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Abstract  

Alpha oscillations (~10 Hz) have been suggested to have an inhibitory influence on stimulus 

processing within the context of attention being coordinated across space, with an increase in 

the power of alpha activity occurring in spatially irrelevant regions. However, with respect to 
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cross-sensory attention (distribution of attention to different sensory modalities) an increase 

in alpha activity from baseline has not yet been definitively linked to active inhibition of 

distraction.   

 In the current study, we examined the role of top-down alpha modulation in facilitating and 

suppressing stimulus processing between the visual and auditory domain. We utilized two 

cross-sensory paradigms, one containing distractors while the other paradigm only contained 

targets, in order to separate distractor related activity. We found a cue induced increase from 

baseline for the power of occipital alpha activity in posterior cortex when participants 

anticipated the occurrence of auditory targets combined with visual distractors. Interestingly 

there was no increase in alpha power observed in the condition where auditory targets 

occurred without distractors. These findings suggest that the increase in alpha activity from 

baseline reflects top-down drive processes serving to inhibit distracting input. However, we 

found that there was no significant difference in the absolute occipital alpha power between 

when participants were expecting a visual distractor, and the session where no visual 

distractors were present. We account for these findings by suggesting that an increase in 

alpha power in the anticipation of visual distractors,  rather than being exclusively inhibitory, 

could also signal the re-allocation of resources in the sensory systems. 

Introduction  

The most predominant oscillatory activity in the EEG/MEG is at the frequency of 10 Hz and 

is commonly referred to as the alpha rhythm. The increase in amplitude of alpha activity over 

a sensory region of the cortex has been tied to the inhibition of that region (Hanslmayr et al., 

2007; Van Dijk et al., 2008; Romei et al., 2008; Lange et al., 2013). This has led to the 

theoretical framework in which information is believed to be routed to relevant brain areas by 

inhibition of irrelevant brain regions through the increase of alpha activity (Foxe et al., 1998; 

Klimesch et al., 2007; Mazaheri & Jensen 2010). 
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The vast majority of studies finding evidence for the functional inhibitory role of alpha 

activity have used paradigms in which spatial attention shifts within one modality (i.e. 

Yamagishi et al., 2003; Kelly et al., 2006; Rihs et al., 2007; Rihs et al., 2009; Gerven et al., 

2009; Kelly et al., 2009; Handel et al., 2011; Snyder et al., 2011). Comparatively fewer 

studies that have investigated alpha modulation in the context of suppressing information in a 

task irrelevant sensory modality (Foxe et al., 1998; Fu et al., 2001; Mazaheri et al., 2014) in 

the scope of attentional cuing across different modalities (e.g. visual and auditory). These 

studies for the most part have examined the differences in alpha activity between conditions 

where attention was directed to a specific modality. In addition, while some studies have 

found an increase in alpha activity from a baseline in the sensory regions of the distracting 

modality (Fu et al. 2001), it is unclear if this increase is related to functional inhibition of a 

region or alternatively simply reflecting a sensory region not being engaged but rather 

‘idling’ (Jensen et al., 2002; Foxe & Snyder, 2011).  

 

In the current EEG study we utilized two variants of a cross-sensory attention task where 

symbolic visual cues validly signaled the modality (visual or auditory) of an upcoming target 

to be discriminated. In one variant the target was presented alone, while in the other variant 

target stimuli were presented alongside distractors in a different modality. We focused our 

analysis on the cue induced changes in the power of occipital alpha activity in anticipation of 

targets/distractors. We were interested in how the attentional cues modulated the pretarget 

alpha oscillations and the consequences of this modulation on attentional performance, with 

regards to the facilitation of target processing as well as inhibition of distractors. 
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Materials and methods 

Participants 

Eighteen participants (16 female, age range 18-28 years) were recruited at the University of 

Amsterdam and Amsterdam University of Applied Sciences. All participants signed informed 

consent documents before the start of the experiment. Participants reported normal or 

corrected-to-normal vision, no hearing disabilities, and no history of psychiatric or 

neurological disorders. Participants were compensated with 10 per hour. This study was 

approved by The University of Amsterdam Department of Psychology Ethics Committee. 

Apparatus and Procedure 

The participants were seated 60 cm from the monitor in a dimly lit room. They practiced at 

least 90 trials before starting the experiment. The stimuli were presented using Presentation 

software (Neurobehavioral Systems Inc., Albany, CA, USA) on a 24 inch LCD monitor 

(BenQ XL2420T) with a refresh rate of 120 Hz. 

