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Abstract 11 

This study quantified the changes of the frequency-dependant viscoelastic properties of the 12 

BDyn (S14 Implants, Pessac, France) spinal posterior dynamic stabilisation (PDS) device due 13 

to in vitro oxidation. Six polycarbonate urethane (PCU) rings and six silicone cushions were 14 

degraded by using a 20% hydrogen peroxide / 0.1M cobalt (II) chloride hexahydrate, at 37°C, 15 

for 24 days. The viscoelastic properties of the individual components and the components 16 

assembled into the BDyn PDS device were determined using Dynamic Mechanical Analysis 17 

at frequencies from 0.01–30 Hz. Attenuated Total Reflectance Fourier Transform Infra-Red 18 

spectra demonstrated chemical structure changes, of the PCU, associated with oxidation 19 

while Scanning Electron Microscope images revealed surface pitting. No chemical structure 20 

or surface morphology changes were observed for the silicone cushion. The BDyn device 21 

storage and loss stiffness ranged between 84.46 N/mm to 99.36 N/mm and 8.13 N/mm to 22 

21.99 N/mm, respectively. The storage and loss stiffness for the components and BDyn 23 

device increased logarithmically with respect to frequency. Viscoelastic properties, between 24 

normal and degraded components, were significantly different for specific frequencies only. 25 

This study demonstrates the importance of analysing changes of viscoelastic properties of 26 

degraded biomaterials and medical devices into which they are incorporated, using a 27 

frequency sweep.  28 

Keywords: BDyn Implant, Dynamic Mechanical Analysis, Oxidation, Posterior Dynamic 29 

Stabilisation, Viscoelastic Properties.  30 
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Introduction 31 

Spinal fusion is the gold standard for surgical treatment of low back pain caused by 32 

degenerative disorders (1)–(3). Many problems, such as adjacent segment degeneration and 33 

pseudarthrosis, are associated with spinal fusion and to alleviate these problems non-fusion 34 

techniques have been developed (4). The BDyn device (S14 Implants, Pessac, France) is a 35 

posterior dynamic stabilisation device that provides an alternative to spinal fusion. This non-36 

fusion device comprises a mobile titanium alloy rod, a fixed titanium alloy rod, a 37 

polycarbonate urethane (PCU) ring and a silicone cushion (figure 1). The BDyn device has 38 

been used in the treatment of degenerative lumbar spondylolisthesis (5) and an in vitro study 39 

has shown that the device can successfully limit the range of motion following a 40 

laminectomy of L4-L5 segment (6). 41 

Since the human lumbar spine has been reported to be resonant between 4–5 Hz in the 42 

seated position (7),(8), the frequency-dependent viscoelastic properties of the BDyn device, 43 

and its elastomeric components, were quantified by Dynamic Mechanical Analysis (DMA) (9). 44 

By applying an oscillating force to a multi-component structure and analysing the out-of-45 

phase displacement response, the storage (k’) and loss (k’’) stiffness were calculated to 46 

characterise the viscoelastic properties (10).  The storage stiffness represents the elastic 47 

portion and it defines the ability of a structure to store energy, while the loss stiffness 48 

describes the ability of the structure to dissipate energy through heat and internal motions 49 

(10). Lawless et al.(9) found that the viscoelastic properties of the BDyn device and its 50 

components were frequency dependent, for the frequency range 0.01-30 Hz, and no 51 

resonant frequencies were recorded for the device or its components over this frequency 52 

range.  53 
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The human body is an aggressive environment for biomaterials (11), thus, it is important that 54 

the materials of an implant can withstand the environment in the human body and not 55 

become degraded to a point where the implant cannot perform its intended function (12). 56 

Orthopaedic implants undergo numerous loads in a cyclical and potentially vibratory 57 

manner. Also, implants endure in vivo hydrolytic, enzymatic and oxidative degradation at 58 

body temperature. Oxidative degradation, the scission of the polymer chains through 59 

oxygen (13), has been shown to be an influence in the biodegradation of polyether urethane 60 

