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ON COMMUTING VARIETIES OF PARABOLIC SUBALGEBRAS

RUSSELL GODDARD AND SIMON M. GOODWIN

Abstract. Let G be a connected reductive algebraic group over an algebraically closed
field k, and assume that the characteristic of k is zero or a pretty good prime for G. Let P
be a parabolic subgroup of G and let p be the Lie algebra of P . We consider the commuting
variety C(p) = {(X,Y ) ∈ p × p | [X,Y ] = 0}. Our main theorem gives a necessary and
sufficient condition for irreducibility of C(p) in terms of the modality of the adjoint action of
P on the nilpotent variety of p. As a consequence, for the case P = B a Borel subgroup of
G, we give a classification of when C(b) is irreducible; this builds on a partial classification
given by Keeton. Further, in cases where C(p) is irreducible, we consider whether C(p) is a
normal variety. In particular, this leads to a classification of when C(b) is normal.

1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field k with
char k = p ≥ 0, and write g = LieG for the Lie algebra of G. We assume that p = 0 or is a
pretty good prime for G; the notion of pretty good prime for G was introduced by Herpel
in [He, Definition 2.11], and is discussed more later in the introduction.

In [Ri], Richardson proved that the commuting variety

C(g) = {(X, Y ) ∈ g× g | [X, Y ] = 0}
of g is irreducible for char k = 0. For g = gln(k) this was previously proved by Motzkin
and Taussky in [MT] and independently by Gerstenhaber in [Ge]. Richardson’s result was
subsequently extended to positive (pretty good) characteristic by Levy in [Le].

There has been much recent research interest in C(g) and related varieties, and the the-
ory of commuting varieties finds applications in various areas of representation theory, and
geometry. We refer the reader for example to [Bu], [Gi], [GS] [Ng], [Pr] and [PY], and the
references therein.

Let P be a parabolic subgroup of G with Lie algebra p = LieP . It is a natural general-
ization to consider the commuting variety

C(p) = {(X, Y ) ∈ p× p | [X, Y ] = 0}
of p. In case P = B is a Borel subgroup and p = 0, the commuting variety C(b) was
considered in the PhD thesis of Keeton, [Ke].

Our main theorem gives a necessary and sufficient condition for C(p) to be irreducible.
In the statement of the theorem we use the modality of an algebraic group action, which is
recalled in Section 2. Also we use the notation N (k) for the variety of nilpotent elements in
a subalgebra k of g, and we write rankG for the rank of G and ssrankH for the semisimple
rank of a Levi subgroup H of G.

Theorem 1.1. Let G be a connected reductive algebraic group over an algebraically closed
field k with char k = 0 or a pretty good prime for G. Let P be a parabolic subgroup of G
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and let T be a maximal torus of G contained in P . Then the commuting variety C(p) is
irreducible if and only if mod(P ∩H : N (p ∩ h)) < ssrankH for all Levi subgroups H 6= T
of G containing T . Moreover, if C(p) is irreducible, then dim C(p) = dim p + rankG.

The assumption that p = 0 or is a pretty good prime for G is required in the statement
of Theorem 1.1 is to ensure separability all orbit maps for the adjoint action of P on p, or
in other words that the scheme theoretic centralizer is smooth. This does not appear to be
in the literature, and is stated below and proved in Section 4.

Theorem 1.2. Let G be a connected reductive algebraic group over an algebraically closed
field k with char k = 0 or a pretty good prime for G. Let P be a parabolic subgroup of G and
let X ∈ p. Then the adjoint orbit map P → P ·X is separable.

As mentioned above C(b) was investigated by Keeton in [Ke]. In particular, [Ke, Theorem
6.1] includes an equivalent statement to Theorem 1.1 for the case P = B and p = 0. Our
methods build on those used in Keeton, but we require a significantly different approach to
deal with all parabolic subgroups, thus we include all details.

Keeton proceeds to give a partial classification of irreducibility of C(b) in [Ke, Sections 6.3
and 6.4]. In this case, we note that N (b) = u is the nilradical of b. We make use of recent
results in [GMR] and [PS], which allow us to determine mod(B : u) for G of sufficiently large
rank in order to give a complete classification of when C(b) is irreducible.

