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Abstract 

To generate a long-lasting antibacterial surface on stainless steels for demanding applications 

involving rubbing and wear, a novel triple-glow plasma (TGP) technology was employed to generate 

Ag/N co-alloying layers on AISI 316 austenitic stainless steel. The mechanical, chemical, 

antibacterial and tribological behaviour of the samples treated under different settings and parameters 

were fully characterised. It is identified that a durable antibacterial surface has been achieved using 

the novel triple-glow plasma technology under an optimal parameters, as proved by the high hardness, 

low wear rate and high antibacterial efficacy.  A bilayer structure composed of a thin top layer 

containing about 20-25% Ag embedded in N supersaturated austenite followed by a relatively thick 

(~10 µm) S-phase layer was formed after Ag/N co-alloying by TGP. The silver embedded in the hard 

S-phase provides bactericidal activity against Gram-positive Staphylococcus aureus (S. aureus) with a 

reduction rate of 95% compared with the untreated stainless steel.   
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1 Introduction 

Austenitic stainless steels are important metallic biomaterials for medical devices owing to their 

attractive combination of excellent corrosion resistance, good mechanical properties, high resistance 

to repeated sterilisation and adequate biocompatibility, coupled with their outstanding formability and 

cost-effectiveness.  Hence, austenitic stainless steels are the material of choice for bone fixation 

devices, body implants, surgical and dental tools and instruments and hospital facilities [1]. Austenitic 

stainless steels are also commonly used in the food processing industry.   

Although all these surgical and dental tools and instruments have greatly contributed to enhanced 

quality of life, they have also been a major cause of infections since some transmissible agents (such 

as bacteria and prions) may not be destroyed by normal sterilisation procedures and cross-

contamination may occur when handling these medical devices [2]. Indeed, how to combat multi-

resistant bacteria has become one of the greatest challenges in the treatment of post-operative 

infections.  For example, external fracture fixation is a method used to treat fractures that are severely 

comminuted or open to the environment. The most common complication in stainless steel external 

fixation systems is pin tract infection with infection rates ranging from 2% to as high as 30% [3]. This 

is because the site of entry of the pin is constantly open and cannot heal and hence presents a critical 

interface between the external stainless steel pin and internal muscle and bone.  The consequences of 

infected pin sites include pin loosening, fracture destabilisation and osteomyelitis, thus leading to 

additional surgical antibiotic interventions and poor/slow healing [4].   

In addition, outbreaks of hospital-acquired infections (HAI) are frequently reported [ 5 ] and 

contamination of environmental surfaces in hospital rooms plays an important role in the transmission 

of several key pathogens. These include methicillin-resistant Staphylococcus aureus (MRSA), 

vancomycin-resistant Enterococcus species (VRE), Clostridium difficile, Acinetobacter species, and 

noroviruses [6]. For example, within the EU, over 4 million patients contract a hospital acquired 

infection (HAI) each year, which accounts for an estimated 37,000 deaths. In the USA, about five 

percent of patients admitted to hospitals get HAIs, adding $45 billion to the annual cost of healthcare 

[7].  It is reported that there are 300,000 cases of HAIs annually in the UK with 5,000 deaths 

and >£1bn loss to the NHS [8].  



SUR3460R2b 

3 

 

Antibacterial or self-disinfecting surfaces have progressively become a primary strategy in the fight 

against medical device-associated and hospital-acquired infections despite the achievement made 

during the past decades in terms of aseptic techniques, control of environment sterility, and 

perioperative antibiotic prophylaxis [9]. One widely available approach is to impregnate or coat 

medical device surfaces with a germicide but this has the potential to lead to bacteria developing 

resistance to the germicide and to clinically useful antibiotics [10].  