(PEU) and PCU (14). PCU has been stated to be more biostable (15) due to the removal of the 61 

ether linkages in the soft segment (14),(15). 62 

Numerous studies have used an in vitro degradation method, that involves placing the 63 

biomaterial into a 20% hydrogen peroxide (H2O2) and 0.1M cobalt chloride (CoCl2) solution 64 

at 37°C (16)–(22), to replicate oxidation. The Haber-Weiss chemical reaction produces hydroxyl 65 

radicals from this H2O2/CoCl2 solution and it is an appropriate model of the in vivo chemical 66 

reaction that produces oxygen radicals present at the polymer/cell interface (23). This in vitro 67 

method has been shown to reproduce chemical and physical degradation similar to in vivo 68 

oxidative degradation of PEU and PCU (14),(20). Further, this in vitro H2O2/CoCl2 solution has 69 

been commonly used to degrade polyether-urethane urea (PEUU), PEU, PCU and silicone 70 

modified PEU and PCU (16)–(18),(20),(21). Many of these studies focus on the degradation of films 71 

(16)–(18),(20),(21) or standard tensile specimen shapes (16) to understand how the degradation 72 

affects the mechanical behaviour of a material and not how degradation affects polymeric 73 

components of implants. 74 

The purpose of this study was to quantify the change in viscoelastic properties, using DMA, 75 

of elastomeric components from a BDyn device that have been degraded by in vitro 76 
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oxidation. Furthermore, these components were assembled into BDyn devices and 77 

comparisons were made between the degraded elastomeric components and the devices. 78 

Comparisons were made between the viscoelastic properties of the normal components (9) 79 

and the degraded components. 80 

Materials and methods 81 

Six silicone and six PCU components (figure 2) were obtained from S14 Implants (Pessac, 82 

France) and were used for a previous study (9). These components, which were sterilised 83 

with ethylene oxide (EtO) (Steriservices, Bernay, France) for the previous study, were 84 

degraded by using a 20% hydrogen peroxide (H2O2) and 0.1M cobalt (II) chloride 85 

hexahydrate (CoCl2.6H2O) oxidative solution. The in vitro accelerated ageing of the 86 

components was performed at 37°C in a Grant JBN18 water bath (Grant Instruments, 87 

Royston, UK). To maintain a relatively constant concentration of radicals, the solution was 88 

changed every 3 days and the degradation period lasted 24 days (17),(20). After the 89 

degradation period, the specimens were rinsed with water and were dried in a vacuum 90 

chamber (Island Scientific Ltd., Ventnor, United Kingdom) for 48 hours at room 91 

temperature.  92 

The viscoelastic properties of the degraded components were measured using a Bose 93 

ElectroForce 3200 testing machine running WinTest 4.1 DMA software (now, TA 94 

Instruments, New Castle, DE, USA). The DMA technique, machine and software have been 95 

used to quantify the storage and loss stiffness of a posterior dynamic stabilisation device, its 96 

components (9) and various biological tissues (24),(25). 97 
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Similar to the previous study (9), custom-designed grips were used to clamp the titanium 98 

alloy rods and/or titanium alloy elastomer housing of the BDyn device. The devices were 99 

secured by twelve horizontal screws. The order of component testing was randomised by 100 

using the Excel Random Function (Redmond, Washington, USA). The degraded components 101 

were then paired randomly and tested in the BDyn device. For testing of the BDyn 1 level, 102 

the titanium alloy mobile and fixed rods were gripped. Since the BDyn device is designed to 103 

work in both tension and compression, a sinusoidally varying load between +20 N (tension) 104 

and -20 N (compression) was applied to the devices. As the components are only loaded in 105 

compression, a sinusoidally varying load between -1 N and -20 N (compression) was applied 106 

to the elastomeric components. Testing the device and components to these ranges gave a 107 

direct comparison between the degraded components, the device and the previous study (9). 108 

Initially, the degraded individual components were tested then the PCU and silicone 109 

components were randomly paired, assembled in the BDyn titanium housing and tested. All 110 

testing was performed, in air at 37°C ± 1°C, in a custom built chamber in which water was 111 

pumped around the chamber while the air temperature was monitored throughout the 112 

frequency sweep (figure 3).  113 

The storage and loss stiffness were calculated for 21 different frequencies from 0.01 Hz to 114 

30 Hz; this range is comparable to that of a previous study of the BDyn components (9). For 115 

each frequency (f), a Fourier analysis of the force and displacement waves was performed 116 

and the magnitude of the load (F*), magnitude of the displacement (d*), the phase lag (δ) 117 

and the actual frequency were quantified (9). The complex stiffness (k*), storage stiffness (k’) 118 

and loss stiffness (k’’) were then calculated using (9),(26),(27):   119 

   𝑘∗ =
𝐹∗

𝑑∗     (1) 120 
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𝑘′ = 𝑘∗ cos 𝛿     (2) 121 

