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Summary 

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic 

inflammation, local and systemic bone loss and a lack of compensatory bone repair. 

Fibroblast-like synoviocytes (FLS) are the most abundant cells of the stroma and a 

key population in autoimmune diseases such as RA. An increasing body of evidence 

suggests that these cells play not only an important role in chronic inflammation and 

synovial hyperplasia but also impact bone remodelling. Under inflammatory 

conditions FLS release inflammatory cytokines, regulate bone destruction and 

formation and communicate with immune cells to control bone homeostasis. Other 

stromal cells such as osteoblasts and terminally differentiated osteoblasts, termed 

osteocytes, are also involved in the regulation of bone homeostasis and are 

dysregulated during inflammation. 

This review highlights our current understanding of how stromal cells influence the 

balance between bone formation and bone destruction. Increasing our understanding 

of these processes is critical to enable the development of novel therapeutic 

strategies with which to treat bone loss in RA. 

 

 

Introduction 

Rheumatoid arthritis (RA) is an immune-mediated chronic inflammatory disorder of 

synovial joints characterised by pain, swelling and progressive joint destruction. The 

synovium is present in articulated joints and serves to produce and maintain synovial 

fluid that aids joint lubrication and movement. The synovial membrane is just one to 

two cells thick in a healthy joint and is formed of macrophages, which remove debris, 

and synovial fibroblasts that produce hyaluronan and other extracellular matrix 

components of the synovial fluid. In RA the synovium becomes thickened due to an 

expansion of synovial fibroblasts as well as an infiltration of immune cells, blood 

vessels and osteoclasts all of which contribute to the swelling and stiffness 

characteristic of the disease. Activated RA fibroblast-like synoviocytes (RA-FLS) are 

the most abundant stromal cell in the inflamed synovium. These cells not only 

destroy cartilage via matrix metalloproteinase (MMP) secretion but are also able to 

destroy subchondral bone via regulation of osteoclastogenesis [1-3]. Once activated, 

RA-FLS maintain their tumour-like, aggressive behaviour even after multiple 

This article is protected by copyright. All rights reserved.



passages in vitro [4] and to date there is no conclusive molecular explanation for this 

stable, persistent  activation.  

 

Besides FLS the stroma comprises a number of matrix-producing, structural cell 

types including endothelial cells, pericytes, epithelial cells and osteoblasts [5]. In the 

last few years several studies have focussed on the influence of stromal cells on 

bone remodelling. Various factors released by these cells influence the balance 

between bone-forming osteoblasts and bone-resorbing osteoclasts towards bone 

loss. This review summarizes the direct and indirect impact of stromal cells on bone 

resorption in chronic inflammatory disorders.  

  

Bone remodelling under resting conditions 

Bone remodelling depends on the tight coupling of bone formation and bone 

resorption to balance bone mass and adopt bone structure to environmental changes 

such as mechanical loading (ensure that there is no net bone change). Under 

normal, resting conditions osteoclasts are required for continuous bone remodelling 

via communication with osteoblasts. Osteoclasts create resorption lacunae, which in 

turn activate osteoblasts that fill these lacunae with new bone matrix.  

 

Osteoblasts arise from pluripotent mesenchymal stem cells (MSC). The 

differentiation of osteoblast progenitor cells into bone matrix-producing osteoblasts 

requires tight control of essential signals such as parathyroid hormone (PTH) [6] 

transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) [7, 8]. 

Furthermore, essential signalling pathways including the bone morphogenic protein 

(BMP) pathway and the canonical Wnt/β-catenin pathway regulate the expression of 

runt-related transcription factor 2 (Runx2) [9], alkaline phosphatase (ALP) [10] and 

osteoprotegerin (OPG) [11], which are all involved in osteoblast differentiation and 

metabolism.  