It is well-known that surface characteristics are crucial for effective prevention of bacterial 

colonisation, and hence surface engineering, via surface modification or surface coating, is intensively 

researched to generate antibacterial or self-disinfecting surfaces. For example, surface micro-

topographical features and surface wettability can be modified by roughening (such as shot-peening 

and grinding) or micro-patterning (micro-contact printing and laser-patterning) to effectively 

influence bacterial cell adhesion [11 12]. However, the durability of such micro-topographical features 

for bio-tribological applications is of concern. Alternatively, antibacterial or self-disinfecting surfaces 

can be created by modifying or coating surfaces with silver since silver and its compounds are some of 

the strongest bactericides by the denaturing of thiol groups of bacterial proteins and enzymes [13].  Silver, 

one of the strongest bactericides, has been extensively researched and as a result has found some important 

applications due to its desirable combination of a broad-spectrum of antimicrobial activities and its 

remarkably low human toxicity.  As a useful disinfectant, nano particulate silver is added into PMMA 

bone cement [14] and silver-containing substance are also applied to medical devices such as indwelling 

catheters and wound dressings [15].   

Currently there are two surface engineering approaches to introduce silver and its compounds to the 

surface of austenitic stainless steels: (1) coating the surfaces with pure Ag or Ag containing composites 

and (2) alloying the surfaces with Ag. The first approach, silver-containing coatings, is the most widely 

researched method.  For instance, Ag-doped polymer coating and pure Ag are used to coat stainless steel 

surfaces. However, these coatings are relatively soft and hence their durability is poor for tribological 

applications. Moreover, it has also been reported that no statistically significant difference could be 

observed in the clinical outcomes of Ag-coated and uncoated steel fixation pins [16]. Some attempts have 

been made to develop Ag-containing nanocomposite coatings with increased hardness [4] but ensuring 

adequate bonding between the coating and the substrate is always a challenge for tribological applications.  
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In the second approach, the authors have, in the past five years, endeavoured to generate durable anti-

bacterial stainless steel surfaces by developing advanced plasma surface alloying technologies. For 

example, an advanced active screen plasma co-alloying technology was developed to alloy stainless steel 

surfaces with both Ag (for antibacterial) and N (for hardening) using a Ag-containing stainless steel screen. 

The co-alloyed stainless steel surface revealed a high anti-bacterial efficacy but the durability of the anti-

bacterial surface is still limited. This is because it is difficult to produce a deep alloyed case with a high 

amount of substitutional alloying element Ag at a relatively low-temperature due to its low diffusion 

coefficient [17].  Consequently, an attempt was made to sequentially alloy stainless steel surfaces first with 

Ag at high-temperature (930C) in a double-glow plasma furnace and then with N at low-temperature 

(430C) in an active-screen plasma furnace [18]. However, the sequential two-processes conducted in two 

different furnaces not only significantly increased the processing cost and time but also increased the risk 

for contamination and oxidation during the changeover between the processes.    

In short, the inherent technical limitation for the above active screen plasma technology with Ag-

containing stainless steel screen is that the chemical composition and in particular the percentage of the 

anti-bacterial agent is determined solely by the composition of the Ag-containing screen used. Hence, it is 

impossible to adjust or control the percentage of the anti-bacterial agent in the co-alloyed surface case 

without changing the screen (which is time consuming and very costly).  This technical challenge can be 

successfully addressed using the recent developed novel triple-glow plasma (TGP) technology [19]. As 

shown in Figure 1, an additional Ag cathode with separate power source S1 is installed to control the 

yielding and hence the amount of Ag in the co-alloyed surface case by adjusting the bias on the Ag cathode. 

