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The Effect of Thermal Cycling on Steam Oxidation Behaviour of 

TP347H FG at 650 °C 

The cyclic oxidation behaviour of fine-grained Type 347 stainless steel 

(TP347H FG) at 650 °C in air saturated steam and deoxygenated steam 

environments for 100-1000 hours has been investigated.  Electron microscopy, 

Energy Dispersive and Wavelength Dispersive X-ray Spectroscopy (EDS and 

WDS, respectively) have been used to characterise the samples.  Short term 

oxidation tests have shown only haematite spallation occurs whereas longer term 

tests have shown magnetite also spalls on cooling to room temperature.  In all 

cases cyclic oxidation showed spallation does not occur after long term tests and 

is only visible in small amounts after short term tests subsequent to the initial 

spallation event.  

Keywords: Steam oxidation; Spallation; TP347H FG; Austenitic Stainless Steel.  

Introduction 

The continued desire for a greener energy mix has resulted in an increased use of 

biomass for power generation.  Although operating conditions are currently envisaged 

to be base load it is thought that biomass power plants may be used as peaking power 

plants.  These will meet increases in customer demand and as such will have a more 

cyclic nature [1] and will be designed to operate from half load to full load 

conditions [2].  The impact of this cyclical behaviour on materials degradation is yet to 

be fully understood.  One of the main factors affecting the lifetime of materials is their 

resistance to high temperature oxidation [3-5].  A chromium rich oxide, usually 

chromia, is required to protect the alloy from further oxidation [6].  During oxidation in 

steam conditions, such as those seen in plant, the chromium rich layer may sometimes 

not be continuous and as a result, iron rich oxides such as haematite and magnetite may 

grow, as well as (Fex,Cr1-x)3O4 spinels.  When the biomass power plants undergo 

thermal cycling the non-protective iron rich oxides may spall as a result in a mismatch 
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of thermal expansion coefficients between the alloy and oxide  [7].  The spallation of 

oxides grown at high temperature can cause tube blockages and can induce unexpected 

shutdowns [8, 9].  When plant restart occurs, the non-protective spinel oxide that has 

remained adherent, or in some cases the bare metal, will be exposed to the oxidising gas 

and may result in rapid oxidation of the chromium depleted alloy [10].  

Current coal fired plants that are being converted to biomass fired plants use 

TP347H FG, an austenitic stainless steel, in the superheater and reheater boiler tubing, 

where TP is tube piping, H is high carbon content and FG is fine-grained. Previous 

studies [11] that have exposed this steel to pressurised (25 MPa) steam between 499 and 

650 °C and oxidised for times up to 57554 hours found that a duplex scale consisting of 

an outer iron rich oxide and an inner Fe-Cr-Ni spinel developed.  It has also been found 

that between 500 and 800 °C TP347H FG forms a duplex scale when exposed to steam 

[12].  The outer iron rich oxide has been found to be a mixture of haematite and 

magnetite [6, 13].  

Experimental Procedure  

Cyclic oxidation in air saturated and deoxygenated steam was carried out at atmospheric 

pressure on TP347H FG austenitic stainless steel, the composition of which is shown in 

Table 1. 

Table 1. Nominal composition of TP347H FG provided by the data sheet supplied. 

 C  Si Mn S P Ni Cr Nb Fe 

wt.%  0.09 0.4 1.48 0.001 0.026 11.34 18.21 0.88 Balance 

at.%  0.41 0.79 1.49 0.002 0.046 10.66 19.32 0.52 Balance 

 

Samples were extracted from standard tubes, as used in plant, with a pickled 

inner surface.  The tube had an internal diameter of 28 mm and a wall thickness of 

4.5 mm.  A silicon carbide disc was used to cut the tubing into 10 mm slices and these 
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sections were subsequently cut into approximately 60° arcs producing 6 samples from 

each 10 mm section.  All samples were cleaned in ethanol prior to exposure in the 

custom made rigs, Figure 1. 