Theorem 1.3. Let G be a connected reductive algebraic group over an algebraically closed
field k with char k = 0 or a pretty good prime for G. Then C(b) is irreducible if and only if
the type of each simple component of G is one of the following.

• Al for l ≤ 15;
• Bl for l ≤ 6;
• Cl for l ≤ 6;
• Dl for l ≤ 7;
• G2 or E6.

For P 6= B, less is known about the modalities mod(P : N (p)), and we only briefly
discuss cases where we can determine whether C(p) is irreducible or reducible at the end of
this paper. Here we just remark that from results of Röhrle in [Rö1], we can deduce that
for a fixed value of ssrankL where L is a Levi factor of P , we have that C(p) is reducible if
rankG is sufficiently large. Also in very recent work for the case G = GLn(k), Bulois–Boos
in [BB, Main theorem] gives a classification of cases where mod(P : N (p)) = 0, which gives
cases where C(p) is irreducible.

For cases where C(p) is irreducible, we also consider the question of whether C(p) is normal.
Our results in this direction are contained in Section 6. In order to outline these results we
recall some background on commuting schemes.

The commuting scheme CS(g) of g is the subscheme of g × g defined by the ideal Ig of
k[g × g] generated by the regular functions (X, Y ) 7→ f([X, Y ]) for f ∈ g∗; so C(g) is the
underlying variety of CS(g). The question of whether CS(g) is reduced and normal is a long-
standing problem. For p = 0, it was proved by Popov in [Po] that the singular locus of CS(g)
has codimension 2, which reduces the problem to showing that CS(g) is Cohen-Macaulay.
We also mention that Ginzburg proved that the normalization of C(g) is Cohen-Macaulay in
[Gi].
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Under the assumption that CS(l) is Cohen–Macaulay for L the Levi factor of P containing
T , and that mod(P ∩ H : N (p ∩ h)) < ssrankH − 1 for all Levi subgroups H 6= T of G
containing T with ssrankH > 1, we prove normality of C(p) in Theorem 6.3. Our methods
build on those of Keeton in [Ke, Section 6.2], and we show that the singular locus of the
commuting scheme of p has codimension 2. We note that this statement about the singular
locus holds without the Cohen–Macaulay assumption on CS(l).

For the case P = B, the commuting scheme of l = t is certainly Cohen–Macaulay, and we
show that the modality condition is also sufficient in Theorem 6.4. This leads a classification
of when C(b) is normal in Theorem 7.1.

We mention that another motivation for investigating C(p) is that one can hope to un-
derstand C(g) through the fibre bundle G ×P C(p), where P acts on C(p) diagonally by
the adjoint action. To recall the definition of G ×P C(p), we consider the action of P on
G × C(p) by x · (g, (X, Y )) = (gx−1, (x · X, x · Y )) for x ∈ P , g ∈ G, and X, Y ∈ p. Then
the set of P -orbits in G×C(p) has the structure of a variety, this can be explained in direct
analogy with the construction given in [Ja, §8.11]. Further, there is a surjective morphism
G×P C(p)→ C(g) given by [(g, (X, Y ))] 7→ (g ·X, g · Y ). This construction is considered for
the case P = B in [Ke, §5.6].

We end the introduction by mentioning some related recent results, and then giving some
remarks about our main results.

In [BE], Bulois and Evain investigated the irreducibility and equidimensionality of C(N (p))
for certain parabolic subgroups of g = gln(k). In [GR], Röhrle and the second author
classified when C(u) is irreducible, where u = N (b) is the nilradical of b, and also determined
the irreducible components of C(u) in minimal cases where it is not irreducible.

We note that Theorem 1.1 can be reduced to simple G, though this is not required for our
proof. To see this we write G as a central product G = Z(G)G1 · · ·Gm, where G1, . . . , Gm

are the simple components of G, and Pi = P ∩Gi. Then we have p = z(g)⊕ g1 ⊕ · · · ⊕ gm,
and it is straightforward to prove that C(p) = C(z(g)) × C(p1) × · · · × C(pm). Thus C(p)
is irreducible if and only if C(pi) is irreducible for each i. Further, we can easily see that
mod(P ∩H : N (p ∩ h)) = mod(P1 ∩H : N (p1 ∩ h)) + · · · + mod(Pm ∩H : N (pm ∩ h)) for
H a Levi subgroup of G containing T . This implies that the modality condition on P in
Theorem 1.1 holds if and only if it holds for each Pi.