𝑘′′ = 𝑘∗ sin 𝛿     (3)  122 

Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) spectroscopy was then 123 

performed using a Bruker LUMOS spectrometer (Bruker Optics, Billerica, MA, USA). Spectra 124 

were recorded in absorbance mode with a Germanium ATR crystal. Twenty spectra, with a 125 

resolution of 2 cm-1 between 600 and 4000 cm-1, were acquired and averaged to obtain each 126 

spectrum (28). The PCU spectra were normalised to the internal reference 1591 cm-1 peak, 127 

the C=C bond stretch of the aromatic ring of the hard segment (20),(29)–(31), which has been 128 

shown to remain unchanged in degradation (32).  129 

The surface morphology of the elastomers was examined using the Hitachi TM3030 130 

Scanning Electron Microscope (SEM) (Chiyoda, Tokyo, Japan). Specimens were sputter 131 

coated with ~30 nm layer of gold by using an Agar B7340 sputter coater (Agar Scientific, 132 

Stansted, Essex, UK). The specimens were examined with back-scatter detector at a 15 keV 133 

accelerating voltage. 134 

All statistical analyses were performed using SigmaPlot 13.0 (SYSTAT, San Jose, CA, USA). 135 

95% confidence intervals were calculated (n = 6) and regression analyses were performed to 136 

evaluate the significance of the curve fit. Wilcoxon signed rank tests were performed to 137 

compare the differences of the components before and after degradation. Whereas a 138 

Wilcoxon rank sum test compared the normal BDyn viscoelastic properties (9) to the BDyn 139 

device assembled with the degraded components. Statistical results with p < 0.05 were 140 

considered significant. 141 
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Results 142 

The ATR-FTIR spectrum, of the PCU and silicone components, is illustrated in figure 4 and 143 

figure 5, respectively. Evidence of crosslinking of the PCU has been established as a new 144 

absorbance peak was observed at 1174 cm-1. The PCU degraded specimens also showed 145 

hard segment degradation with the presence of a new aromatic amine group at 1650 cm-1. 146 

There was no evidence of changes to the chemical structure of the degraded silicone 147 

specimens (figure 5). 148 

Representative SEM images of the surfaces of the PCU and silicone components are shown 149 

in figure 6 and figure 7, respectively. The PCU specimens degraded for 24 days 150 

demonstrated surface pitting.  There was no evidence of surface pitting, or any other 151 

surface morphology changes, with the degraded silicone specimens. 152 

Figure 8 presents the storage stiffness of the (a) BDyn implant, (b) PCU component and (c) 153 

silicone component, for normal and degraded components. The mean degraded PCU and 154 

silicone components storage stiffness ranged between 87.5 N/mm to 135.3 N/mm and 51.6 155 

N/mm to 60.7 N/mm, respectively. The BDyn implant storage stiffness ranged between 156 

84.46 N/mm to 99.36 N/mm. The storage stiffness logarithmically increased in relation to 157 

frequency (p < 0.05) (equation 4, where A is a coefficient and B is a constant, and Table 1). 158 

 𝑘′ = 𝐴 ln(𝑓) + 𝐵   for  0.01 ≤ 𝑓 ≤ 30  (4) 159 

Figure 9 exhibits the normal and degraded loss stiffness for the (a) BDyn implant, (b) PCU 160 

component and (c) silicone component. The degraded PCU and silicone components loss 161 

stiffness ranged between 6.03 N/mm to 24.45 N/mm and 4.59 N/mm to 10.83 N/mm, 162 

respectively. The BDyn implant loss stiffness ranged between 8.13 N/mm to 21.99 N/mm. 163 
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Similarly to the storage stiffness, the loss stiffness logarithmically increased in relation to 164 

frequency (p < 0.05) (equation 5, where C is a coefficient and D is a constant, and Table 1). 165 