 

Conversely, osteoclasts are multinucleated cells derived from hematopoietic stem 

cells. Osteoclast development involves an initial differentiation step towards 

monocytes and macrophages, which is under the control of macrophage-colony-

stimulating factor (M-CSF). Following this there is a requirement for the receptor 

activator of NF-κB (RANK) and the receptor activator of NF-κB ligand (RANKL) [12]. 
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RANKL binds to its receptor RANK on the surface of pre-osteoclasts, stimulating 

macrophage/monocyte fusion and the development of active, mature osteoclasts [13, 

14]. RANKL is produced predominantly by stromal cells, specifically by osteocytes, 

osteoblasts and fibroblasts, as well as a subset of B cells [15, 16]. The RANKL decoy 

receptor OPG is also produced by stromal cells and blocks osteoclastogenesis by 

interacting with RANKL [17]. This is supported by results from mouse models 

revealing that RANKL deficiency causes osteopetrosis [18] whilst OPG deficient mice 

are osteoporotic [19]. Importantly, therefore both the main driver of 

osteoclastogenesis (RANKL) and the major inhibitor (OPG) are produced by stromal 

cells (osteoblasts and FLS) and the ratio between these two proteins is a key 

determinant of activation or inhibition of osteoclastogenesis during both normal, 

healthy bone turnover and in pathological bone destruction during inflammatory 

disease [17, 20]. 

 

Bone remodelling in RA 

In addition to the pain, swelling and associated loss of function caused by synovial 

inflammation, resorption of bone tissue is a classical characteristic of RA. Erosion 

starts very early in disease, is irreversible and accompanied by permanent functional 

impairment [21]. This process predominantly occurs at the regions where the articular 

cartilage, bone and inflamed synovium (pannus) meet with subchondral bone 

destroyed from the outside inwards by cells within the invading pannus tissue. The 

predominant bone-degrading cell within the pannus is the osteoclast [22, 23].  

 

In RA, inflammation and bone loss are closely linked processes. In this context, 

inflammatory cytokines including TNFα, IL-1β, IL-6 and IL-17 are produced by 

infiltrating macrophages and T-cells. These cytokines induce RA-FLS, osteoblasts 

and bone marrow stromal cells to express RANKL, thus promoting 

osteoclastogenesis [24-27]. RA synovial tissues express elevated RANKL mRNA and 

protein compared to patients with osteoarthritis (OA) or to RA patients with less 

active disease. This elevated level of RANKL is accompanied by diminished OPG 

expression [28-30]. Thus, the uneven quantities of OPG and RANKL within the RA 

microenvironment results in an imbalance in the osteoblast-osteoclast axis leading to 

an overall bias towards bone resorption. 
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In addition to RANKL, OPG and cytokines, stromal cells of the inflamed synovial 

tissue also express other factors, which directly influence osteoclastogenesis. One of 

these factors is myostatin (also known as GDF-8), which belongs to the TGFβ family 

and is mainly expressed in skeletal muscle. Deletion of myostatin leads to muscle 

hypertrophy [31]. In addition to its role as a negative regulator of muscle growth, 

several studies have revealed a new role for myostatin in bone homeostasis. Genetic 

deletion or antibody-mediated blockade of myostatin leads to high bone density and 

volume in a mouse model of osteotomy [32-35]. Recently, Dankbar and colleagues 

showed for the first time that myostatin is highly expressed in stromal cells of RA 

synovial tissues and that deficiency or antibody-mediated inhibition leads to an 

amelioration of arthritis in mouse models of arthritis. Functional in vitro studies 

revealed that myostatin enhances RANKL-mediated osteoclast formation by 

promoting the fusion of pre-osteoclasts, leading to enhanced bone loss [36]. 

