |ψ1〉 will increase. This section

will show that after arbitrary number of measurements on |ax〉, if the number

of times we found |ax〉 = |0〉 equals to the number of times we found |ax〉 = |1〉,165

then the probabilities of |ψ0〉 and |ψ1〉 will be restored to the initial probabilities,

i.e. finding |ax〉 = |0〉 after any measurement on |ax〉 will reverse the effect of

finding |ax〉 = |1〉 after any other measurement and vice versa. To prove this,

we need the following lemma.

Lemma 5.1. Let θ0 = πµ
2(2µ+1) and θ1 = π(µ+1)

2(2µ+1) for any µ ≥ 1, then for any170

m ≥ 0,

cosm (θ1) sinm (θ1)
cosm (θ0) sinm (θ0)

= 1. (28)

Proof Since θ0 = πµ
2(2µ+1) and θ1 = π(µ+1)

2(2µ+1) , then θ0 and θ1 can be re-written

as,

θ0 = π
4 − ε,

θ1 = π
4 + ε,

(29)

with ε = π
4(2µ+1) , then,

cos (θ1) = cos
(

π
4 + ε

)

= 1√
2

(cos (ε)− sin (ε))

= sin
(

π
4 − ε

)

= sin (θ0) ,

(30)

11



and,175

sin (θ1) = sin
(

π
4 + ε

)

= 1√
2

(cos (ε) + sin (ε))

= cos
(

π
4 − ε

)

= cos (θ0) ,

(31)

and so Eq.(28) holds.

Theorem 5.2. Assume that the initial probabilities of |ψ0〉 and |ψ1〉 be cos2 (φ)

and sin2 (φ) respectively. Let j0 and j1 be the number of times we find |ax〉 = |0〉
and |ax〉 = |1〉 respectively when measured. If j0 = j1 then the probabilities of

|ψ0〉 and |ψ1〉 will be equal to the initial probabilities.180

Proof Assume that |ax〉 is measured for j times, where j is an even number

such that j = j0 + j1 and j ≥ 0. If j0 = j1 then the proof holds directly using

Lemma 5.1 in Eq.(21) and Eq.(22).

6. Stability of the proposed algorithm

Due to the symmetry of the problem, we can consider only the case when185

sin2 (φ) < cos2 (φ), and the case of sin2 (φ) > cos2 (φ) can be deduced by sim-

ilarity. It is clear from Eqs. (10) and (11) that before the first measurement

on |ax〉, we have Pr0 (|ax〉 = |0〉) > Pr0 (|ax〉 = |1〉) if sin2 (φ) < cos2 (φ), and

from from Eqs. (19) and (20) we can see that the more we move in the cor-

rect direction, i.e. incrementing j0 faster than j1, the more we gain bias to190

Prj (|ax〉 = |0〉).
This section will show that even if the algorithm moves in the wrong direc-

tion, i.e. incrementing j1 faster than j0 when sin2 (φ) < cos2 (φ), Prj (|ax〉 = |0〉)
will stay greater than Prj (|ax〉 = |1〉) for a certain number of wrong measure-

ments on |ax〉, i.e. |ax〉 = |1〉, giving a high probability for the algorithm to195

recover from the effect of moving in the wrong direction.
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Given that cos (θ0) = sin (θ1), and sin (θ0) = cos (θ1) as shown in Eqs. (30)

and (31), then the four master equations of the system shown in Eqs. (19), (20),

(21) and (22) can be re-written as follows,

Prj (|ax〉 = |0〉) =
tan2 (ϕ) sin2 (θ0) + cos2 (θ0) tan2∆j (θ0)

tan2 (ϕ) + tan2∆j (θ0)
, (32)

200

Prj (|ax〉 = |1〉) =
tan2 (ϕ) cos2 (θ0) + sin2 (θ0) tan2∆j (θ0)

tan2 (ϕ) + tan2∆j (θ0)
, (33)

Prj (|ψ0〉) =
tan2∆j (θ0)

tan2 (ϕ) + tan2∆j (θ0)
, (34)

Prj (|ψ1〉) =
tan2 (ϕ)

tan2 (ϕ) + tan2∆j (θ0)
, (35)

where ∆j = j1−j0. For the algorithm to be stable, then ∆j < 0 when sin2 (φ) <

cos2 (φ). We know that weak measurement is reversible, assume the random

walk moves for ∆j > 0 steps in the wrong direction. We need to know how

far the random walk should go in the wrong direction while maintaining the

stability condition Pr (|ax〉 = |0〉) > 1
2 , so we get,205

sin2 (φ) < cos2 (φ) tan2∆j (θ0) , (36)

such that, if ∆j = 0, so we get the initial probabilities of the system, i.e.

sin2 (φ) < cos2 (φ), and we have Pr (|ax〉 = |0〉) > 1
2 as long as,

∆j ≥ log (tan (φ))
log (tan (θ0))