 

 

 

Deionised water was supplied to two water barrels, A and B, via a pump.  The 

water barrels were pressurised to approximately 0.5 bar using either air or nitrogen to 

achieve the air saturated or deoxygenated steam environments, respectively.  A Hach 

Orbisphere 410 oxygen meter was used to measure the oxygen partial pressure.  When 

using a deoxygenated environment the water was degassed for 24 hours prior to use.  A 

dosing pump transfers the water from the barrels to the worktube where it evaporates on 

entry and travels to the exit port where it is condensed.   This ensured the steam flow 

was unidirectional.  The capacity of the water tanks was monitored during testing by 

weighing scales.  The design of the rig was such that the barrels could be filled and 

emptied independently ensuring continuous flow during long term testing.  In all cases 

the steam flow was set up and was monitored to ensure stable behaviour and flow had 

Figure 1. Schematic diagram of the steam oxidation set up. 
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been achieved prior to inserting the samples through the exit port.  At the end of the test 

period samples were removed and cooled in laboratory air.   

Previous experience with this rig has shown that under laboratory conditions, the 

air saturated steam environment generated in the rig produced oxide compositions and 

morphologies that replicate those seen in plant conditions for longer times, despite the 

fact deoxygenated steam is more representative of plant.  Previous research has also 

shown that spallation does not occur under deoxygenated conditions, so air saturated 

steam has mainly been used in the current work to initiate spallation after the first 

thermal exposure [14].  Details of the testing performed are given in Table 2.  A 

300 hour thermal cycle (three 100 hour exposures) was performed and compared to a 

300 hour isothermal test.  The 1000 hour thermal cycles include both air saturated and 

deoxygenated steam environments.  A comparison will be drawn between these two 

different environments and also to the 100 hour thermal cycles. All tests were 

performed at 650 °C.  

Spalled oxide was collected for examination in a scanning electron microscope 

(SEM).  After each cycle the surface of samples were examined in a JEOL 6060 SEM.  

A thin cross section was removed and prepared for analysis.  For thermal cycling, 

samples were returned to the furnace for further testing.   

For cross sectional analysis, samples were mounted in epoxy resin, ground using 

progressively finer SiC papers from 240 to 1200 grit.  This was followed by polishing 

using diamond paste and finished using an OPA-sol.  A JEOL 7000 FEG SEM with 

Energy Dispersive X-ray Spectroscopy and Wavelength Dispersive X-ray Spectroscopy 

(EDS/ WDS) capabilities was used to examine the oxide on the inner, pickled surface, 

i.e. steam side, of the tubing in plant.  Oxide thicknesses were measured in order to 

determine oxidation kinetics where 100 measurements were taken at equal spacings for 
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each sample.  In the case of the Fe-Cr-Ni spinel a systematic error is included since the 

oxide is thinner nearer the grain boundaries.  Spallation of the outer iron rich oxides 

causes difficulties in data interpretation, so oxide growth kinetics for magnetite and 

haematite have not been included here.  

Between 15 and 30 EDS/ WDS measurements were taken to obtain average 

oxide composition values.  

Results 

The oxide spallation behaviour for each test is presented in Table 2.  Estimates of the 

spalled area fraction obtained from SEM images of the inner pickled surface shows that 

significant spallation occurred after the first thermal cycle in all series, Figure 2.  

 

 

 

Figure 2. Secondary electron images of the inner pickled surface of TP347H FG 

exposed to air saturated steam at 650 °C for 100 hours (left) and 1000 hours (right). 
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Table 2. Details of the test matrix and spallation observations of TP347H FG after 

cooling in laboratory air to room temperature. 

Cycle 

Total 

Exposure 

Steam 

Conditions 

Observations 

Area fraction of 

spallation (%) 

1) 100 hours 

300 hours 

Air saturated 

steam, 650 °C 

Fe2O3 spalled 80.8 

2) 100 hours Fe3O4 spalled 15.7 

3) 100 hours 

No visible 

spallation 

0.0 

1) 300 hours 300 hours 

Air saturated 

steam, 650 °C 

Fe2O3 + Fe3O4 

spalled 

74.5 

1) 1000 hours 

2000 hours 

Air saturated 

steam, 650 °C 

Fe2O3 + Fe3O4 

spalled 

70.9 

2) 1000 hours 

No visible 

spallation 

0.0 

1) 1000 hours 

2000 hours 

Air saturated 

steam, 650 °C 

Fe2O3 + Fe3O4 

spalled 

50.2 

2) 1000 hours 

Deoxygenated 

steam, 650 °C 

No visible 

spallation 

0.0 

 