Therefore, a thick co-alloyed case on austenitic stainless steel with controllable amount of Ag can be 

formed at a relatively low temperature. The mechanical, corrosion, antibacterial and tribological 

behaviour of the Ag/N co-alloyed layer were fully characterised to identify the potential of the novel triple-

glow plasma technology for generating long-lasting antibacterial surfaces for demanding applications 

involving rubbing and wear (such as surgical tools and orthopaedic implants).  
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2 Materials and Methods 

2.1 Substrate material 

Commercial AISI 316 stainless steel with the chemical composition (wt.%.): 0.06 C, 17.20 Cr, 11.70 

Ni, 2.2 Mo, 1.3 Mn, and Fe balance was used as the substrate material in this study. Samples of 5 mm 

in thickness were cut from a hot rolled one inch (25.5mm) steel bar. All the samples were ground 

down to 1200 grit SiC paper, polished to an average surface roughness of Ra<0.02 µm, ultrasonically 

cleaned in acetone for 10 min and finally dried with flowing hot air. 

2.2 Plasma surface treatment 

A newly developed triple-glow plasma (TGP) facility was employed for alloying 316 austenitic 

stainless steel surfaces simultaneously with the substitutional element silver (Ag) and the interstitial 

element nitrogen (N). As schematically shown in Figure 1, the earthed furnace wall serves as the 

anode, both the stainless steel screen and Ag plate were powered by DC source S1 with the same bias, 

and the samples were powered by DC source S2. The plasma co-alloying treatments were carried out 

at 420C for 10h in a gas mixture of  75%H2 + 25%N2 with a work pressure of 1 mbar (100Pa). The 

voltage for S1 and S2 were 500V and 240V, respectively. Whilst the distance between the samples 

and the metal screen (D1) was maintained at 20mm, the distance between the metal screen and the 

silver plate (D1) varied from 10mm (AgSS10) to 20mm (AgSS20). The sample code and the 

treatment conditions are summarised in Table 1. 

 

Figure 1 A schematic of triple-glow plasma equipment  
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Table 1 The sample code and treatment conditions  

Samples 

S1 S2 

D1(mm) D2(mm) Voltage 

(V) 
Current (A) 

Voltage 

(V) 
Current (A) 

Untreated - - - - - - 

AgSS10 500 0.7 240 0.2 10 20 

AgSS20 500 0.7 240 0.2 20 20 

 

2.3 Surface characterisation 

The surface morphology and cross-section microstructure of plasma treated surface layers were 

observed using an Oxford JEOL 7000 scanning electron microscope (SEM). The Ag distribution on 

the surface was detected by energy-dispersive spectroscopy (EDS) equipped on the Oxford JEOL 

7000. The composition depth profiles were measured using glow discharge optical emission 

spectroscopy (GDOES) in a SPECTRUMA GDA650 spectrometer. The phase constituents of the 

alloyed surface were analysed using the X’Pert Philips XRD instrument with Cu Kα radiation.  

The surface hardness of plasma treated as well as untreated samples was measured using the Mitutoyo 

MVK-H1 micro-hardness tester with a Vickers indenter at a load of 50 gf. Reciprocating wear tests 

under a load of 5 N at a frequency of 1 Hz for 1000 cycles against an 8mm alumina ball were 

conducted to evaluate the tribological properties of the plasma alloyed surfaces using Phoenix 

Tribology TE79 Multi-axis Tribometer. The wear track profiles were measured using the Ambios XP-

200 profilometer and the wear volume and wear rate were calculated based on the measured cross-

sectional profiles. The wear tracks were observed using JEOL JSM 6060 SEM equipped with an EDS.  

2.4 Corrosion testing 

Electrochemical corrosion tests were performed with a Gamry instruments (US) using the standard 

three-electrode configuration, with a platinum coated rod as a counter electrode, a saturated calomel 

electrode as a reference electrode and the sample as a working electrode. A circular area of 50.27 mm
2
 

of surface was exposed to the corrosive solution for every sample. Prior to measurement, the samples 

were immersed in the solution for 1h to obtain a stable open circuit potential (OCP). The 

potentiodynamic polarization tests were conducted in 300ml of full strength Ringers solution at a 

temperature of about 37°C. The sweep was performed at a constant scanning rate of 1mV/s with a 
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period between -0.3V vs EOCP and 1.5V vs EREF. The morphology after corrosion test was 

examined using a SEM machine mentioned above. 