For G simple it seems plausible that the condition mod(P ∩ H : N (p ∩ h)) < ssrankH
for all Levi subgroups H 6= T of G containing T can be replaced by the single condition
that mod(P : N (p)) < ssrankG in Theorem 1.1. As consequence of Theorem 1.3, we can,
a fortiori, weaken our condition in this way for P = B. The methods used in our proof do
not get around the need for the inductive assumption. However, we do not consider this
to be a serious limitation, because if mod(P : N (p)) has been determined, then most likely
mod(P ∩H : N (p ∩ h)) can be determined for all H as in the statement as well.

As already mentioned the assumption that p = 0 or is a pretty good prime for G is
essentially required for Theorem 1.2. We recall from [He, Lemma 2.12], that p is a pretty
good prime for G if and only if p is a good prime for G and there is no p-torsion in both the
quotient of the character group of G by the root lattice and the quotient of the cocharacter
group of G by the coroot lattice. Also we note that p is pretty good is implied by the
standard hypothesis from [Ja, §2.9]:

(H1) The derived subgroup of G is simply connected;
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(H2) char k is zero or a good prime for G; and
(H3) there is a nondegenerate G-invariant symmetric bilinear form on g.

In fact as shown in [He, Theorem 5.2], we have that p > 0 is pretty good for G if and only
if we can obtain G from a reductive group G′ satisfying (H1)–(H3) after a finite number of
the operations:

(R1) the replacement of G′ by a separably isogenous group G′′; or
(R2) the replacement of G′ = G′′ × S by G′′, where S is a torus.

(We recall that a separable isogeny π : G′ → G′′ is a surjective homomorphism with finite
kernel such that dπ is an isomorphism, and we say that G′ and G′′ are separably isogenous
if there is a separable isogeny between them.)

We remark that in [Le], Levy proved that C(g) is irreducible under the hypothesis (H1)–
(H3). Using [He, Theorem 5.2], we can see that irreducibility of C(g) holds when p = 0 or
is a pretty good prime. Indeed if p = 0 or is pretty good prime for G, then there exists G′

satisfying (H1)–(H3) such that g ∼= g′.
Our methods require the assumption that p is pretty good. In particular, this is required

for Theorem 1.2. In low rank examples, we can already see that the situation is different
when p is not very good. For example, for p = 2, and G = SL2(k), we have that b is abelian,
so that dim C(b) > dimB + rankG. Also for p = 2 and G = SO5(k), it is possible to show
that C(g) is not irreducible. It would be interesting to understand the general situation for
p not pretty good.

We note that our methods apply also to the commuting variety

C(P ) = {(x, y) ∈ P × P | xy = yx}
of P . Thus with some modifications, analogous results about C(P ) can be proved.

Acknowledgments: This research forms part of the first author’s PhD research and he is
grateful to the EPSRC for financial support. We also thank Michael Bulois and Paul Levy
for helpful discussions related to this research.

2. Algebraic group actions, modality and commuting varieties

Let G be a linear algebraic group over an algebraically closed field k with Lie algebra
g, and let V be a variety on which G acts morphically, in the sense of [Bo, §1.7]. Let
g ∈ G, v ∈ V and let U be a subvariety of V . We write g · v for the image of v under
g, and G · v = {g · v | g ∈ G} for the G-orbit of v. The stabilizer of v in G is denoted
CG(v) = {g ∈ G | g · v = v}. We write g · U = {g · u | u ∈ U} for the image of U under g,
and G · U = {g · u | g ∈ G, u ∈ U} for the G-saturation of U . The normalizer of U in G is
denoted NG(U) = {g ∈ G | g · u ∈ U for all u ∈ U}.

Below we recall the definition of the modality of G on V , and the sheets of G on V . In
order to do this we set Vj = {v ∈ V | dimG · v = j} for j ∈ Z≥0.