An optical image of a cross section of the sample exposed for 1000 hours, 

Figure 3, shows the expected formation of a duplex oxide scale consisting of an 

inwardly growing Fe-Cr-Ni spinel and the outwardly growing iron rich oxides.  This is 

similar to what has been reported in the literature [6, 11-13].  Optical microscopy 

reveals a difference in contrast between haematite and magnetite that is not seen under 

SEM.  Haematite appears a marginally darker grey than magnetite under optical 

conditions, Figure 3.  The composition of the two different oxide layers has been 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



confirmed using WDS analysis of polished cross sections of unspalled regions of 

TP347H FG, Figure 4. 

 

 

Figure 3. Optical microscope image  of a cross section through an unspalled region of 

TP347H FG exposed to air saturated steam for 1000 hours at 650 °C showing two outer 

iron rich oxides. 

 

Figure 4. Back scattered electron cross section image through TP347H FG oxidised in 

air saturated steam for 1 x 100 hours at 650 °C (left) and the corresponding 

concentration profile measured using EDS and WDS showing the presence of Fe2O3 (40 

at.% Fe, 60 at.% O) and Fe3O4 (42.9 at.% Fe, 57.1 at.% O) (right). 

 

After the first 100 hours steam oxidation exposure, only haematite spalled.  For 

longer exposure times, 1000 hours, images of the spalled particles indicate two 

distinguishable oxide morphologies suggesting that both haematite and magnetite 
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spalled at longer times.  The magnetite was composed of plate like grains of high aspect 

ratio oriented approximately parallel to the oxide growth direction.  The haematite was 

composed of much smaller equiaxed grains.  In some cases there appears to be a very 

clear boundary between the two oxide layers.  A crack at the magnetite/ spinel interface 

has confirmed that spallation occurred along that interface, Figure 5.  This crack has 

been suggested to occur as a result of void formation.  These are visible where the crack 

broadens and so must have been present prior to crack formation.  Magnetite grows by 

cation diffusion where haematite grows by anion diffusion [15] and voids form as a 

result of the rapid diffusion of metal ions through the scale [16].  These voids therefore 

appear at the magnetite/ spinel interface causing a plane of weakness. 

 

Figure 5. Back scattered electron cross section image of TP347H FG oxidised in air 

saturated steam for 1 x 300 hours at 650 °C (left) and the corresponding linescan profile 

measured along the yellow line using EDS, demonstrating the chromium rich oxide and 

the depletion seen beneath this layer (right). 

 

The amount of visible spallation decreased after the second 100 hour thermal 

cycle and there was no visible spallation after the third thermal cycle, Table 2.  There 

were similar findings for the 1000 hour tests where no further spallation occurred in 

subsequent thermal cycles.  EDS and oxide morphologies indicate that no haematite 

regrowth occurred after the initial spallation event.  This suggests that spallation will 

only occur whilst there is adherent haematite.  Clearly the haematite/ magnetite 
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interface is more strongly bonded and so spallation occurs at the weakest interface, i.e. 

at the voids.  The change in steam environment for the second cycle also had no effect 

on this.  

Table 3 details the concentration of iron observed within the spinel from WDS/ 

EDS cross sectional analysis and the average thicknesses measured for each oxide layer.  

The 100 hour tests resulted in an increase in the average spinel thickness and an 

increase in the average iron concentration from 15-30 EDS/ WDS readings.  Cross 

sections from these tests show the iron rich oxide begins to reform during the third 

thermal cycle.  

EDS and WDS analysis showed that the Fe concentration within the spinel oxide 

after 300 hours of isothermal exposure was 26.3 at.% which is slightly less than that 

seen after 300 hours of thermal cycling, 33.0 at.%.  The thickness of the spinel oxide 

after the isothermal exposure is also slightly less at 12.5 µm compared to 16.4 µm for 

the thermally cycled sample.  