𝑘′′ = 𝐶 ln(𝑓) + 𝐷   for  0.01 ≤ 𝑓 ≤ 30  (5)     166 

For the PCU component, silicone component and BDyn implant assembled with the 167 

degraded components, the storage stiffness was larger than the loss stiffness for all 168 

frequencies tested. Table 2 provides the frequencies at which the PCU and silicone 169 

components were significantly different before and after degradation. The storage and loss 170 

stiffness of the silicone component, before and after degradation, were significantly 171 

different for the frequency range tested while the PCU component loss stiffness was only 172 

significantly different for certain frequencies; 0.5 Hz, 4 Hz to 30 Hz. Also, the storage 173 

stiffness of the BDyn device, assembled with degraded components, was significantly 174 

different from 0.2 Hz to 20 Hz while, the loss stiffness was significantly different from 0.01 175 

Hz to 0.3 Hz and 0.5 Hz to 15 Hz. 176 

Discussion 177 

This study has quantified the frequency-dependent viscoelastic properties of a posterior 178 

dynamic stabilisation device with in vitro oxidative degraded components. The degraded 179 

components and BDyn device, with the degraded components, were viscoelastic throughout 180 

the frequency range tested. The degraded BDyn 1 level device storage stiffness and loss 181 

stiffness were less than the storage stiffness (95.56 N/mm to 119.29 N/mm) and loss 182 

stiffness (10.72 N/mm to 23.42 N/mm) (9) for the normal BDyn 1 level device. However, the 183 

reductions in viscoelastic properties of the PCU and silicone components, due to the in vitro 184 

degradation process, are significantly different for specific frequencies. Subsequently, the 185 
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storage and loss stiffness of the BDyn device assembled with in vitro degraded components 186 

were lower than those of the untreated device (9) only for specific frequencies. These 187 

findings demonstrate the importance of analysing changes of viscoelastic properties of 188 

specimens over a frequency sweep. 189 

The mean storage stiffness and mean loss stiffness trends of the BDyn device and 190 

components followed a logarithmic increasing trend with frequency; these trends are 191 

similar to the normal, untreated specimens (9). This is deemed a positive result as the 192 

degradation did not affect the frequency-dependant behaviour of the components or 193 

device. However, the logarithmic equation coefficients (A and C) and constants (B and D) of 194 

the degraded specimens were lower than the normal specimens (9). Similarly to the normal 195 

BDyn implant and components (9), no resonant frequencies were identified for the degraded 196 

components and implant with degraded components. Previous studies (33),(34) have also 197 

shown that the lumbar specimens did not exhibit shock absorbing properties, in pure 198 

compression, as no sharp peak detected in the loss modulus for the frequency range (33).  199 

Panjabi et al. (7) recorded the average in vivo lumbar vertebrae resonant frequency at 4.4 Hz 200 

for the axial direction, in the seated position. Wilder et al. (8) recorded the greatest 201 

transmissibility in the male and female lumbar spine of 4.9 Hz and 4.75 Hz, respectively, and 202 

also recorded two further resonant frequencies at 9.5 Hz and 12.7 Hz. Any resonance, of the 203 

device, at any frequency is a limitation of the device as the resonance may damage the 204 

device and in a worst case scenario, the device may fail (9). 205 

Other studies have examined the effect of in vitro oxidative degradation in relation to 206 

tensile strain (16),(22),(31) and Dynamic Mechanical Thermal Analysis (DMTA) (17),(35), but not 207 

DMA. After 36 days of in vitro oxidation, Dempsey et al. (16) stated that the ultimate tensile 208 
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strength of Bionate 80A, a PCU, was less when compared to the untreated specimens. 209 

However, the ultimate tensile strength of Bionate II 80A was greater for the specimens that 210 

were treated; the percentage elongation of Bionate 80A and Bionate II 80A increased by 2-211 

3% after oxidation (16). Schubert et al. (21) discovered a 10% decrease in stress at high strains 212 

of treated PEUU specimens when compared to the untreated PEUU specimens. This result 213 

was similar to those of Christenson et al. (20) who found a minor decrease in stress at high 214 

strains when comparing the tensile stress-strain behaviour of in vitro oxidised PEU and PCU 215 

to untreated PEU and PCU. Apart from this decrease in stress, the Young’s modulus was 216 

unaffected (20).  By using DMTA, Wu et al. (35) investigated the biostability of polyether 217 

urethane urea (PEUU) blood sacs and proposed a greater degree of phase separation 218 

between hard and soft segments of the implanted sacs due to the α transition shift of -15°C, 219 

compared to the control. Hernandez et al. (17) discovered that the maximum loss factor (tan 220 