Subjects performed two cross-sensory cuing experiments (counterbalanced) in which they 

had to attend to an auditory or visual stimulus (Figure 1). The visual stimuli, presented 

centrally for 25 ms (3 screen refreshes), consisted of Gabor patches having a visual angle of 

~6.2 with 3 possible types of orientation: -5 °, 0°, 5° clockwise. The auditory stimuli, 

presented for 25 ms via speakers, were pure tones with 3 possible frequencies: 500 Hz, 1000 

Hz, 2000 Hz (including 5 ms rise and 5 ms fall shaped by a Blackman window). Participants 

judged the orientation of the visual stimulus or pitch of the auditory stimulus using a 3-button 

response device using their right hand. Prior to target presentation a 100 ms cue was 

presented, indicating whether participants had to respond to a visual (‘V’) or auditory 

(‘inverted V’ representing an A) stimulus. All target orientations and tone frequencies were 

presented an equal number of times.  
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During the ‘Distractor absent’ experiment a single target was presented without a distractor, 

while in the ‘Distractor present’ experiment the target was always accompanied by a 

distractor in the opposing modality (a visual distractor during an auditory target and vice 

versa). The difference with previous cross-sensory cuing paradigms (Fu et al., 2001; 

Mazaheri et al., 2014) is that trials with and without distractors are presented in different 

blocks. This means that activity related to distractor suppression can be separated because it 

is known when to expect a distractor and when not.  

Visual and auditory stimuli were not presented exactly simultaneously with Presentation 

software: visual stimuli were presented 1219 ms (σ = 5 ms) after cue onset while auditory 

stimuli were presented at 1256 ms (σ = 3 ms) for the ‘distractor-present’ paradigm. For the 

‘distractor-absent’ paradigm visual stimuli were presented ~1217 ms (σ = 4 ms) after cue 

onset, auditory stimuli  1260 ms (σ = 3 ms). Total trial duration was 2560 ms. Reported 

reaction times are in relation to the presentation of the target modality.  

The ‘distractor-present’ session contained 168 auditory-cued trials and 168 visual cued trials. 

The ‘distractor-absent’ session contained 144 attend-auditory and 144 attend-visual trials. To 

verify if subjects were using the cue for preparation in the ‘distractor-absent’ condition, 60 

trials containing an uninformative cue (diamond shape) were added. A comparison of 

reaction times for the uninformative and informative cues should result in a difference such 

that longer reaction times are present for the informative cues. The uninformatively cued 

trials were not analyzed in relation to preparatory alpha activity. Moreover, both paradigms 

contained twenty percent ‘catch’ trials containing no target to be able to look at phase angle 

modulations (Van Diepen et al., 2015), which were not analyzed in the current manuscript.  
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EEG acquisition and processing 

EEG data were acquired using a WaveGuard 10-5 cap system developed by ANT, with 64-

Ag/AgCl electrodes, spanning from frontal, temporal, central and occipital scalp sites. The 

EEG was sampled at 1024 Hz with an online average reference and then subsequently 

imported into MATLAB for all further off-line analyses. The electro-oculogram (EOG) was 

recorded between supra- and infra- orbital sites around the right eye for vertical movement 

(blinks), and outer canthi of the left and right eyes for possible horizontal eye-movements. 

Impedance was maintained below 100 kΩ. Offline processing and analyses were performed 

using Matlab (Natick, MA), functions from EEGLAB (Delorme & Makeig, 2004) and the 

Fieldtrip software package (Oostenveld et al., 2011). The EEG data were highpass-filtered at 

0.5 Hz and epoched from -1 to +2.5 s, time-locked to cue onset. Reported times in the current 

manuscript are from here on however in relation to visual target presentation. Trials with 

substantial muscle artefacts were identified and removed through visual inspection (12.7% 

and 15.0% of trials for the distractor-present and distractor-absent experiment 

respectively). Bad electrodes were identified and interpolated using the spherical spline 

interpolation routine in EEGLAB (2 subjects with 2 channels, 2 subjects with 1 channel). 

Ocular artefacts were removed using Independent Component Analysis (ICA) (Jung et al., 

2000). We only analyzed correct trials. Trials with an RT < 100 ms were considered incorrect 

and excluded from further analysis.  