The modality of G on V is defined to be

mod(G : V ) = max
j∈Z≥0

(dimVj − j).

Informally, mod(G : V ) is the maximum number of parameters on which a family of G-orbits
depends. The notion of modality originates in the work of Arnold [Ar], we refer the reader
also to [Vi] and [PV, Section 5.2].
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We define S(G, V )j to be the set of irreducible components of Vj, and let

S(G, V ) =
⊔

j∈Z≥0

S(G, V )j.

The elements of S(G, V ) are called sheets of G on V . The notion of sheets was introduced
by Borho and Kraft in [BK]. We remark that in the case that G acts on V with finitely
many orbits, the sheets of G on V coincide with the orbits of G on V .

Next we recall that the commuting variety of g is

C(g) = {(X, Y ) ∈ g× g | [X, Y ] = 0}.
The connection between commuting varieties and modalities is made clear in the Lemma
2.1. Before stating this lemma we briefly discuss separability of the orbit maps for the
adjoint action of G on g. Let X ∈ g, write φX : G → G · X for the orbit map for X and
cg(X) = {Y ∈ g | [Y,X] = 0} for the centralizer of X in g. We recall from [Bo, Proposition
6.7] that separability of φX is equivalent to LieCG(X) = cg(X) (or in other words that the
scheme theoretic centralizer is smooth). Therefore, given the assumption that orbit maps
are separable, Lemma 2.1 can be proved with the same argument as in characteristic zero,
see for example [GR, Lemma 2.1].

Lemma 2.1. Let G be a linear algebraic group with Lie algebra g. Assume that for all
X ∈ g, the orbit map G→ G ·X is separable. Then

dim C(g) = dim g + mod(G : g).

3. Notation for reductive groups

We introduce the notation used in the remainder of this paper, and recall some standard
results about reductive algebraic groups.

Let G be a reductive algebraic group over an algebraically closed field k of characteristic
p ≥ 0 and let g = LieG be the Lie algebra of G. We assume throughout that p = 0 or p is a
pretty good prime for G.

For a closed subgroup K of G, we write k = LieK for the Lie algebra of K. For a reductive
subgroup H of G, we write rankH for the rank of H and ssrankH for the semisimple rank
of H. For a subalgebra k of g, we denote the centre of k by z(k), and the variety of nilpotent
elements of k by N (k).

Let P be a parabolic subgroup of G and let T ⊆ P be a maximal torus of G. Let L be
the Levi factor of P containing T and let UP be the unipotent radical of P ; the Lie algebra
of UP is denoted uP . Let B be a Borel subgroup of G contained in P and containing T , and
let U = UB be the unipotent radical of U .

We write Φ for the root system of G with respect to T . For α ∈ Φ, we denote the
corresponding root subspace of g by gα and let Eα be a generator for gα. For a subalgebra
k of g stable under the adjoint action of T , we write Φ(k) for the set of α ∈ Φ such that
gα ⊆ k. Let Φ+ = Φ(b) be system of positive roots determined by B and let Π ⊆ Φ be the
corresponding set of simple roots.

We recall that a subgroup H of G is called a Levi subgroup if it is a Levi factor of some
parabolic subgroup of G. This is equivalent to H = CG(S) where S is a torus in G, or, under
the assumption that p is good, H = CG(X) where X ∈ g is semisimple.
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For p > 0, we note that, under our assumption that p is a pretty good prime for G, we
also have that p is a pretty good prime for any Levi subgroup of G. This follows easily from
[He, Definition 2.11].

Given a subset J of Π, we let ΦJ be the closed subsystem of Φ generated by J . We say
that a Levi subgroup H of G is a standard Levi subgroup if H contains T and Φ(h) = ΦJ

for some J ⊆ Π, or equivalently if H is the Levi factor containing T of a parabolic subgroup
containing B. In particular, L is a standard Levi subgroup of G and we let I be the subset
of Π such that Φ(l) = ΦI .

We recall that X ∈ g is called regular if dim cg(X) = rankG. We write greg for the set of
regular elements in g, and for a subalgebra k of g, we let kreg = k ∩ greg.