 

In addition to encouraging osteoclast activity, inflammatory conditions inhibit the 

reparative activity of osteoblasts. Gilbert et al. [37, 38] identified that, when TNFα 

was included in pre-osteoblast cultures, osteoblast differentiation and maturation in 

vitro was arrested. Others have similarly found that osteoblast maturation markers 

such as collagen type I, alkaline phosphatase and osteocalcin are all reduced in the 

presence of TNFα [24, 39, 40] , leaving these osteoblasts unable to upregulate matrix 

mineralisation [41]. Osteoblasts cultured with serum from RA patients on Infliximab 

therapy show reduced expression of IL-6, a cytokine linked to arthritis-related bone 

loss [42]. IL-6 binds the IL-6 receptor, an interaction which induces prostaglandin E2 

synthesis, in turn reducing the ratio of OPG/RANKL expression by osteoblasts, 

thereby favouring osteoclastogenesis [43]. In addition, osteoblasts cultured with 

serum from patients treated with Infliximab show reduced expression of IL-1β [42], 

known to inhibit bone formation in vitro [44] and in vivo [45] as well as impaired 

osteoblast migration [46]. Presumably because of the factors described above, it has 

been reported that TNF blockade in RA patients corrects bone metabolism imbalance 

seen in RA [47]. 

 

In RA the local microenvironment is profoundly changed due to the influx of immune 

cells and proliferation of synovial fibroblasts at affected joints. This produces a 

localised hypoxia and a reduced pH, both of which are capable of influencing the 
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behaviour of osteoblasts within the joint. Hypoxia inhibits Wnt signalling (discussed in 

more detail below) in osteoblasts by sequestering β-catenin to inhibit transcriptional 

activity [48]. By up-regulating Dickkopf-1 (DKK1) [49] low pH causes the down-

regulation of alkaline phosphatase synthesis in osteoblasts which prevents 

mineralisation [50].  

 

Hypoxia and acidosis also increase affect osteoclastogenesis and resorptive 

capacity. Arnett et al (2003) identified that in vitro differentiation of monocytes to 

osteoclasts (in the presence of M-CSF and RANKL) was four-fold more efficient at 

2% oxygen compared to 20% oxygen. Importantly, however, the experimental 

protocol in this instance in fact subjected the cells to repeated periods of hypoxia and 

normoxia [51] . The requirement for periods of re-oxygenation was confirmed in 

another study by Knowles and Athanasou (2009) who demonstrated that repeated 

hypoxia/reoxygenation cycles, such as those expected to occur during period of 

inflammation, enhanced osteoclast differentiation, however, when cells were 

subjected to continued hypoxia at 2% oxygen osteoclastogenesis was in fact 

dramatically inhibited [52] .In addition the resorption activity of the osteoclasts formed 

at 2% oxygen was two to fourfold higher than osteoclasts formed at higher oxygen 

tensions [51, 52] (reviewed in [53]). This combination of increased osteoclast 

formation and activity combined with a dramatic decrease in osteoblast function in 

response to hypoxia and low pH combine to drive bone destruction during 

inflammation. 

 

Cytokine-mediated bone destruction 

Pannus tissue contains large numbers of activated macrophages, leukocytes and 

FLS which release pro-inflammatory cytokines including TNFα, IL-1β, IL-6 and IL-17. 

TNFα, expressed mainly by monocytes and macrophages but also by T cells, B cells 

and FLS, plays a pivotal role in the inflamed synovial microenvironment in RA. TNFα 

is considered to be at the top of the inflammatory cascade, based on observations 

that TNFα induces the expression of other cytokines (eg. IL-1β, IL-6, IL-8) and that 

anti-TNFα treatment in RA patients significantly reduces IL-1β release by FLS [54-

56]. Moreover, in FLS, TNFα induces the production of adhesion molecules to attract 

leukocytes into the affected joints [57] as well as matrix metalloproteinases that 

destroy cartilage [58].  
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During the last few years the impact of TNFα on bone remodelling has been 

addressed in several studies. Classically, it has been shown that this pro-

inflammatory cytokine increases the number of osteoclast precursors [59] and 

indirectly activates osteoclastogenesis by triggering RANKL release from 

lymphocytes [60, 61] and endothelial cells [62] as well as increasing RANKL and M-

CSF production by stromal cells [63, 64]. The effect of TNFα on bone erosion has 

been studied in detail using the hTNFtg [65] and the TNFΔARE [66] mouse models of 

RA. Both these models overexpress TNFα and result in osteoclast-mediated bone 

destruction in joints. TNF is known to enhance osteoclast activity directly, by 

promoting maturation of bone marrow macrophages into mature osteoclasts in the 

presence of RANK-ligand [60] [67].  