2.5 Antibacterial testing 

Antibacterial activities of plasma treated and untreated stainless steel surfaces were tested under a 

standard method based on the Japanese JIS2801:2000 spread plate method [ 20 ]. The untreated 

stainless steel samples were used as controls for the Ag-N co-alloyed layers. Gram-positive 

Staphylococcus aureus (S. aureus) were selected as test bacteria. The bacteria were cultured overnight 

on tryptic soya broth (TSB) and then serially diluted in TSB to an optical density OD600nm of 0.05, 

which has been previously shown to be equivalent to 10
7
 cells/ml. The stainless steel samples were 

sterilised by autoclaving and then placed on sterile filter papers saturated with distilled water inside 

sterile 90 mm diameter Petri dishes to maintain ambient humidity. Fifty microlitres of diluted 

bacterial suspension was pipetted onto each sample surface, which was then covered with a sterile 

glass cover slip in order to maintain the same contact area of suspension on each tested surface. All 

Petri dishes were incubated at room temperature for 12 h. After the designated time the whole sample 

was transferred to 10 ml of sterile phosphate-buffered saline (PBS) in a sterile container. The contents 

were vortex mixed for 10 seconds to dislodge the coverslips and suspend the surviving bacteria in the 

PBS. Serial dilutions of the bacterial suspension were made and 100 µl aliquots of each dilution 

pipetted onto TSA plates, which were incubated overnight at 37 °C. The number of colony forming 

units (CFU) resulting from the growth of viable bacterial at 37 °C after 24 h represents the initial 

viability of bacteria that survived in the suspension. The percentage reduction was calculated using 

the following equation:  

Reduction (%)=
𝑁0-𝑁𝑡

𝑁0
×100% 

where Nt and N0 represent the average CFU/ml for a treat sample after the contact time ‘t’ (t=12h in 

this study) and at 0 h, respectively. Three specimens of each test material and the controls were 

analysed and three plates were spread from the PBS suspension resulting from each sample. Results 

are expressed as means ± SD of the measurements. 
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3 Results 

3.1 Microstructure and hardness 

The surface morphology of the plasma co-alloyed AgSS10 (Fig.2a) and AgSS20 (Fig.2a) samples is 

very similar although the former seems slightly more compact, smoother and finer than the latter. 

EDX analysis revealed that Ag was distributed uniformly across the whole surface for the both 

samples. The average silver content in the surface was measured to be about 50 % and 42 % for 

AgSS10 and AgSS20 respectively, which is much higher than that generated by active-screen plasma 

technology. This also indicated that the surface Ag content decreased with increasing the distance 

between the Ag plate and the stainless steel screen lid used for the triple-glow plasma treatments.   

 

   

(a)                                                                             (b) 

Figure 2 Surface morphology of plasma co-alloyed (a) AgSS10 and (b) AgSS20  

It can be seen from the XRD patterns shown in Figure 2 that both the Ag/N co-alloyed surfaces 

predominately consisted of Ag and S-phase (i.e. N supersaturated expanded austenite) [21]. It was 

noted that the intensity of Ag peaks decreased but the S-phase peaks increased when the distance 

between the Ag plate and the steel lid (D2) increased from 10mm for AgSS10 to 20mm for AgSS20.   

Further chemical analysis by GDOES (Figure 3) revealed that a Ag plateau below the surface with an 

average silver content of about 25 wt% was formed during the Ag/N co-allying process for both 

samples; the depth of this Ag-enriched layer formed on AgSS10 (about 4µm) is twice that formed on 

AgSS20 (about 2 µm). Then, the Ag content dropped rapidly to zero where Fe, Cr and Ni reached to 

the value for the bulk material. On the other hand, N decreased quickly to about 10% within the Ag 

enriched layer before it decreased gradually to a depth of around 10 µm.  
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The SEM images taken from the cross-section of Ag/N co-alloyed AgSS10 and AgSS20 samples 

showed a two-layer structure: a thin surface layer followed by a thick subsurface layer (Figure 5).  It 

can also be seen from Figure 5 that although the total thickness of the treated surface is slightly 

thicker on AgSS10 than on AgSS20, the top layer formed on the former is much thicker than that 

formed on the latter.  