≥ 0. (37)

This means that the algorithm will maintain the stability condition even if

the random walk goes in the wrong direction for at most log(tan(φ))
log(tan(θ0))

steps. This

gives the algorithm a chance to restore the random walk to move in the correct210

direction

13



7. The strength of weak measurement

The strength of the weak measurement can be understood as the distance

that the random walk has to move from the initial state to the state that are

ε-far from the projected state for small ε ≥ 0, so, the scale of a projective215

measurement is of length 1, i.e. it has the maximum strength, after which the

state of the unknown qubit will be projected to one of the eigen vectors of

the system in a probabilistic way. This section will show that the strength of

the weak measurement can controlled by using an arbitrary number of dummy

qubits µ in the system. It will be shown that the measurement process can be220

scaled to an arbitrary length based on the number of dummy qubits added to

the system.

Assuming again the case where sin2 (φ) < cos2 (φ), then the scale of the

measurement process is based upon the number of steps that the random walk

should move starting from Pr0 (|ψ0〉) = cos2 (ϕ) to reach after j ≥ 1 steps to225

Prj (|ψ0〉) = 1− ε for small ε > 0, so

Prj (|ψ0〉) =
tan2∆j (θ0)

tan2 (ϕ) + tan2∆j (θ0)
≥ 1− ε, (38)

then,

∆j ≥ log(tan2(ϕ)( 1−ε
ε ))

log(tan2(θ0))

≥ log(tan2(ϕ)( 1−ε
ε ))

log(sin2(θ0))−log(cos2(θ0))

≥ log(tan2(ϕ)( 1−ε
ε ))

log(cos2(θ1))−log(cos2(θ0))

≥ log(tan2(ϕ)( 1−ε
ε ))

log(cos2(θ1))−log(cos2(θ0))
,

(39)

and since θ0 = πµ
4µ+2 and θ1 = π(µ+1)

4µ+2 then

∆j ≥ log(tan2(ϕ)( 1−ε
ε ))

( πµ
4µ+2 )

2−
(

π(µ+1)
4µ+2

)2

≥
(

2
π

)2 log
(
tan2 (ϕ)

(
1−ε

ε

))
(2µ+ 1) .

(40)

For suffiently large µ > 0, Prj (|ax〉 = |0〉) = 1
2+δ and Prj (|ax〉 = |1〉) = 1

2−δ
for small δ > 0, then [10],230
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∆j =

√
2
π
j (41)

and since ϕ is unknown, then assume ϕ = π
2 as an upper bound for the total

number of steps j and so the scale of the measurement process is,

jproj ≥ π
2 (∆j)2

≥ 2
π

(
log

(
tan2

(
π
2

) (
1−ε

ε

))
(2µ+ 1)

)2

≥ O
(
µ2

)
.

(42)

This means that if the algorithm is iterated for jproj iterations, then Prproj (j0 > j1) =

sin2 (ϕ) similar to the case of the projective measurement.

8. Partial gain of information235

Assume the case when we are given a certain number of dummy qubits µ

and we do not want to iterate the algorithm for jproj times, but we want to stop

early at iteration J < jproj for not fully disturbing the superposition, then we

need to find PrJ (j0 > j1) after J iterations.

Assume that the algorithm is iterated for J ≥ 2 times such that J = J0 +J1240

where J0 is the number of times we read |ax〉 = |0〉 and J1 is the number of times

we read |ax〉 = |1〉. It is important to notice here that due to the reveribilty of

weak measurement shown in Theorem 5.2, the final state of the system will be

the same with any order of outcomes from |ax〉 as long as the values of J0 and

J1 are fixed since ∆J will be the same, so the probability to find |ax〉 = |0〉 for245

J0 after J iterations can be calculated as follows,

Pr (j0 = J0) =


 J

J0


 (PrJ (|ax〉 = |0〉))J0 (PrJ (|ax〉 = |1〉))J−J0 . (43)

When ϕ < π
4 , the algorithm is assumed to be successful if j0 > j1 and vice

verse. Without losing of generality, assume J is even, then the algorithm is

assumed successful when we read |ax〉 = |0〉 for at least J
2 +1 times, i.e. j0 > J

2 ,

then250
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Figure 2: The probability of success for the measurement based quantum random walks with

different values of µ, where the solid lines refers to the simulation results and the dotted lines

is the probability of success shown in Eq.(45).