δ), of a PCU, reduced by approximately 0.05 while the storage modulus did not appreciably 221 

change after oxidation. From this, the author suggested that there was no significant 222 

changes in the hard-soft segment organisation in the bulk (17). This lack of appreciable 223 

change is similar to the present study as the storage stiffness, of the PCU, was not 224 

significantly different following degradation over the frequency range tested. However, in 225 

the present study, the viscous property (loss stiffness), of the PCU component, was affected 226 

by in vitro oxidation at 0.5 Hz and from 4 Hz to 30 Hz. This demonstrates the importance of 227 

understanding the viscoelastic properties of components and implants in relation to 228 

frequency.  229 

Christenson et al. (20) demonstrated that in vitro degradation of PEU and PCU, with the 20% 230 

hydrogen peroxide (H2O2) and 0.1M cobalt chloride (CoCl2) solution at 37 °C for 24 days, led 231 
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to surface pitting and ATR-FTIR spectra changes. Such changes were similar to explanted 232 

PCU rods from rabbits after 15 months and PCU specimens from rats after 20 weeks (31). 233 

From the ATR-FTIR spectrum, a decrease in absorbance peak intensity at 1247 cm-1 was 234 

observed for the degraded PCU; this decrease, along with the new absorbance peak at 1174 235 

cm-1 provides evidence of chain scission and crosslinking of the soft segment (17),(20),(36). A 236 

decrease of the degraded PCU hard segment urethane intensity and a new absorbance peak 237 

at 1650 cm-1 (the potential degradation product of the aromatic amine(31)) provides 238 

evidence of hard segment chain scission (20),(23),(30). These spectrum changes are similar to 239 

previous work (20),(30) however, the new peaks observed at 1174 cm-1 and 1650 cm-1 are not 240 

as prominent as previous studies (20),(18) and this may be due to the antioxidant inhibitor 241 

used in this commercially available PCU. This inhibitor will have had an effect on the 242 

degradation and, in turn, the absorbance peaks at 1174 cm-1 and 1650 cm-1. However, the 243 

degraded PCU ATR-FTIR spectrum absorbance peaks at 1174 cm-1 and 1650 cm-1, from our 244 

current study, are similar to another study (16) that degraded PCU specimens with an 245 

accelerated oxidation method for 36 days. In the present study, SEM images revealed pitting 246 

on the surface of the PCU components which has been previously documented for in vitro 247 

and in vivo oxidation of PCU (16),(31).  248 

Explanted orthopaedic implants, which contain PCU components, have demonstrated new 249 

absorbance peaks at 1650 cm-1 and/or 1174 cm-1 to demonstrate biological oxidative 250 

degradation (37)–(39).  However, another explant study did not find new absorbance peaks 251 

linked to biological oxidative degradation (40). Ianuzzi et al. (39) stated that the majority of the 252 

PCU spacers, exhibiting a chemical change associated with biodegradation, experienced this 253 

degradation on the surface where the spacer would make contact with tissue. Examination 254 
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of retrieved PCU spacers revealed that chemical changes were negligible 100 μm below the 255 

surface (41). The elastomeric components of the BDyn device are surrounded by titanium 256 

alloy housing (see figure 2). In this study, the components were completely exposed to the 257 

H2O2/CoCl2 solution without taking into account the effect of the titanium alloy housing. It is 258 

hypothesised that the titanium housing will have an effect on the degradation of the 259 

polymer components. The titanium alloy housing may protect the components from 260 

biodegradation, or alternatively, additional titanium alloy may increase metal ion oxidation 261 

(MIO).  262 

Silicone has demonstrated excellent biostability with no identifiable in vivo degradation (42) 263 

and due to this excellent biostability, silicone has been used to modify PEU and PCU to 264 

increase the biostability with the intention to inhibit degradation. The oxidation method, 265 

used in this study, has been previously used to understand how degradation affects 266 

PCU/PEU (16)–(18),(20),(21) and PCU/PEU modified with silicone (18). In comparison to unmodified 267 

PEU and PCU, the percent loss of silicone-modified PEU and PCU soft-segment was less than 268 

the unmodified PEU and PCU; this may be an indication of slower rates of crosslinking due 269 

to the addition on silicone (18). The H2O2/CoCl2 in vitro method has been shown to reproduce 270 

chemical and physical degradation similar to in vivo oxidative degradation of PEU and PCU 271 