The set of regular semisimple elements in g is denoted by greg
ss . Next we observe that under

our assumption that p = 0 or is a pretty good prime for G, there exist regular semisimple
elements in t; we expect this is well-known.

We view Φ ⊆ X(T ), where X(T ) is the character group of T , and given α ∈ Φ, and write
dα : t → k for its differential. To check there are regular semisimple elements in t, we need
to observe that there exists X ∈ t such that dα(X) 6= 0 for all α ∈ Φ. It suffices to check
that for any α ∈ Φ, we have that dα is nonzero. Let α ∈ Φ. We may write α = mβ where
β is an indivisible element of X(T ) and m ∈ Z≥1. Then there is m-torsion in X(T )/ZΦ, so
that p - m, because p is pretty good for G. There exists a cocharacter λ : k× → T such that
〈β, λ〉 = 1, and we write X = dλ(1) ∈ t. Then we have dα(X) = m, where we view m as an
element of k, which is nonzero in k.

Now using [Le, Theorem 1], the proof of [Hu, Theorem 2.5] can be adapted to prove that
the regular semisimple elements form an open subvariety of g. In turn it follows that greg is
an open subvariety, and that the minimal dimension of a centralizer in g is rankG.

4. Separability of orbit maps for the adjoint action of a parabolic
subgroups

The goal of this section is to prove Theorem 1.2. The main idea of the proof is based on
arguments in [SS, Chapter I §5], see also [Ja, Theorem 2.5], where the theorem is proved in
the case P = G. Also the ideas for the proof of [He, Theorem 3.3] are used for Lemma 4.1,
which gives a reduction that we use in the proof of Theorem 1.2.

We require some preliminary discussion for the statement of Lemma 4.1. First we recall
that the operations (R1)–(R2) are stated in the introduction.

Suppose π : G → G′ is a separable isogeny, where G′ be a reductive algebraic group, i.e.
G is obtained from G′ by an (R1) operation. Then P ′ = π(P ) is a parabolic subgroup of
G and the proof of [Ja, Proposition 2.8] can be adapted to show that the adjoint orbit map
P → P · X is separable for all X ∈ p if and only if the adjoint orbit map P ′ → P ′ · X ′ is
separable for all X ′ ∈ p′.

Now suppose that G′ = G× S, where S is a torus, i.e. G is obtained from G′ by an (R2)
operation. Then P ′ = P × S is a parabolic subgroup of G′. Further, since S is contained in
the centre of G, it is clear that the adjoint orbit map P → P ·X is separable for all X ∈ p
if and only if the adjoint orbit map P ′ → P ′ ·X ′ is separable for all X ′ ∈ p′.

Iteration of the arguments in the previous two paragraphs proves the following lemma.

Lemma 4.1. Suppose that G is obtained from the reductive algebraic group G′ by a finite
number of the operations (R1)–(R2), and let P ′ be the parabolic subgroup of G′ corresponding
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to P . Then the adjoint orbit map P → P · X is separable for all X ∈ p if and only if the
adjoint orbit map P ′ → P ′ ·X ′ is separable for all X ′ ∈ p′.

Armed with Lemma 4.1, we are ready to proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.1 and the discussion at the end of the introduction, we
may assume that G satisfies (H1)–(H3). It follows from the arguments in [Ja, §2.6–2.9] that
if p is pretty good for G, then G can be obtained after a finite number of the operations (R1)–
(R2) from a reductive group G′ with a faithful representation ρ : G′ → GLn(k) such that
restriction of the trace form on gln(k) to dρ(g′) is nondegenerate. Hence by Lemma 4.1, we
may assume that there is a faithful representation ρ : G→ GLn(k) such that dρ : g→ gln(k)
is injective and the restriction of the trace form on gln(k) to dρ(g) is nondegenerate. We use
ρ to identify G with a subgroup of G = GLn(k), and dρ to identify g with a subalgebra of
g = gln(k).