 

Stromal cells promote bone loss via interaction with immune cells 

Recent studies have shown that the interaction of RA-FLS with infiltrating immune 

cells plays a key role in both chronic inflammation and bone destruction. In particular 

CD4+ helper T cells (Th cells), the prominent T cell subset in the sublining of 

rheumatoid synovium,  express RANKL and also cytokines which have stimulatory, 

as well as inhibitory, effects on osteoclastogenesis. Th1 cells release IL-4 and IL-10 

which blocks osteoclastogenesis, whereas Th17 cells release IL-17, IL-22, RANKL, 

IL-1, IL-6 and TNFα [60, 67] which activate osteoclastogenesis directly on osteoclast 

precursors. IL-17 and IL-22 also stimulate RANKL expression in RA FLS to activate 

osteoclastogenesis, suggesting an indirect role of T-cells in bone loss via crosstalk 

with RA-FLS [68-71]. 

The first evidence that activated T-cells play an important role in bone destruction 

has been shown by Kong and colleagues in 1999 [72]. They could demonstrate that 

CD4+ T-cells produce a sufficient amount of soluble RANKL to promote 

osteoclastogenesis which subsequently induces bone loss in a model of adjuvant 

arthritis.  

 

The importance of Th17 cells and IL-17 in bone destruction is also supported by 

studies using the collagen-induced arthritis (CIA) mouse model. IL-17A-deficient mice 

developed a markedly reduced severity of CIA accompanied by less bone erosion 

and less synovial hyperplasia [73]. Therapeutic treatment with neutralizing anti-IL-
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17A antibodies significantly reduces the severity of inflammation and bone erosion in 

various RA mouse models including CIA [74], antigen-induced arthritis [75] and  

glucose-6-phosphate isomerase (G6PI)-induced arthritis [76].  

 

IL-17 is considered to be a potential osteoclastic cytokine, because it increases 

RANKL expression in osteoblasts, RA-FLS, and IL-1 and TNFα expression in 

synovial macrophages, which activates osteoclastogenesis and subsequently drives 

bone destruction. In an in vitro co-culture model with murine bone marrow cells and 

osteoblasts, treatment with IL-17 derived from synovial fluid of RA patients results in 

an increased osteoclastogenesis by an upregulation of prostaglandin E2 in 

osteoblasts [77]. Higher IL-17A concentrations were found in synovial fluid and sera 

from RA patients compared to OA patients or healthy controls [78, 79]. Therefore 

targeting IL-17 is suggested as an attractive therapeutic target in RA. IL-17 blockers 

have been evaluated and are currently being tested in clinical trials for human RA. 

However, inhibition of IL-17 did not lead to complete disease remission, so far, and 

monoclonal antibodies against IL-17 receptor seems to be ineffective in RA [80]. 

 

Wnt signalling is critical to bone homeostasis  

The Wnt signalling pathway not only controls developmental processes such as 

skeletal patterning [81, 82], but is also crucial for maintaining bone homeostasis. 

Three major branches of Wnt signalling exist: the canonical, the Ca2+-dependent 

non-canonical and the planar cell polarity signalling pathway. Of these, the canonical 

Wnt/β-catenin pathway is known to be the predominant component that impacts on 

bone remodelling. In the absence of Wnt, β-catenin forms a destruction complex 

composed of Axin, Casein Kinase 1 (CK1), Adenomatous Polyposis Coli (APC) and 

Glycogen synthase kinase 3β (GSK3β). This complex facilitates phosphorylation, 

ubiquitination and subsequently degradation of β-catenin by the proteasome. 