 

Figure 3 XRD diffraction patterns for Ag/N co-alloyed AgSS10 and AgSS20 surfaces 

 

 

 

        

(a)                                                                      (b) 

Figure 4 GDOES charts for (a) AgSS10 and (b) AgSS20   

 

 



SUR3460R2b 

10 

 

 

 

Figure 5 Cross-sectional SEM micrographs of (a) AgSS10 and (b) AgSS20 

   

It can be deduced based on the above XRD, GDOES and SEM micrograph in conjunction with the 

principle of the triple-glow plasma technology that the Ag/N co-alloyed surface cases were composed 

of a thin top layer (2-4 µm) containing about 20-25% Ag embedded in N supersaturated austenite (i.e. 

S-phase) followed by a relatively thick (5.5-80 µm) S-phase layer. It is clear from Figure 5 that the 

thickness of the top Ag/S-phase layer formed on AgSS10 sample is close to 4 μm while the top 

deposition layer formed on AgSS20 is about half of that. This is mainly due to the fact that the Ag 

plate and the stainless steel lid formed a hollow cathode and the discharge is closely related to the 

distance between them (D2) under a constant working pressure. The discharge became stronger with 

decreasing the distance D2 and hence more Ag atoms from the Ag plate cathode were sputtered and 

co-deposited with 316 material on the sample surface to form a thicker co-deposition layer.  

This is supported by the measured surface hardness shown in Figure 6. The hardness measurement 

results have indicated that although the surface hardness of Ag/N co-alloyed AgSS10 (580HV0.05) is 

more than twice as hard as that of the untreated materials (250HV0.05), it is still much softer than 

Ag/N co-alloyed AgSS20 (900HV0.05) due to the high Ag content in the top deposition layer. The 

thicker S-phase layer formed on AgSS20 than on AgSS10 is also related to the lower Ag content in 

the former than in the latter since it is know that Ni, Cu and Ag will retard the inward diffusion of N 

during diffusion treatment [22].  
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Figure 6   Surface hardness of N/Ag co-alloyed and untreated samples 

3.2 Corrosion properties 

The corrosion behaviour of the Ag/N co-alloyed layers and untreated surface in the full strength 

Ringers solution was tested by electrochemical polarization and the results are shown in Figure 7. It 

can be seen that both of the Ag/N co-alloyed surfaces showed a more positive corrosion potential than 

the untreated 316 ASS. The results of the quantitative analysis of the polarization curves are 

summarised in Table 2.  It revealed that the corrosion potential (Ecorr) was reduced from -274 mV vs 

SCE for the untreated 316 to -243 mV vs SCE for AgSS10 and -189 mV vs SCE for AgSS20. The 

corrosion current density (Icorr) and corrosion rate of AgSS20 is almost the same as that of the 

untreated material but AgSS10 showed increased Icorr and corrosion rate as compared with untreated 

surface.  

It is also revealed in Figure 7 that severe pitting corrosion occurred to the untreated surface when the 

applied potential reached about 250mV vs SCE as evidenced by the steep increase of the current 

density. The current density reached as high as 10mA/cm
2
 under an applied potential of 1000 mV vs 

SCE. Although rapid increase in current density was also observed for the Ag/N co-alloyed surfaces, 

it seems that the pitting process was stopped as evidenced by a plateau towards the end of the 

polarization curves.      
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Post-test SEM observations proved that the corroded surface of the untreated sample revealed many 

deep pits (Figure 8a) but only shallow corroded areas were observed from the Ag/N co-alloyed 

surface after test (Figure 8b). This implied that corrosion may have occurred to the surface deposition 

layer but the underlying S-phase layer remained almost fully intact, therefore demonstrating even 

better corrosion resistance than the untreated 316 ASS [21]. Clearly, the Ag/N co-alloyed AgSS20 

sample possessed improved corrosion behaviour than the untreated material.  