Recall that I = {α ∈ Π | gα ⊆ l} and let m be the index of the cocharacter group of T in
the group of coweights of T . Let λ : k× → T be the unique cocharacter with image inside
the derived subgroup of G satisfying

〈λ, α〉 =

{
0 if α ∈ I
m if α ∈ Π \ I,

where 〈·, ·〉 is the pairing between cocharacters and characters of T .
Then λ determines a grading

g =
⊕
j∈Z

g(λ; j)

where g(λ; j) = {Y ∈ g | λ(t) · Y = tjY }. We have

p =
⊕
j∈Z≥0

g(λ; j) and l = g(λ; 0).

Similarly λ defines a grading

g =
⊕
j∈Z

g(λ; j)

and we define
p =

⊕
j∈Z≥0

g(λ; j).

Since the restriction of the trace form on g to g is nondegenerate, we may decompose
g = g⊕ g̃ as a G-module, where g̃ is the orthogonal complement to g̃ in g. We let p̃ = g̃∩ p.
Then we see that p = p⊕ p̃ as P -modules.

We write P for the parabolic subgroup of G with Lie algebra p. Then we have that CP (X)
consists of the invertible elements of cp(X). Therefore, dimCP (X) = dim cp(X), and thus
LieCP (X) = cp(X).

Let f : P → p be the map defined by f(g) = g ·X −X. The differential (df)1 : p→ p of
f at 1 is given by (df)1(Y ) = [Y,X]. We have

dim f(P ) = dimP ·X = dimP − dimCP (X) = dim p− dim cp(X) = dim([p, X]),

and it follows that T0(f(P )) = [p, X].

7



We have

T0(f(P )) ⊆ T0(f(P )) ∩ T0(p)

= [p, X] ∩ p

= [p, X]

⊆ T0(f(P )).

The first inclusion here is immediate, whilst the first equality follows from T0(f(P )) = [p, X].
To see the second equality holds, consider Y = Y + Ỹ ∈ p with Y ∈ p and Ỹ ∈ p̃. Then

[Y ,X] = [Y + Ỹ , X] = [Y,X] + [Ỹ , X]

where [Y,X] ∈ p and [Ỹ , X] ∈ p̃ as p = p⊕ p̃ is a P -module decomposition. We deduce that
[p, X] ∩ p = [p, X]. The last inclusion holds because [p, X] = (df)1(p).

Hence, we have that [p, X] = T0(f(P )). Therefore,

dimCP (X) = dimP − dim(P ·X) = dimP − dim f(P ) = dim p− dim([p, X]) = dim cp(X),

which implies that LieCP (X) = cp(X) and thus that the orbit map P → P ·X is separable.
�

Remark 4.2. The key ingredient in our proof of Theorem 1.2 is the existence of P ≤ G such
that P = P ∩G, the adjoint orbit maps P → P ·X are separable, and there is a P -module
decomposition p = p ⊕ p̃. Thus the proof is applicable in other situations, for example we
could replace P by any subgroup of K of G such that K is normalized by T , the restriction
of the trace form to dρ(t∩ k) is nondegenerate, and Φ(k) is closed under addition within the
set of weights of T in g.

5. On irreducibility of C(p)

The goal of this section is to prove Theorem 1.1. Before getting to this proof, we give
some preliminary results. For the first lemma, we define Creg

ss (p) to be the subvariety of C(p)
consisting of pairs of commuting regular semisimple elements.

Lemma 5.1.

(a) Creg
ss (p) is open and irreducible in C(p),

(b) the closure Creg
ss (p) of Creg

ss (p) is an irreducible component of C(p), and
(c) dim Creg

ss (p) = dim p + rankG.

Proof. Then we can deduce that the variety of regular semisimple elements preg
ss = p∩ greg

ss in
p is open in p. It follows that preg

ss × preg
ss is open in p× p. Thus Creg

ss (p) = C(p)∩ (preg
ss × preg

ss )
is open in C(p).

Consider the map µ : P × (treg × treg) → Creg
ss (p) defined by µ(g,X, Y ) = (g · X, g · Y );

we recall that treg is the set of regular elements in t. Let (X, Y ) ∈ Creg
ss (p). There exists a

maximal torus T1 of P such that X ∈ t1. We have cp(X) = t1, as X is regular semisimple,
so that Y ∈ t1 too. Since maximal tori of P are conjugate, it follows that µ is surjective.
Therefore, Creg

ss (p) is irreducible.