 

Frequency analysis   

In order to obtain time-intervals of interest Time-Frequency-Representations (TFRs) of 

power were estimated to allow the examination of the course of alpha activity after 

presentation of the cue. Per trial a sliding time window with steps of 50 ms was tapered with 

a Hann window having an adaptive time window of three cycles for each frequency of 
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interest (ΔT = 3/f). Similar approaches were used by Osipova et al. (2006), Jokisch and 

Jensen (2007), Mazaheri et al. (2009). We calculated what time-point after cue presentation 

alpha power started to differ between the attend-auditory and attend-visual condition, 

irrespective of distractor presence. Therefore TFR data were averaged over the distractor-

present and distractor-absent block. Changes in baseline-corrected alpha power (relative 

change = (Power – Power baseline [-500 -100 ms precue]) / Power baseline) were statistically 

assessed for every time-point between cue and target presentation using a non-parametric 

cluster-based permutation test as described in Maris & Oostenveld (2007). Type I errors due 

to multiple comparisons were reduced by clustering neighboring channels and time-points 

that showed a similar effect. A probability value is obtained through the Monte Carlo 

estimate of the permutation p-value of the cluster of channels by randomly swapping the 

conditions in participants 1000 times and calculating the maximum cluster-level test statistic. 

Statistical analysis comparing conditions time-point by time-point revealed that alpha power 

started to differ significantly between the attend auditory and attend visual condition starting 

at 517 ms prior to target presentation (700 ms post cue). As such we chose to focus on alpha 

power in the interval -500 to 0 ms prior to the onset of the targets. In order to minimize 

spectral leakage from the stimulus evoked response of the targets the data was windowed 

using a Hanning taper from -500 to 0 ms prior to target presentation after which the Fast 

Fourier Transform was obtained. All our subsequent statistical analysis was done from the 

alpha power (8-12 Hz) obtained from this step.  

 

Modality specific modulations 

We hypothesized that an increase in alpha power from baseline in posterior channels would 

only be present during the presentation of a visual distractor (i.e. attend-auditory/Distractor-

present condition) if alpha oscillations are used as a mechanism to actively inhibit distraction. 
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First, baseline-corrected alpha activity (relative change) prior to visual distractor presentation 

was compared to zero using a cluster-based permutation test, to isolate preparatory activity 

related distractor inhibition.  

Then, we examined whether the increase in alpha activity was absent when an auditory target 

was to be identified without simultaneous presentation of a visual distractor. This was done to 

make sure that the increase was specific for distractor suppression. Baseline differences could 

be present between the distractor-absent and distractor-present condition because they were 

measured during different blocks. Alpha power prior to cue presentation was therefore 

included in the analysis as baseline in addition to preparatory pretarget activity. Values were 

entered into a 2x2x2 repeated-measured ANOVA with the levels time (baseline/pretarget) 

modality (attend-auditory/attend-visual) and distraction (present/absent). Alpha power was 

averaged over trials and over occipital channels that showed a significant increase from 

baseline during the visual distractor condition as found using the aforementioned cluster-

based permutation-test (Figure 3 right topography). The order of the distractor-present and 

distractor-absent blocks was included in the model as between-subject variable. 

Relation between alpha power and behavior  

Behavioral benefits associated with alpha power changes were examined using linear 

regression of posterior alpha power on reaction times (similar analysis is performed in 

Jones et al. (2010)). For every subject absolute alpha power was averaged over channels 

located over the posterior region showing a significant modulation from baseline during 

visual distractor expectation (Figure 3 right topography). Trials were then divided into 10 

bins based on alpha power sorted from low to high. Alpha power and associated RT’s 

were calculated per bin by averaging over trials and then over subjects. The regression 

analysis was performed separately for the different target and distractor conditions. 

The analysis for visual target trials was done to examine the benefit of alpha power 
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modulations in occipital cortex during processing of target information. The same analysis 

was performed for auditory target trials to infer the influence of alpha power modulations 

when the sensory region was irrelevant.  

 

Results 

Behavioral 

In both experiments, visual targets were identified faster than auditory targets (distractor 

present: 639 ms vs. 728 ms, t (17) = -4.26, p = 0.0004, distractor absent: 606 ms vs. 697 ms, 

t (17) = -7.12, p = 0.000002). The percentage of correct trials was also higher for visual 

targets compared to auditory targets (distractor present: 96 % vs. 88 %, t (17) = 7.20, p = 

0.000001, distractor absent: 98 % vs. 95 %, (t (17) = 3.24, p = 0.005).  