Activation of signalling occurs upon binding of Wnt proteins to the Low density 

lipoprotein Receptor-related Protein 5/6 (LRP5/6) receptors and Frizzled (Fz) co-

receptors on the cell surface. Dishevelled (DSH) and the destruction complex is 

recruited to the cell membrane allowing β-catenin accumulation within the cytoplasm 

and subsequent translocation into the nucleus where it activates transcription of 

specific target genes [83].  
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A strong link between the canonical Wnt/β-catenin pathway and bone homeostasis 

has been demonstrated by studying mutations of several members of the pathway. 

Mutations in Wnt proteins such as Wnt3, Wnt3a and Wnt7A/Wnt7a lead to skeletal 

malformations in humans [84, 85] and in mice [86, 87]. Moreover, loss of function 

mutations in the human LRP5 gene as well as LRP5 knockout mice are associated 

with low bone density and skeletal fragility [88, 89], whereas gain of function 

mutations in the LRP5 gene in humans and in mice lead to an increased bone 

density [90, 91]. In previous studies it has been shown that the high bone mass 

caused by LRP5 mutations is associated with decreased binding of the Wnt inhibitors  

Sclerostin [92, 93] and DKK1 [94]. An explanation for these observed phenotypes 

could be the influence of Wnt/-catenin signalling on the regulation of the 

OPG/RANKL ratio. Recent findings have shown that the Wnt/β-catenin pathway in 

osteoblasts inhibits osteoclastogenesis through downregulation of RANKL 

expression and upregulation of OPG expression, leading to an altered OPG/RANKL 

ratio [11, 95]. Therefore, the Wnt/β-catenin pathway not only affects cell 

differentiation into mature osteoblasts and bone renewal, but also arrests bone 

degradation by blockade of RANK-RANKL interaction through OPG .  

 

 

Wnt signalling in RA 

The role of Wnt signalling in RA is not yet fully understood. β-catenin expression was 

found to be elevated in synovial tissues and FLS from RA patients compared to those 

from OA patients [96]. Several years ago, Sen and colleagues revealed that Wnt1-

mediated Wnt/β-catenin signalling is constitutively active in RA-FLS leading to pro-

MMP3 secretion and fibronectin expression. However, Wnt1 not only activates the 

canonical Wnt pathway but also the non-canonical Wnt/Ca2+ (β-catenin and LRP5/6 

independent) pathway. Wnt1 and Wnt5a initiate the non-canonical signalling cascade 

by binding to Fz co-receptor causing intracellular Ca2+ release, activation of the 

calcium sensitive enzymes calmodulin kinase II (CamKII) and protein kinase C 

(PKC). These kinases activate several transcription factors such as NFAT, NF-κB 

and AP-1 [97]. The same authors demonstrated that Wnt5a/Fz-5 non-canonical 

signalling increased IL-6, IL-8, IL-15 and RANKL release, indicating that the non-

canonical Wnt pathway might also be important for RA-FLS activation [98, 99]. These 

observations suggest that constitutive activation of canonical and/or non-canonical 
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Wnt signalling in RA-FLS may promote synovial inflammation, pannus formation and 

bone/cartilage erosion during RA.  

 

 

Wnt antagonists released by stromal cells under inflammatory conditions 
control bone remodelling 
 

A number of extracellular Wnt antagonists provide fine-tuning of the Wnt signalling 

cascade. Secreted glycoproteins such as Sclerostin and DKK1 bind to LRP5 and 

LRP6 to antagonise canonical Wnt signalling, leading to inhibition of bone formation. 