Table 2 Anodic polarisation corrosion results for the untreated and Ag/N co-alloyed samples  

Samples Ecorr(mV) Icorr(×10
-5

mA/cm
2
) Corrosion rate (×10

-2
mpy) 

Untreated -274 8.9 8.1 

AgSS10 -243 124 112.9 

AgSS20 -189 9.0 8.2 

 

 

 

Figure 7 Anodic polarisation curves for untreated and Ag/N co-alloyed samples  
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(a)                                                              (b) 

Figure 8 Surface images after corrosion test for (a) untreated and (b) AgSS20 samples  

3.3 Antibacterial behaviour 

The antibacterial properties of Ag/N co-alloyed layers and untreated ASS controls were evaluated 

with Gram positive bacteria (S.aureus) and using a contact time of 12h. The spread results of viable 

following testing are shown in Figure 9. It can be clearly seen that the spread plate of the untreated 

316 surface was almost completely covered by bacterial colonies (Figure 9a).  In contrast, the numder 

of colonies remaining on the Ag/N co-alloyed 316 plate surface was reduced significantly (Figures 9b 

and c).  

 

Figure 9 Qualitative spread plates results of viable bacterial number after 12 h contacting with  

(a) untreated 316 control and Ag/N co-alloyed (b) AgSS10 and (c) AgSS20 samples  

The quantitative reduction rate of the bacteria relative to the 316SS control sample was calculated and 

the results are given in Figure 10. It is evident that the cultures of S.aureus were effectively killed by 

exposure to Ag/N co-alloyed surfaces and the reduction percentage is ~95 and 91% for AgSS10 and 

AgSS20 samples respectively.  As reported above, the surface of AgSS10 samples contained a 

slightly higher percentage of Ag (about 50%) than that of AgSS20 sample (42%).  This suggests that 

the higher the Ag content the higher the antibacterial efficacy.   
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Figure 10  Reduction rate of the number of viable bacteria on Ag/N co-alloyed samples  

3.4 Wear resistance and durability 

As discussed in the introduction, the most challenging issue for anti-bacterial surfaces is their 

durability especially under tribological conditions. To this end, the durability of the new Ag/N co-

alloyed 316 surfaces were studied using reciprocating sliding against an 8mm alumina ball under a 

load of 5 N.   

Figure 11 summarises the wear factor of the Ag/N co-alloyed 316 surfaces and the untreated material 

for comparison. As depicted in Figure 11, the novel Ag/N co-alloying treatment can significantly 

increase the wear resistance of 316 austenitic stainless steel. In particular, the wear rate of the Ag/N 

co-alloyed layer formed on AgSS20 sample is only about one percent of that for the untreated 316 

material.  
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Figure 11 Wear rate of the untreated and Ag/N co-alloyed samples 

Detailed post-test studies were carried out to investigate the wear of the Ag/N co-alloyed surfaces. As 

expected, severe adhesive wear and abrasive wear occurred to the untreated 316 surface mainly due to 

its low-hardness and high adhesive wear tendency [23].  

Figure 12a shows the wear scar formed on the surface of the AgSS10 sample after the wear test with 

relatively deep and wide parallel wear groves indicative of severe abrasive wear. The EDX spectra 

taken from the wear track (Figure 12b) showed a very weak Ag peak. This indicates that the Ag rich 

surface layer formed on AgSS10 was removed by the wear and the weak peak of Ag is most probably 

from the wear debris embedded in the wear track.      