The average spinel oxide thickness and the average concentration of iron within 

this layer is shown to decrease with 1000 hour thermal cycling.  An iron rich oxide is 

shown to regrow during the second thermal cycle under both environmental conditions 

tested but is thicker under deoxygenated conditions compared to air saturated steam.  

The iron rich oxide formed during the second thermal cycle was found to be magnetite 

and there was no evidence of haematite growth.  
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Table 3. Cross section oxide thickness data and iron concentrations of TP347H FG after 

oxidation in steam at 650 °C for different durations. 

Oxidation 

time 

(hours) 

Average Fe 

concentration 

in spinel (at.%) 

measured from 

EDS 

Average 

spinel 

thickness 

(μm) 

Maximum 

spinel 

thickness 

(μm) 

Average  

Fe oxide 

thickness 

(μm) 

Average  

Cr oxide 

thickness 

(μm) 

1 x 100 23.0 9.7±3.6 20.4 3.2±1.2  

2 x 100 30.5 13.1±5.1 21.9 0.0  

3 x 100 33.9 16.4±5.9 27.3 5.4±2.4  

1 x 300 26.3 12.5±6.3 35.2 15.6±3.0 1.2±0.6 

1 x 1000 28.6 18.4±9.1 31.6 0.0 1.5±1.0 

2 x 1000 24.8 15.2±4.3 22.1 7.9±1.3 2.5±1.2 

1 x 1000 24.7 15.2±5.3 29.5 0.0 1.5±0.8 

2 x 1000 19.2 13.5±6.4 27.1 14.0±5.6 1.7±0.9 

 

In addition, a chromium rich oxide begins to grow at the base of the spinel but is 

not continuous until an isothermal exposure of 300 hours, Figure 5 (left).  Where the 

chromium rich oxide forms, a depletion of chromium occurs up to 5 μm into the alloy, 

Figure 5 (right).  The concentration profile shown in Figure 6 demonstrates the presence 

of the chromium rich oxide.  Small amounts of iron were also detected within this 

region as a result of the interaction volume of the EDS/ WDS detectors and as such 

there will be some interference from the Fe-Cr-Ni spinel and the alloy.  TEM analysis 

would confirm the composition of the chromium rich oxide however it is not within the 

scope of the current work.  
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Figure 6. BSE cross section image of TP347H FG oxidised in air saturated steam for 1 x 

1000 hours at 650 °C (left) and the corresponding concentration profile measured using 

EDS and WDS showing the chromium rich oxide layer (right). 

For the 2000 hour thermal cycling tests, the chromium rich oxide is seen to 

continue growing.  The extent of growth differs depending on the steam environment, 

Table 3, with the thickness increasing to a greater extent under air saturated steam. 

EDS/ WDS analysis was performed on these samples, Figure 7, and shows that the 

depth of depletion of chromium is greater under air saturated steam compared to 

deoxygenated steam.  This confirms that a thicker oxide has grown under air saturated 

conditions.   

 
Figure 7. Depletion profiles measured using EDS of TP347H FG oxidised in steam for a 

total of 2000 hours at 650 °C where the second 1000 hours was carried out in a different 

environment. A greater depth of depletion was observed when oxidation was performed 

in air saturated steam. 
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Oxidation Kinetics  

Oxide thickness measurements have been used to calculate rate constants of the spinel 

for both isothermal and cyclic exposures.  

A plot of oxide thickness as a function of oxidation time, Figure 8, has been 

used to calculate the rate constant, n, for both isothermal and cyclic conditions as per 

the following equation: 

𝝃 = (𝒌𝒏𝒕)
𝟏
𝒏⁄     (1) 

where ξ is oxide thickness, kn is the rate constant and t is time.   

The value of n, determined from a log log plot of Equation 1, was calculated to 

be 2.9 and 2.0 showing sub parabolic and parabolic kinetics for isothermal and cyclic 

exposures, respectively.  Values for the rate constant, kn, were calculated to be 

1.3 x 10-15 and 3.6 x 10-15 m2 s-1 for isothermal and cyclic exposures, respectively.  