Loss of Wnt inhibitor Sclerostin expression results in high bone mass and strength in 

patients with sclerosteosis [100] and Van Buchem disease [101] as well as in 

Sclerostin deficient mice [102].   

 

Knowledge that the Wnt/β-catenin pathway regulates bone formation and 

degradation has sparked tremendous interest in the last decade. In particular the use 

of anti-Sclerostin antibodies in osteoporosis in which loss of Sclerostin enhances 

bone mineral density seems to be very promising. Since Wnt signalling is required for 

bone formation it was assumed that the enhanced production of Wnt-antagonists in 

the inflamed joints was responsible for the lack of bone repair seen in RA joints, 

hence, blocking Wnt-antagonists could be a promising approach to re-activate the 

Wnt pathway and counteract bone destruction. However, in reality the situation in 

vivo is more complicated.  

 

Surprisingly, antibody-mediated blockade of Sclerostin in the hTNFtg mouse model 

of RA caused an unexpected acceleration of bone erosion. Moreover, loss of 

Sclerostin in the partially TNF-dependent G6PI mouse model of arthritis had no effect 

on the progression of RA. Disease severity was ameliorated  with loss of Sclerostin in 

the K/BxN serum transfer model, which is TNF receptor independent. Combined, 

these data suggest a specific role for Sclerostin in TNFα signalling-induced bone 

erosions. Sclerostin has a protective function in TNF-dependent but not TNF-

independent inflammatory arthritis: the more inflammation is driven by TNF the 

higher the protective effect of Sclerostin [103]. In line with this data, several 

publication have shown that inhibition of Sclerostin has either no effect or a 

destructive effect on cartilage and bone: In the CIA model of RA, Sclerostin inhibition 
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had no effect on the improvement of focal bone destruction [104] and 

pharmacological inhibition of Sclerostin in a rat model of osteoarthritis showed no 

effect on inflammatory cartilage remodelling [105]. Of note, one study reported that 

increased chondrocyte Sclerostin is chondroprotective in a sheep model of 

osteoarthritis [106] and Bouzis et al found that loss of Sclerostin promotes OA in 

mice [107]. However, there has been a report that anti-Sclerostin therapy is 

protective in TNF-driven arthritis [108]. The protective effect was largely seen when 

arthritic mice were co-treated with blocking TNF antibodies, which is in line with the 

notion that TNF triggers bone loss. Clearly, there is complexity in the function of 

Sclerostin as uncovered by the animal models of RA described above and this 

should be carefully considered when using anti-Sclerostin antibodies in patients with 

RA or other TNF-dependent immune-mediated inflammatory diseases.  

 

Although, Sclerostin and DKK1 are both Wnt-inhibitors that bind LRP receptors and 

are upregulated in response to TNFα, they exhibit very different effects on bone 

under inflammatory conditions compared to non-inflammatory conditions (as seen in 

most osteoporosis situations). Diarra and co-workers have demonstrated that anti-

Dkk1 treatment in arthritic mice is able to reverse the pattern of bone destruction to 

promote activation of bone repair resulting in new bone and osteophyte formation 

[109]. To explore the role of DKK1 in RA patients Juarez et al. took synovial 

fibroblasts from treatment-naive patients with undifferentiated inflammatory arthritis of 

less than 3 months duration. Fibroblasts from patients that would subsequently be 

diagnosed with RA expressed significantly higher levels of Dkk1 messenger RNA 

and protein compared to fibroblasts from patients whose arthritis resolved. In co-

cultures with lymphocytes, more DKK1 was secreted by RA fibroblasts than by 

fibroblasts from non-inflamed joints or resolving arthritis and the levels of Dkk1 

secretion during co-culture positively correlated with lymphocyte adhesion [110]. 

Recently, Seror et al [111] found increased DKK1 levels in a cohort of early RA 

patients with enhanced bone destruction. Therefore, together with findings from 

those of the RA mouse model in which anti-DKK1 antibodies were successfully used 

to enhance bone formation, blocking DKK1 could provide a new therapeutic target for 

treating bone loss.  
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Not all stromal cells are created equal!  