On the other hand, as shown in Figure 12b, although a wear scar was also observed from the tested 

AgSS20 sample surface, mild abrasive wear occurred to the surface. This is supported by the very 

strong Ag peak in the EDX spectra taken from the wear track formed on AgSS20 surface (Figure 12d). 

This significantly increased wear resistance could be attributed to the effectively enhanced surface 

hardness (900HV0.05) because it is known that abrasive wear resistance of a surface is proportional to 

its hardness [24].  It is the effectively increased wear resistance that has contributed to the durability 

of the Ag enriched surface.  A few spallations were observed in some localised areas of the wear scar 

on Ag-SS20, which could be related to the delamination of the deposition layer after many cycles of 

reciprocating friction and wear. 
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(a) (b) 

   

(c)                                                                   (d) 

Figure 12  Wear scars on (a) AgSS10 and (c) AgSS20 and EDS spectra taken from the wear 

track formed on (d) AgSS10 and on (d) AgSS20  

4 Discussion 

As previously discussed in the Introduction, it has long been a dream for the designers of surgical 

tools, body implants, hospital equipment and other medical devices to have antibacterial surfaces that 

meet the ever-increasing demand for combating medical device-associated and hospital-acquired 

infections [6,9]. To this end, great effort and hence meaningful progress has been made during the 

past decade to generate anti-bacterial surfaces by silver (Ag) coating [16,25], Ag-doped polymer 

coatings [ 26 ], Ag-DLC [ 27 ], Ag-TiO2 [ 28 ] and Ag-Al2O3 [ 29 ] composite coatings, Ag ion 

implantation [30] and more recently nano [31] or micro [32] patterning.   

Notwithstanding the fact that all these approaches have made progress in generating anti-bacterial 

surfaces, one of the most challenging issues to be addressed is the durability of the anti-bacterial 
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surfaces for bio-tribological applications such as surgical and dental tools, internal and external 

fixation devices and healthcare equipment involving relative movement. This is because Ag-doped 

polymer coatings are too soft to withstand scratching; the modified surface by Ag implanted and 

nano/micro patterning surface layers are too thin (<0.5 µm) to survive long-term tribological loading; 

and the major concerns over Ag-containing composite coatings under tribological application are poor 

interface bonding and low load bearing capacity when coated on relatively soft austenitic stainless 

steel surfaces [33]. Failure of such Ag-containing coatings will lead to fast leaching of Ag ions and the 

resulted detrimental loss of bactericidal properties [9].  

In this research, new anti-bacterial stainless steel surfaces have been generated using a novel triple-

glow plasma co-alloying technology with both the interstitial element of nitrogen (N) and the 

substitutional element silver (Ag). As has been shown in Figures 10 and 11, both Ag/N co-alloyed 

AgSS10 and AgSS20 316 surfaces possess a high anti-bacterial efficacy and a low wear rate when 

compared with the untreated 316 stainless steel.  

As briefly discussed in the Introduction, both surface topography and surface chemistry will influence 

the bacterial cell attachment, colonisation and invasion. It was found that the roughness of the treated 

surfaces was increased from about 0.02 to 0.2 µm (Ra). In view of this, the roughness of the untreated 

surface (i.e. control) was adjusted by grinding using SiC abrasive papers with different grits to match 

the Ra value for the treated surfaces to avoid the effect of surface roughness.  It should be admitted 

that it is impossible to produce the same surface morphology as for the plasma treated one. 

Antibacterial testing demonstrated that the AgSS10 surface with a high level of Ag (50 %) exhibited a 

higher anti-bacterial efficacy than the AgSS20 surface with a relatively low level of Ag (42 %) 

although both treatments had very similar surface morphologies. Thus, it follows that the anti-

bacterial behaviour observed for the TGP treated 316 surfaces is related to the high concentration of 

Ag introduced into the surface by Ag/N co-alloying.  Although it is not fully elucidated, the most 

convincing mechanism of action is that Ag+ interacts directly with pathogens by binding to their 

cellular membranes causing perforations, and subsequent leakage of the pathogen’s intracellular 

substances resulting in cell death  [34 35]. 
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The reasons for the significantly increased wear resistance by Ag/N co-alloying could be twofold. 