Given that cues were not essential to perform the task correctly in the distractor-absent 

session, reaction times of trials with informative cues were compared to trials with 

uninformative cues to verify whether participants showed benefits from them. RTs for 

auditory targets decreased from 748 ms for uninformative cues to 697 ms for informative 

cues (t (17) = -5.10, p = 0.00008)). For visual targets the average RT decreased from 642 ms 

for uninformative cues to 606 ms for informative cues (t (17) = -5.91, p = 0.00002). The 

faster identification of trials with an informative cue suggest that top-down processes 

facilitated target processing. Response times are visualized on Figure 2. 

The attentional cues did not influence task accuracy: auditory targets were identified in 93 % 

of trials with an uninformative cue and in 95 % with an informative cue (t (17) = -1.48, p = 

0.16). Visual targets were identified in 98 % of trials with both informative as well as 

uninformative cues (t (17) -0.15, p = 0.917)). Given the high performance rates, we speculate 

that the absence of a difference is due to a ceiling effect.  
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To test whether participants were disturbed by the presentation of distractors in a different 

modality, RTs from the distractor-present blocks were compared to RTs from the distractor-

absent experiment. Presentation of auditory distractors during visual targets slowed RTs on 

average by 24 ms (t (17) = -3.29, p = 0.004). Visual distractors during auditory targets slowed 

RTs on average by 31 ms (t (17) = -3.77, p = 0.001). Presentation of a distractor in a different 

modality is detrimental for task performance and a mechanism for active inhibition of 

distractors could be beneficial during this task.  

 

Pre-stimulus Alpha power was relatively decreased during expectation of a Visual Target 

Consistent with previous studies, alpha power was greater over occipital and frontal channels 

prior to expectation of an auditory target compared to the expectation of a visual target 

(Figure 3 left topography). Time-point - by - time-point analysis on Time-Frequency data 

shows that these cue-induced modulations started 700 ms after cue onset (i.e 500 ms prior to 

targets, t = 164.499, p < 0.001, Monte-Carlo corrected for multiple comparisons). 

Posterior Alpha power increased when a Visual Distractor was expected  

Simply contrasting activity prior to visual target expectation with activity prior to auditory 

target expectation does not distinguish processes related to the suppression of distraction 

from those related facilitation of target processing. As such alpha activity prior to visual 

distractor presentation (i.e alpha power in the -500ms to 0 interval prior to target onset) was 

therefore also compared to its precue baseline. Alpha power was increased in posterior 

channels when an auditory target was paired with a visual distractor, supporting the 

hypothesis that alpha power actively supresses distraction in order to enhance target 

processing (t = 32.62, p = 0.022, Monte-Carlo corrected for multiple comparisons, Figure 3, 

right topography). 
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Expectation of visual distractor did not boost posterior alpha power above idling level  

To establish whether the increase in alpha activity was exclusively related to suppression of 

distraction, the (absolute) amount of pretarget alpha power (i.e alpha power in the -500ms to 

0 interval prior to target onset) was compared to alpha power during the block in which no 

distraction was expected (Figure 4). To be able to take possible baseline differences between 

the two blocks into account, average alpha power was entered into a mixed ANOVA with 

factors time (baseline/pretarget) modality (attend-auditory/attend-visual) and distractor 

presence (present/absent). Counterbalancing order was added as a between-subject variable. 

A three-way interaction would be expected when alpha power only increased from baseline 

during the expectation of a distractor. There was indeed a significant three-way interaction 

between the effects of time, modality and distractor presence F(1,16) = 5.434, p = 0.033, 

supporting the hypothesis that alpha power only increases during expectation of a visual 

distractor (Figure 5).  

For further exploration of the hypothesis that alpha only increases prior to distractor 

expectation, the simple interaction between time (baseline/pretarget) and distractor presence 

(present/absent) was examined for auditory target trials. An interaction would be expected 

when alpha power increases during the distractor-present block but not during the distractor-

absent block. A significant interaction effect was indeed found ( F(1,17) = 11.655, p = 0.003). 