Fibroblasts, despite being the most ubiquitous stromal cells in the synovium, have 

proven difficult to characterize in molecular terms and it is only relatively recently that 

fibroblast-specific markers have been identified to allow the identification of fibroblast 

subsets. Clearly, as has been described above, there are differences between the 

phenotypes of FLS and RA-FLS, however it is becoming apparent that greater 

complexity exists than simply between disease and healthy synovial fibroblasts. Key 

fibroblast-specific markers identified so far include Fibroblast Activation Protein 1 

(FAP1), Endosialin (CD248), Vascular Cell Adhesion Molecule 1 (VCAM-1) and 

Podoplanin (GP38). The identification of these markers has allowed us to begin to 

differentiate between RA-FLS subsets and investigate their function.  

 

In 2016 Croft et al assessed the functional differences between two of these disease 

subsets: Podoplanin+ fibroblasts, which predominate in the RA synovial lining layer, 

and endosialin+ fibroblasts that are restricted to the sublining. Using a human 

cartilage and RA-FLS graft in SCID mice they showed that it is the podoplanin+ RA 

synovial fibroblast subset that is migratory and invasive [112]. A recent publication 

has also confirmed the assumption that FAP plays a crucial role in inflammatory 

destructive arthritis. FAP deletion in a mouse model of RA ameliorates cartilage 

degradation and isolated FLS from these mice show a lower cartilage adhesion 

capacity. These findings pointing to a previously unknown function of FAP in the 

attachment of FLS to cartilage during RA [113]. Taken together, these data match 

with similar findings of podoplanin+ cancer-associated fibroblasts (CAFs) promoting 

metastasis [114] and FAP+ fibroblasts promoting tumor growth in a mouse xenograft 

model [115] and suggest that targeting a specific fraction of the stromal cells may be 

an appropriate therapeutic strategy in inflammation as well as cancer. 

 

The importance of osteocytes in bone remodelling 

Other predominant cell types in the synovial joint are the osteoblast and the bone-

embedded osteoblast termed the osteocyte. Until relatively recently osteocytes were 

ignored due to difficulties isolating them from tissue and maintaining their phenotype 

ex vivo. However in the last few years improvements in techniques have allowed 

researchers to interrogate their function during bone disease. Osteocytes are 

descendants of matrix-producing osteoblasts. They are embedded in the bone matrix 
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but are not passive cells in bone behaviour, rather they act on bone remodelling 

through regulation of both osteoclast and osteoblast activity. It has been reported that 

osteocytes are able to release RANKL as well as M-CSF to recruit osteoclast 

progenitors to sites of remodelling, supporting the generation of functional resorbing 

osteoclasts [116]. It has generally been believed that osteoblasts and stromal cells 

are the main source of RANKL, however, co-culture studies from Nakashima et al. 

[117] demonstrated that purified osteocytes have a greater capacity to support 

osteoclastogenesis than osteoblasts and bone marrow stromal cells. Osteocytes not 

only communicate with osteoclasts but also with osteoblasts through the release of 

the canonical Wnt/-catenin Sclerostin, which negatively regulates osteoblast 

differentiation [118, 119]. 

 

Although osteocytes communicate with both osteoblasts and osteoclasts to produce 

RANKL and Sclerostin the question remains how RANKL and Sclerostin reach the 

bone surface, from deep within the bone. During their embedding phase, osteocytes 

form dendritic extensions (40-100 per cell) [120] to build a lacuna-canalicular 

network, maintaining connections with the bone surface and the vascular space 

[118]. Recently, Honma and co-workers [121] developed a novel co-culture system 

using osteoclast precursors together with osteocytes, embedded in a collagen gel. 