(14),(20), but not for silicone. It was expected that there would be no significant change in the 272 

viscoelastic properties of the silicone cushion, by using this H2O2/CoCl2 degradation method. 273 

However, the storage and loss stiffness of the treated silicone component was significantly 274 

different, for every frequency tested, when compared to viscoelastic properties before 275 

degradation. That said, there were no changes evident in the ATR-FTIR spectra and unlike 276 
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the PCU ring, no pitting or surface morphology changes were observed for the silicone 277 

cushions.  278 

As the dynamic stiffness can be affected by load (43), any comparison between different 279 

methods and studies must be made with caution (9). For consistency to our previous study, 280 

the methods all remained unchanged with the only change being the degradation of the 281 

PCU and silicone components; this was important to understand how the in vitro 282 

degradation process affects the frequency dependent viscoelastic properties. Regardless, no 283 

in vitro degradation method fully replicates the biochemical and biomechanical stresses 284 

experienced in the body (42). Consistent with our previous study, the DMA test configuration 285 

is not similar to the in vivo scenario where the mobile and fixed rods are secured to the 286 

pedicles(9). By securing the mobile rod to the vertebra, an applied load to the device may not 287 

displace the two polymer systems equally; hence, the difference in displacement will affect 288 

the dynamic stiffness (k*) and in turn, the storage (k’) and loss (k’’) stiffness (9). The BDyn 289 

device is designed to allow partial movement along the anatomical planes(9). This study 290 

quantified the viscoelastic properties of the degraded BDyn components, and the degraded 291 

components in the device, uniaxially. Rotation of the moveable rod, around an anatomical 292 

plane, may affect the response of the out-of-phase displacement to an applied force and 293 

hence, affect the viscoelastic properties (9). However, these limitations do not alter the 294 

conclusions of this study because the sinusoidally applied loads ensured a direct comparison 295 

between the normal and degraded components and implant.  296 

In conclusion, two viscoelastic components of a spinal posterior dynamic stabilisation device 297 

were treated by an in vitro oxidation method. Only the PCU components displayed changes 298 

to their chemical structure and exhibited surface morphology changes. The loss stiffness, 299 
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between normal and degraded components, of the PCU component were significantly 300 

different for specific frequencies while the storage and loss stiffness of the silicone 301 

component were significantly different for all frequencies tested. When compared to the 302 

untreated BDyn device, the storage and loss stiffness of the BDyn device assembled with the 303 

in vitro degraded components were statistically different for certain frequencies. This study 304 

demonstrates the importance of analysing changes of viscoelastic properties, of degraded 305 

biomaterials, in terms of frequency and medical devices into which they are incorporated, 306 

using a frequency sweep.  307 
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Figure Legends  438 

 439 

Figure 1: BDyn 1 level device fixed to the vertebrae (Left) [Reproduced with kind permission 440 

from S14 Implants, Pessac, France. © S14 Implants] and cross sectional view of the BDyn 441 

device (Right). The polycarbonate urethane (PCU) ring and silicone cushion components, 442 

along with the mobile and fixed rods, are highlighted. 443 

  444 
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 445 

 446 

Figure 2: PCU components, (A) before and (B) after degradation, and silicone components 447 

(C) before and (D) after degradation. The normal PCU and silicone components are used in 448 

the BDyn device. 449 

  450 
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 451 

 452 

Figure 3: Testing of BDyn 1 device with degraded elastomer components in the custom built 453 

chamber  454 

 455 
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 456 

Figure 4: Stacked ATR-FTIR spectra of PCU components before (Normal) and after 457 

(Degraded) in vitro oxidative degradation 458 
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 460 

Figure 5: Stacked ATR-FTIR spectra of silicone components before (Normal) and after 461 

(Degraded) in vitro oxidative degradation 462 
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 464 

Figure 6: Scanning electron micrographs of PCU components before, at (A) ⨯1.2k and (B) 465 

⨯2.0k magnification, and after, at (C) ⨯1.2k and (D) ⨯2.0k magnification, in vitro oxidative 466 

degradation  467 

  468 
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 469 

 470 

Figure 7: Scanning electron micrographs of silicone components before, at (A) ⨯1.2k and (B) 471 