However, there was no difference in absolute alpha power prior to target presentation ( t(17) 

= 0.038, p = 0.970). Instead, alpha power was different between the blocks at baseline ( t(17) 

= 2.256, p = 0.038), with lower alpha power during the distractor-present block. For visual 

trials, the interaction between time and distractor presence was not significant ( F(1,17) = 

1.0622, p = 0.317). Only a main effect of distractor presence was found, indicating lower 

levels of alpha power during the block with distraction than the block without distraction ( 

F(1) = 1.6339, p = 0.022). In summary, although alpha power was increased in posterior 
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channels in expectation of a visual distractor, the increase did not lead to higher levels of 

absolute alpha power compared to when no distraction was expected. Instead, participants 

showed differences in baseline alpha power between the block with and without distraction.  

 

The four-way interaction between the effects of time, modality, distractor presence and 

counterbalancing order was significant, F(1,16) = 4.687, p = 0.046, indicating that the 

interaction was different for the two counterbalancing sequences. To examine how the three-

way interactions differed from each other, we performed 4 separate mixed ANOVA’s for the 

4 task-conditions with time as within-subject and counterbalancing order as between-subject 

factor. Only a main effect for time was present during auditory target trials with distraction 

F(1) = 7.51, p = 0.015 and a difference between counterbalancing groups was present for the 

auditory and visual targets during the block with distractors (F(1,16) = 10.079, p = 0.006 and 

F(1,16) = 8.821, p = 0.009, respectively) such that alpha power was lower for the group that 

performed the block with distraction first (Figure 5). No interactions were found, possibly 

due to the low number of subjects per group (n = 9). This means that we were not able to 

determine where the difference between the two counterbalancing groups is located. 

 

The Alpha modulation was predictive of behavior during Target Detection, but not during 

Distractor Suppression. 

The suppression of alpha activity in occipital channels prior to visual target presentation 

significantly predicted reaction times during trials with distraction (p = 0.019, R² = 

0.516) as well as during trials without distraction (p = 0.0009, R² = 0.768), such that lower 

alpha power lead to shorter reaction times (Figure 6). Against expectation, the increase in 

alpha power during visual distraction did not predict shorter reaction times (p = 0.838, 
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R²= 0.005). Also when no distraction was expected during auditory target presentation 

did the alpha power not predict target detection speed (p = 0.835, R² = 0.006).  

 

Discussion 

Using a cross-sensory attention task we found a post-cue increase in posterior alpha power 

prior to expectation of a visual distractor. This increase in alpha activity was absent when 

participants performed the same task - identification of an auditory target - without 

presentation of visual distractors. This finding is consistent with a functional inhibitory 

account of alpha power modulation in task-irrelevant cortices. However our additional 

findings do not unequivocally support the functional inhibitory frame work of alpha power 

increases. First, the post-cue increase in occipital alpha power did not have any significant 

behavioral benefits in terms of reactions times. Second, and more important, was our 

observation that there was no significant difference in the absolute occipital alpha power 

between when participants were expecting a visual distractor, and the sessions where no 

visual distractors were present. This observation would suggest that the level of alpha power 

present during the task where the visual cortex needed to be functionally inhibited (i.e .when 

distractors are present) was not significantly different from when the visual cortex was 

assumed to be idle (i.e . auditory target are presented alone). 

 In order to account for these observations we hypothesize that alpha power at the baseline 

period in the two tasks reflected the task-specific default allocation of resources to the 

sensory systems. An increase in alpha power from a baseline level of activity over task-

irrelevant regions likely reflects inhibitory processes. However, high levels of alpha without 

any modulation from baseline reflect the default resource allocation of the task irrelevant 

sensory regions. Thus, here the functional inhibitory role of alpha comes into play only when 
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the power is increased relative to the default level set due to task demands. The increase in 

the suppression of alpha activity in anticipation of visual-targets in the distractor-present 

sessions could reflect the re-allocation of resources to the visual stream to accommodate the 

demand for visual target discrimination in presence of distracting auditory input. 

Although the increase in alpha activity from baseline during expectation of distraction is a 

novel finding, the absence of an influence on performance is in line with previous research. 

Mazaheri et al. (2014) also examined alpha power in a cross-sensory paradigm and found 

both for the visual and the auditory domain that alpha activity in the region processing the 

target was correlated with reaction times. A correlation was absent when the alpha power was 

related to distractor processing. Moreover, Foxe et al. (2014) employed a cross-sensory 

paradigm with visual and auditory targets and distractors. Here trials in which the target 

modality was switched were compared to trials in which the target modality was similar to 

the previous trial. The increased effort during a switch trial was seen in decreased alpha 

power in occipital cortex for trials in which the target modality was switched to visual. 