The cyclic oxidation kinetics follow parabolic behaviour.  However, the 

isothermal data shows cubic kinetics, leading to thinner than expected spinel thickness 

at times >100 hours if based on parabolic kinetics.  It is postulated that this is due to the 

formation of the chromium rich layer at the spinel/ alloy interface which was observed 

to be continuous at approximately 300 hours.  Once fully formed, this will dominate the 

oxidation kinetics for the whole system and reduce oxidation rates.  
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Figure 8. Oxidation kinetics for both isothermal (triangles) and cyclic (circles) oxidation 

for TP347H FG exposed to air saturated steam at 650 °C. 

 

The parabolic rate constants were found to be two orders of magnitude higher 

than the kp values stated in the literature, 1.7 x 10-17 m2 s-1 [13], however it has been 

noted that oxidation kinetics do tend to be higher for shorter term tests [17].  This 

literature value is also for the total oxide thickness for TP347H FG from plant trials 

where the steam environment will be slightly different from those in this study.  Rosser 

et al. [14] found the parabolic rate constant for spinel on shot peened Super 304 H, with 

similar composition to TP347H FG, in deoxygenated steam to be 1.9 x 10-16 m2 s-1.  

This is closer in agreement to the results found in this study and is a more appropriate 

comparison.  The absence of available kinetic data for spinel growth in the literature 

precludes a wider comparison.  
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Discussion  

In all cases, the first exposure results in the formation of an outer layer of haematite, 

which, on cooling, undergoes substantial spallation.  Haematite formation has been 

found to favour spallation due to the mismatch of the thermal expansion coefficients 

between oxide and alloy [13] which is part of a larger study.  However, re-exposure 

does not lead to further formation of haematite with a noticeable reduction in spallation.   

Under short term cyclic conditions loss of the iron rich magnetite oxide 

continues to occur on cooling.  Simultaneously, a protective chromium rich layer 

develops at the base of the spinel but is not continuous until 300 hours.  The Fe 

concentration within the spinel increases during this time.  It is postulated that the 

formation of the chromium rich oxide leads to a decrease in the amount of chromium 

diffusion into the spinel, hence increasing the iron concentration.   It is also postulated 

that the greater spinel thickness seen in thermal cycling compared to isothermal 

exposures for 300 hours is as a result of iron oxide spallation.  Haematite spalls on 

cooling after the first thermal cycle, so the oxygen diffusing inwardly to form the spinel 

oxide has a reduced area to diffuse through whereas for the case of isothermal exposure 

where the iron rich oxide is adherent, the diffusion of oxygen will be reduced and 

therefore the spinel cannot grow to the same extent.  

However, for longer thermal cycles, the reverse was observed, i.e. the iron 

concentration within the spinel and the spinel thickness reduced.  Under these 

conditions, the chromium rich layer had become continuous prior to the initial spallation 

event.  Table 4 gives details of the bulk, Db, and in some cases grain boundary, Dgb, 

diffusion coefficients of chromium, iron and oxygen in austenitic stainless steel as well 

as through different oxides.  The diffusion of iron through thin films of chromia is two 

orders of magnitude slower compared to the diffusion of iron through the alloy lattice 
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and four orders slower than that seen through magnetite.  Since magnetite possesses an 

inverse spinel structure [18] it is safe to assume the diffusion coefficients of iron within 

the Fe-Cr-Ni spinel oxide formed on TP347H FG will be of the same order of 

magnitude as the self-diffusion coefficients in magnetite.  Thus, on further oxidation, 

there is a reduced supply of iron into the spinel due to the protective nature of the 

chromium rich layer while the iron rich oxide continues to grow.  It is postulated that 

this is due to iron diffusion from the spinel, Figure 9, hence the decrease in spinel oxide 

thickness.  

Figure 9. Oxidation mechanism for long term thermal cycling of TP347H FG. 
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Three interesting observations can be made between the two steam 

environments used for long term testing.  Firstly, the growth rate of the chromium rich 

layer is greater under air saturated conditions than under deoxygenated environments.  