Pr
(
j0 >

J

2

)
=

J∑

k= J
2 +1


 J

k


 (PrJ (|ax〉 = |0〉))k (PrJ (|ax〉 = |1〉))J−k

, (44)

where


 J

k


 = J!

k!(J−k)! , and we know that PrJ (j0 > j1) = 1
2 as a trivial case

when ϕ = π
4 , i.e. when |ψ〉 = 1√

2
(|0〉+ |1〉), then the probability of success of

the algorithm after J iterations with ∆J = −
√

2
πJ is as follows,

PrJ (j0 > j1) = sin2 (ϕ) + cos (2ϕ) Pr
(
j0 >

J

2

)
. (45)

For ϕ > π
4 , the same equation (Eq.(45)) can be used as the probability of

success of the algorithm but with ∆J =
√

2
πJ . As an illustrative example, Fig.255

2 shows simulation results of the algorithm compared with the probability of

success shown in Eq.(45) by setting J = 100 for µ = 1, µ = 10 and µ = 50. The

simulation results shown in Fig. 2 is the average of the probability of success

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of Information Contents

A
m

ou
nt

 o
f 

D
is

tu
rb

an
ce

(a) µ=1 

(b) µ=10 

(c) µ=50 

Actual disturbance Expected disturbance 

Figure 3: The amount of disturbance introduced to the system using the measurement based

quantum random walks with different values of µ, where the solid lines refers to the simulation

results and the dotted lines is expected amount of disturbance shown in Eq.(45).

to read the information of |ψ〉. The simulation results are collected by applying

the algorithm iteratively for 0 ≤ sin2 (φ) ≤ 1 with step 0.001 and each step is260

repeated 1000 times. Taking the probability of success of ϕ = 0 as a reference

probability relevant to the probability of success of projective measurement, so

iterating the algorithm for 100 items gives a probability of success of 1.0 using

µ = 1, 0.74224 using µ = 1, and 0.52233 using µ = 50 which is close to a random

guess.265

Based on the same example shown in Fig. 2, Fig. 3 shows the actual amount

of disturbance introduced to the system using the proposed algorithm taken as

the average disturbance from all the trials compared with the expected amount

of disturbance de calculated as follows,

de = | cos2 (φ)−Prj (|ψ0〉) |. (46)

It is possible to restrict the disturbance to be introduced to system to an270

arbitrary small δ > 0 regardless to how many iterations of the algorithm is
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Figure 4: The upper bound of |∆j| for not introducing disturbance δ > 0 to the system such

that 0 < δ < 1
2

for φ ≤ π
4

using µ = 5 dummy qubits.

applied as long as de < δ. To achieve this, we have to make ∆j satisfies the

following condition,

∣∣∣∣cos2 (φ)− tan2∆j (θ0)
tan2 (φ) + tan2∆j (θ0)

∣∣∣∣ < δ, (47)

then,

|∆j| <
log

(
tan2(φ)(δ−cos2(φ))

cos2(φ)−1−δ

)

log
(
tan2 (φ)

) . (48)

This means that no disturbance more than δ > 0 will be introduced to the275

system as long as ∆j satisfies the condition shown in Eq.(48). Fig. 4 shows the

required values of |∆j| for φ ≤ π
4 and the allowed disturbance 0 < δ < 1

2 using

µ = 5.

Fig. 5(a) shows a MBQRW with µ = 1 where the |ψ〉 will collapse to either

|0〉 or |1〉 very fast with probabilities close to cos2 (φ) or sin2 (φ) respectively.280

This gives high accuracy but will disturb the superposition in a way very close

to the projective measurement.
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Figure 5: Measurement Based quantum random walks with (a) µ = 1, (b)µ = 10, (c)µ = 100

and µ = 1000.

Fig. 5(b) shows a MBQRW with µ = 10 where |ψ〉 will not collapse to |0〉
or |1〉 but will make it move up or down with probabilities not far from cos2 (φ)

or sin2 (φ) respectively. This gives acceptable accuracy and will not disturb the285

superposition very much.

Fig. 5(c) and Fig. 5(d) show MBQRWs with large number of dummy qubits

µ where |ψ〉 will not collapse to either |0〉 or |1〉 and information gain about |ψ〉
will be no better than a random guess.
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9. Conclusion290

In this paper, a quantum algorithm has be proposed to read the informa-

tion contents of an unknown qubit without using sharp measurement on that

qubit. The proposed algorithm used a partial negation operator that creates a

weak entanglement between the unknown qubit and the an auxiliary qubit. A

quantum feedback control scheme is used where sharp measurement is applied295

iteratively on the auxiliary qubit. Counting the outcomes from the sharp mea-

surement on the auxiliary qubit has been used to read the information contents

on the unknown qubit. It has been shown that the iterative measurements on

the auxiliary qubit makes the amplitudes of the superposition move in a random

walk manner. The random walk has a reversal effect when moved in opposite300

directions, this helps to decrease the disturbance that will be introduced to

the system during the run of the algorithm. The proposed algorithm defined

the strength of the weak measurement as the distance the random walk has to

move from the initial state to the state of the sharp measurement which can

controlled by using an arbitrary number of dummy qubits (virtual qubits) µ in305

the system. Adding more dummy qubits to the system made the measurement

process slower so that the effect of the sharp measurement will be reached after

O(µ2) measurements on the auxiliary qubit. It has been shown that the more

we disturb the system, the more information we can get about that system.
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