Having proved Creg
ss (p) is both open and irreducible, we deduce that Creg

ss (p) is an irreducible
component of C(p).
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Now suppose that µ(g,X, Y ) = µ(1, X ′, Y ′) for some g ∈ P and X, Y,X ′, Y ′ ∈ treg. Then
g ·X = X ′, so g · t = g · cp(X) = cp(X

′) = t. Hence, g ∈ NP (t). It follows that the dimension
of each fibre of µ is dimNP (t) = dim t = rankG. Therefore,

dim Creg
ss (p) = dimP + dim treg + dim treg − dim t = dim p + rankG. �

We have the following immediate corollary.

Corollary 5.2. C(p) is irreducible if and only if C(p) = Creg
ss (p).

We note that Richardson proved that C(g) is irreducible by proving that C(g) = Creg
ss (g)

in [Ri]; this is also the case for Levy’s proof in [Le] for positive characteristic. In particular,
we have dim C(g) = dimG+ rankG.

Our next lemma gives a lower bound for the dimensions of irreducible components of C(p).

Lemma 5.3. All irreducible components of C(p) have dimension at least dim p + rankG.

Proof. Consider the Levi decomposition p = l⊕ uP . Let X, Y ∈ p, and write X = X1 +X2,
Y = Y1 +Y2, where X1, Y1 ∈ l and X2, Y2 ∈ uP . Then [X, Y ] = [X1, Y1]+ [X1, Y2]+ [X2, Y1]+
[X2, Y2]; we note that [X1, Y1] ∈ l and the remaining terms are in uP .

Let L be the subvariety of p×p of pairs (X, Y ) such that (X1, Y1) ∈ C(l) and X2, Y2 ∈ uP .
Then we have that C(p) ⊆ L and L ∼= C(l)× (uP ×uP ). Since C(l) is irreducible of dimension
dim l + rankL, we have that L is irreducible of dimension dim l + rankG + 2 dim uP =
dim p + rankG+ dim uP .

Consider the commutator map F : L → uP given by F (X, Y ) = [X, Y ]. Then C(p) is the
zero fibre of F , so the codimension in L of each irreducible component of C(p) is at most
dim uP . Therefore, each irreducible component of C(p) has dimension at least

(dim p + rankG+ dim uP )− dim uP = dim p + rankG. �

We are now ready to prove our main theorem.

Proof of Theorem 1.1. In order to prove this theorem we decompose C(p) as a disjoint union
of irreducible subvarieties such that the closure of some of these subvarieties are the irre-
ducible components of C(p). This allows us to determine when C(p) is irreducible and is
achieved by partitioning the P -orbits in p in a way that generalizes the partition of G orbits
in g into decomposition classes as given by Borho and Kraft in [BK]. This is similar to the
approach used by Popov when considering C(g) in [Po].

Let Ĥ denote the set of all Levi subgroups H of G containing T . We note that H ∈ Ĥ is
determined by the set of α ∈ Φ such that gα ⊆ h. Thus we see that Ĥ is a finite set. We
note that different Levi subgroups in Ĥ may be conjugate under P , and we choose H to be
a subset of Ĥ containing one representative from each P -conjugacy class.

Let H ∈ H. We define z(h)reg = {X ∈ z(h) | cg(X) = h}. We have that z(h)reg is open in
z(h), so z(h)reg is irreducible and dim z(h)reg = dim z(h) = rankG− ssrankH.

We have that P ∩H is a parabolic subgroup of H, and we also consider NP (P ∩H). We
note that P ∩H has finite index in NP (P ∩H), because any coset in NP (P ∩H)/(P ∩H) can
be chosen to have a representative that normalizes T . Thus dimNP (P ∩H) = dim(P ∩H).