Secondly, in both cases, the spinel thickness reduces but to a greater extent under air 

saturated steam.  Thirdly, the regrowth of the magnetite layer is faster under 

deoxygenated conditions.  This is shown schematically in Figure 9.  The difference in 

the oxygen partial pressure in the two environments must be the influencing factor.  

The partial pressure of oxygen within the air saturated and deoxygenated 

environments have been previously measured as 1 x 10-5 and 1 x 10-8 respectively.  Note 

that partial pressure is here defined as the ratio of oxygen pressure to the standard state 

of 1 atmosphere.  As such, the values are dimensionless.  The higher oxygen content in 

the air saturated steam environment means there is a larger amount of oxygen available 

for oxidation. 

Table 4. Iron and chromium diffusion coefficients in austenitic stainless steels, chromia 

thin films and spinel oxides. 

 T (°C) Dgb (cm2 s-1) Db (cm2 s-1) 

Fe in austenitic steel [19] 600  2.8 x 10-16 

Cr in austenitic steel [19] 600  1.0 x 10-16 

Fe in Cr2O3 [20] 740 5.9 x 10-12 3.5 x 10-18 

Cr in Cr2O3 [20] 700 5.1 x 10-13 2.9 x 10-18 

O in Fe3O4 [21] 650  1.0 x 10-16 

Fe in Fe3O4 [22] 650  3.2 x 10-14 

Fe in Fe2O3 [23] 650  1.6 x 10-19 

 

Previous studies have suggested that, with longer exposure times, the spinel 

oxide was thought to become more protective to oxidative attack, hence preventing any 
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outward iron diffusion.  The magnetite layer, with no supply of iron, is then further 

oxidised to haematite.  If this is indeed the case, the results of the current work indicate 

that much longer oxidation times are required for the formation of haematite [24, 25].  

Conclusions  

 Haematite formation has been found to be essential for spallation and as a result 

the amount of spallation decreases with increasing oxidation time and with each 

thermal cycle.  

 The protective chromium rich layer is not continuous under short term testing, 

therefore allowing the Fe-Cr-Ni spinel to grow under thermal cycling conditions.  

The presence of a continuous chromium rich layer during longer term testing 

slows the diffusion of iron from within the alloy and so the spinel oxide is 

reduced in thickness.  

 The diffusion of chromium to form the chromium rich oxide results in less 

diffusion into the spinel, therefore increasing the iron concentration.  
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List of figure captions: 

Figure 1. Schematic diagram of the steam oxidation set up. 

Figure 2. Secondary electron images of the inner pickled surface of TP347H FG 

exposed to air saturated steam at 650 °C for 100 hours (left) and 1000 hours (right). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 3. Optical microscope image  of a cross section through an unspalled region of 

TP347H FG exposed to air saturated steam for 1000 hours at 650 °C showing two outer 

iron rich oxides. 

Figure 4. Back scattered electron cross section image through TP347H FG oxidised in 

air saturated steam for 1 x 100 hours at 650 °C (left) and the corresponding 

concentration profile measured using EDS and WDS showing the presence of Fe2O3 (40 

at.% Fe, 60 at.% O) and Fe3O4 (42.9 at.% Fe, 57.1 at.% O) (right). 

 

Figure 5. Back scattered electron cross section image of TP347H FG oxidised in air 

saturated steam for 1 x 300 hours at 650 °C (left) and the corresponding linescan profile 

measured along the yellow line using EDS, demonstrating the chromium rich oxide and 

the depletion seen beneath this layer (right). 

 

Figure 6. BSE cross section image of TP347H FG oxidised in air saturated steam for 1 x 

1000 hours at 650 °C (left) and the corresponding concentration profile measured using 

EDS and WDS showing the chromium rich oxide layer (right). 

Figure 7. Depletion profiles measured using EDS of TP347H FG oxidised in steam for a 

total of 2000 hours at 650 °C where the second 1000 hours was carried out in a different 

environment. A greater depth of depletion was observed when oxidation was performed 

in air saturated steam. 

Figure 8. Oxidation kinetics for both isothermal (triangles) and cyclic (circles) oxidation 

for TP347H FG exposed to air saturated steam at 650 °C. 

Figure 9. Oxidation mechanism for long term thermal cycling of TP347H FG. 
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