However, no increase in alpha power was present when the target modality switched to 

auditory. The inhibitory effect of alpha power was however supported when fast switch trials 

were compared to slow switch trials: alpha power was higher for the former than for the later. 

Only when specific subgroups were utilized the influence of distractor related alpha activity 

was found beneficial for task performance. This could mean that the influence is specific for 

switch trials. An alternative explanation for the absence of a correlation is that the inhibitory 

influence of alpha activity in distractor processing is small or focal and therefore hard to 

detect. Only when the difference between subgroups is large enough, the power to detect 

differences in alpha activity is large enough. A different use of subgroups has been effective 

in showing a relation between behavior and distractor related alpha activity. Haegens et al. 

(2012) found that increased alpha power lead to increased performance when comparing 
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correct and incorrect trials for a somatosensory cuing paradigm. Perhaps, as proposed above, 

the difference in alpha power is large enough to be detected when correct and incorrect trials 

are compared. Conversely, suppression through alpha oscillations is more relevant when 

competing information is presented within the same modality (similar to spatial attention) 

than when attention is shifted between modalities. While we focused on the processing of 

competing information, cross-sensory attention might be predisposed on the collaboration 

between different modalities (Banerjee et al. 2011).  

To conclude, based on primarily studies of spatial attention, alpha oscillations are thought to 

have an inhibitory influence on stimulus processing. Our findings suggest that the role of 

alpha power in irrelevant regions during cross-sensory attention might be more complicated 

and intricate than serving an exclusively suppressive role.  
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Figure captions  

Figure 1. Task design (not at scale). Participants identified the rotation of a Gabor patch on 
half of the trials and the pitch of a tone on the other half of the trials, using their 
right hand. A preceding cue denoted the modality of the upcoming target, enabling 
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participants to prepare and shift attention to the target modality. All participants 
performed two versions of this cross-modal cuing paradigm (order 
counterbalanced): in one version (‘distractor-present’) the target was accompanied 
by a distractor in the opposite modality, while in the other ‘distractor absent’ 
version the targets were presented alone. The ‘distractor absent’ paradigm also 
contained uninformative cues which did not inform the modality of the upcoming 
target. 

 

Figure 2. Average response time during auditory and visual target trials. Subjects responded 
faster to visual targets than to auditory targets. Response times increased for both 
type of targets when a distractor was presented in the opposing modality or when 
the modality of the target was not cued prior to presentation. 

 

Figure 3. Modulation of alpha power induced by expectation of a visual distractor -500 to 0 
ms prior to auditory target onset. Left topography: The difference between pre-
target alpha power for cues signaling auditory versus cues for visual discrimination 
(in the presence of distractors of a different modality) revealed significantly more 
alpha activity in electrodes over the visual and frontal cortex. Right topography: -
500 to 0 ms prior to the auditory targets, expectation of a visual distractor induced 
an increase in alpha power in posterior channels relative to the precue baseline. 

 

Figure 4. Time-Frequency-Representations of power in posterior channels. The relative 
change from baseline (A) revealed that alpha power increased in occipital channels 
when a visual distractor was expected. Absolute values (B) show the difference in 
absolute alpha power between the distractor-present and distractor-absent block. 
Data are smoothed for display purposes only.  

 

Figure 5. Mean absolute alpha power (+ within subject SEM) at baseline and prior to target 
presentation in posterior channels (see figure 3, right panel). When all subjects 
were considered, alpha power was lower prior to target presentation when a visual 
target was expected (low saturation lines) compared to when an auditory target was 
expected (high saturation lines). Alpha power at baseline was lower for trials with 
a distractor (red lines) than without a distractor (blue lines). Statistical power was 
too low to examine differences between the subgroup of participants (n = 9) 
that performed the block without distraction first (left) and for the subgroup 
(n = 9) that performed the block with distraction first (right). 
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Figure 6. Influence of prestimulus alpha on reaction times. RT’s are shown as a 
function of absolute alpha power in posterior channels sorted into 10 bins 
from low to high power. The black line represents the average over subjects 
and the standard error across subject (n=18). Alpha power had a significant 
impact on reaction times for visual target trials, but not for auditory target 
trials.  
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