Firstly, hardness measurement revealed that the surface hardness of 316 can be increased from about 

250HV0.05 for the untreated material to 580 HV0.05 and 900 HV0.05 for AgSS10 and AgSS20, 

respectively. The increased surface hardness due to the formation of hard S-phase has contributed to 

the improved wear resistance since it is known that the resistance of a material to abrasive wear is 

proportion to its hardness. This partially explains the higher wear resistance of AgSS20 relative to 

AgSS10. Secondly, the formation of the S-phase sublayer (Figure 5) can mechanically support the top 

Ag rich layer and hence increase the load bearing capacity (LBC) of the Ag/N co-alloyed dual-layered 

surface system.   It is clear from Figures 4 and 5, a thicker S-phase sublayer was formed on AgSS20 

than on AgSS10 and hence a better LBC and higher wear resistance is expected from the former than 

from the latter.   

The change of surface topography (Figure 12c) of the wear track and its very small area make it  

impossible to test again for antibacterial behaviour following wear testing.  As has been revealed in 

Figure 12, the high wear resistance of the antibacterial surface developed from this research on 

AgSS20 should transform to high durability of the antibacterial effect as the wear track formed on 

AgSS20 still contained a high level of Ag. It thus follows based on the above discussion on 

antibacterial efficacy and wear resistance that the antibacterial surface formed by AgSS20 is expected 

to have good durability with satisfactory anti-bacterial efficacy.  The potential of the novel long-

lasting anti-bacterial stainless steel surfaces will be explored in future by applying the novel triple-

glow plasma co-alloying technology to austenitic stainless steel external fixation pins and some 

surgical tools.    

5 Summary and Conclusions 

A newly developed triple-glow plasma technology has been developed to alloy austenitic stainless 

steel surfaces simultaneously with both the substitutional element nitrogen and the substitutional 

element silver (i.e. Ag/N co-alloying). A dual layered surface system consisting of a thin (a few 

microns) Ag doped S-phase (nitrogen supersaturated austenite) top layer and a relatively thick (~10 

microns) S-phase sublayer can be formed on AISI 316 steel at 420℃ with a sample bias of 240V in a 
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gas mixture of 25N2 + 75%H2. The surface layer structure is highly dependent on the distance 

between the Ag cathode and the steel mesh cathode. When the distance between the Ag cathode and 

the steel mesh cathode increased from 10mm for AgSS10 sample to 20mm for AgSS20 sample, the 

thickness of the top Ag rich layer decreased from 4.5 to 2 µm and the surface Ag content reduced 

from 50% to 42%.  

The Ag/N co-alloyed surfaces possess high antibacterial efficacy mainly due to the high amount of Ag 

(42-50%) introduced into the S-phase matrix formed on the top layer, which denature the thiol groups 

of bacterial proteins and enzymes; the surface hardness of 316SS is increased from 250 for the untreated 

material to 580 and 900HV0.05 for AgSS10 and AgSS20 respectively; and the wear factor is  reduced 

from 890 for the untreated material to 250 and 23 x10
-15

 m
3
N

-1
m

-1
 for AgSS10 and AgSS20 

respectively.  The wear track formed on AgSS20 surface still contained a very high level of Ag and 

hence long-lasting antibacterial efficacy is expected.  

The optimal AgSS20 treatment can generate multi-functional stainless steel surfaces with a high 

hardness, a high anti-bacterial efficacy, slightly enhanced or at least maintained corrosion resistance 

in the Ringers solution and excellent wear resistance and hence long durability, which are expected to 

have great potential for future long-lasting antibacterial stainless steel surfaces for medical devices.    
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