On the basis of this system, they clearly demonstrated that the osteocytic, 

membrane–bound form of RANKL communicates directly with osteoclast precursors 

through osteocyte dendritic extensions. 

 

The importance of osteocytes has been reported in many musculoskeletal diseases. 

Decreased connectivity between the osteocytes occurs in osteoporotic and 

osteoarthritic bones. Moreover bones taken from patients with osteoporosis display 

also disorientation of the dendrites [122]. Xiong et al. [123] reported that mice with 

osteocyte-specific RANKL deletion develop postnatal osteopetrosis. Recently it has 

been reported that osteocytes are associated with bone loss in inflammatory bowel 

disease in rodents (IBD) [124]. Another study revealed that patients with Crohn´s 

disease possess increased osteocyte apoptosis and reduced bone mass and bone 

formation [125]. 

Currently, the function of osteocytes and the control of osteocytogenesis under                                                                                          

inflammatory conditions in RA is not well understood. Recently, Pathak et al reported 
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that in vitro stimulation of osteocytes with serum from RA patients results in 

enhanced osteocyte-to-osteoclast communication. They found that RA serum 

containing inflammatory cytokines enhances the RANKL/OPG ratio in osteocytes, 

which subsequently leads to enhanced osteoclastogenesis and bone destruction 

[126].  

However nothing is known so far about changes in connectivity and orientation of 

osteocytes under inflammatory conditions. It is well known that chronic inflammation 

is a major risk factor for systemic bone loss leading to osteoporosis. Even in chronic 

inflammatory diseases such as RA, local bone erosions are typically associated with 

systemic bone loss. As already discussed above, osteoporosis patients seems to 

have a decreased connectivity and disorientation of dendritic extensions in their 

osteocyte network. Therefore, it can be assumed that the osteocyte network in bones 

of RA patients might be altered, which could influence signalling molecules involved 

in bone remodelling processes. This is a relatively new area of research, however  

the influences of inflammatory factors in RA on osteocyte-mediated systemic bone 

loss has yet to be thoroughly investigated. 

 

Conclusion 

Bone loss is a common feature of a variety of musculoskeletal disorders. Under 

inflammatory conditions such as RA, the main trigger of articular bone erosion is 

synovitis, including the production of inflammatory cytokines and RANKL, leading to 

activation of osteoclastogenesis. Both activation of bone destroying osteoclasts and 

a lack of compensatory bone repair mechanisms contribute to a progressive loss of 

joint structure in RA patients. 

In this review we have explored the role of stromal cells and their influence in bone 

remodelling. Emerging data obtained have provided evidence that stromal cells are 

more than just structural cells. Under chronic inflammation they aquire novel features 

which are important for the development of pathologic processes. Knowledge of 

stromal cells and their influence in bone formation and bone destruction will facilitate 

the development of future therapeutic strategies for repair of bone erosion.  
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Figure Legend 

 

Fig. 1:  The role of FLS in inflammatory bone destruction.  

Under healthy conditions there is a balance between bone formation and bone 

destruction to replace old bone tisssue and to repair bone defects. In RA, more bone 

is degraded by osteoclasts than created by osteoblasts, shifting the balance towards 

bone destruction. During inflammation stromal FLS, located in the synovial 

membrane of the joint space, are able to influence this balance directly or indirecly.  

FLS release RANKL in response to inflammatory cytokines such as TNFα which 

subsequently stimulates osteoclastogenesis directly. They also communicate with T 

cells or release inhibitors of bone formation such as sclerostin and DKK1. In contrast 

to DKK1, Sclerostin not only blocks osteoblast differentiation but also inhibits 

specifically TNF-mediated bone destruction, suggesting a protective effect in TNF- 

mediated bone loss. Other factors released by FLS such as myostatin directly 

activates bone destruction. Different subsets of FLS, especially gp38+ and FAP+ 

expressing FLS are highly migratory and invasive and seems to be important for 

cartilage and bone destruction. 
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