⨯2.0k magnification, and after, at (C) ⨯1.2k and (D) ⨯2.0k magnification, in vitro oxidative 472 

degradation  473 
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 475 

Figure 8: Storage stiffness (k’) against ln(f) for (a) normal and degraded BDyn device (BDyn), 476 

(b) normal and degraded polycarbonate urethane (PCU)  component (PCU) and (c) normal 477 

and degraded silicone (Sil) component (mean ± 95% confidence intervals). Normal data is 478 

from a previous study (9). 479 
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 481 

Figure 9: Loss stiffness (k’’) against ln(f) for (a) normal and degraded BDyn device (BDyn), (b) 482 

normal and degraded polycarbonate urethane (PCU)  component (PCU) and (c) normal and 483 

degraded silicone (Sil) component (mean ± 95% confidence intervals). Normal data is from a 484 

previous study (9). 485 

 486 
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Table 1: Storage stiffness (equation 4) and loss stiffness (equation 5) regression analyses of the BDyn devices 488 

and its components. Cofficients (A, B, C and D) for the individual specimens’ storage and loss stiffness 489 

(N/mm) trends are provided. 490 

 
 
 

k' = Aln(f)+B 
 

k'' = Cln(f)+D 

Specimen ID A B r² P Value 
 

C D r² P Value 

BDyn 1 – 1  2.7 105.1 0.93 <0.001 
 

1.7 16.4 0.90 <0.001 
BDyn 1 – 2  1.3 87.0 0.81 <0.001  1.2 11.1 0.80 <0.001 
BDyn 1 – 3  1.2 89.6 0.96 <0.001  1.4 14.6 0.81 <0.001 
BDyn 1 – 4  0.8 85.1 0.64 <0.001  1.2 11.0 0.82 <0.001 
BDyn 1 – 5  3.1 99.4 0.87 <0.001  1.8 15.2 0.80 <0.001 
BDyn 1 – 6  1.3 80.3 0.97 <0.001  1.1 8.9 0.77 <0.001 

BDyn 1 - Mean  1.7 91.1 0.97 <0.001  1.4 12.9 0.82 <0.001 

PCU – 1   6.3 102.7 0.94 <0.001 
 

2.7 14.3 0.90 <0.001 
PCU – 2  6.8 123.0 0.96 <0.001 

 
2.5 14.6 0.89 <0.001 

PCU – 3  6.3 118.8 0.96 <0.001 
 

2.3 13.7 0.89 <0.001 
PCU – 4  5.2 101.2 0.96 <0.001 

 
1.9 11.3 0.88 <0.001 

PCU – 5  5.8 107.5 0.95 <0.001 
 

2.1 12.9 0.89 <0.001 
PCU – 6 5.1 101.5 0.96 <0.001 

 
1.9 11.3 0.89 <0.001 

PCU – Mean  5.9 109.1 0.95 <0.001  2.2 13.0 0.89 <0.001 

Silicone – 1   1.1 52.5 0.96 <0.001 
 

0.6 6.2 0.93 <0.001 
Silicone – 2  1.5 63.7 0.97 <0.001 

 
0.9 9.5 0.96 <0.001 

Silicone – 3  0.7 45.3 0.90 <0.001 
 

0.6 6.0 0.90 <0.001 
Silicone – 4  1.4 62.2 0.97 <0.001 

 
0.7 7.6 0.95 <0.001 

Silicone – 5  1.1 53.4 0.96 <0.001 
 

0.7 6.5 0.93 <0.001 

Silicone – 6 1.2 59.4 0.96 <0.001 
 

0.7 7.8 0.95 <0.001 

Silicone - Mean  1.2 56.1 0.97 <0.001  0.7 7.3 0.94 <0.001 

 491 
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Table 2: Wilcoxon Signed Rank test results for the PCU and Silcone components and Wilcoxon Rank Sum test 493 

for the BDyn Device. The frequencies stated indicates a significantly different (p < 0.05) between the 494 

untreated and degraded specimens. 495 

Component Storage Stiffness Loss Stiffness 

PCU - 0.5 Hz, 4 Hz to 30 Hz 
Silicone 0.01 Hz to 30 Hz 0.01 Hz to 30 Hz 

BDyn Device 0.2 Hz to 20 Hz 0.01 Hz to 0.3 Hz, 0.5 Hz to 15 Hz 

 496 
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