We write SH = S(P ∩ H, p ∩ h) for the set of sheets of P ∩ H on N (p ∩ h) and SH,j =
S(P ∩ H,N (p ∩ h))j. So we have SH =

⊔
j∈Z≥0

SH,j. We note that NP (P ∩ H) acts of

N (p ∩ h), and this gives rise to an action of NP (P ∩H)/(P ∩H) on SH .
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Let X ∈ p with Jordan decomposition X = Xs + Xn. Up to the adjoint action of P we
may assume that Xs ∈ z(h)reg for some H ∈ H. Then we have that Xn ∈ N (p ∩ h), so
Xn ∈ S for some S ∈ SH .

Let S ∈ SH,j, where j ∈ Z≥0. We defineMH,S ⊆ p to be the variety of all X = Xs+Xn ∈ p
such that Xs ∈ z(h)reg and Xn ∈ S. We have MH,S

∼= z(h)reg × S, so MH,S is irreducible
and dimMH,S = rankG− ssrankH + dimS.

Let C ′H,S = {(X, Y ) | X ∈ MH,S, Y ∈ cp(X)}. For X ∈ MH,S with Jordan decom-
position X = Xs + Xn, we have cp(X) = cp(Xs) ∩ cp(Xn) = cp∩h(Xn). Thus dim cp(X) =
dim cp∩h(Xn) = dim(p∩h)−j, where for the last equality we require Theorem 1.2. Therefore,
the dimension of cp(X) does not depend on the choice of X ∈MH,S.

Let X be an irreducible component of C ′H,S and consider the morphism π : X → MH,S

given by projecting on to the first component. The function taking (X, Y ) ∈ X to the
maximal dimension of an irreducible component of π−1(X, Y ) containing (X, Y ) is upper
semi-continuous, see for example [Mum, §8 Corollary 3]. Thus the set of X ∈ MH,S such
that {X} × cp(X) ⊆ X is closed in MH,S; here we require that dim cp(X) does not depend
on X ∈ MH,S as proved above. Combining this with the irreducibility MH,S allows us to
deduce that C ′H,S is irreducible.

Also we note that, for any X ∈MH,S, we have

dim C ′H,S = dimMH,S + dim cp(X)

= rankG− ssrankH + dimS + dim(p ∩ h)− j
= (rankG− ssrankH) + dim(p ∩ h) + (dimS − j). (5.1)

We define CH,S = P · C ′H,S = {(g · X, g · Y ) | g ∈ P, (X, Y ) ∈ C ′H,S} to be the P -
saturation of C ′H,S. Then we have that CH,S is irreducible being the image of the morphism
φ : P×C ′S → C(p) given by φ(g, (X, Y )) = (g ·X, g ·Y ). For S ′ ∈ SH , we see that CH,S = CH,S′
if and only if S and S ′ lie in the same NP (P ∩H)/(P ∩H)-orbit.

We claim that

dim CH,S = (rankG− ssrankH) + dim p + (dimS − j). (5.2)

To prove this we consider the dimension of the fibres of the morphism φ : P × C ′H,S → CH,S
defined above. We note that the dimension of these fibres is constant on P -orbits, so it
suffices to determine dimφ−1(X, Y ) for (X, Y ) ∈ C ′H,S.

Let (X, Y ) ∈ C ′H,S. We note that if g ∈ P ∩ H, then (g, (g−1 · X, g−1 · Y )) ∈ φ−1(X, Y ).

Now suppose that (g,X ′, Y ′)) ∈ φ−1(X, Y ), so we have X = g · X ′ and Y = g · Y ′. We
have Jordan decompositions X = Xs + Xn and X ′ = X ′s + X ′n, where Xs, X

′
s ∈ z(h)reg,

because X,X ′ ∈ MS. Also we have Xs = g · X ′s, and thus cp(Xs) = g · cp(X ′s). Since,
cp(Xs) = p ∩ h = cp(X

′
s), we have g ∈ NP (p ∩ h) = NP (P ∩H). Hence, we have shown that

P ∩H ⊆ {g ∈ P | (g, (g−1 ·X, g−1 · Y )) ∈ φ−1(X, Y )} ⊆ NP (P ∩H),

which implies that dimφ−1(X, Y ) = dim(P ∩H).
We have seen that the dimension of each fibre of φ is equal to dim(P ∩ H). Hence, we

have dim CH,S = dimP + dim C ′H,S − dim(P ∩H) and substituting from (5.1) gives (5.2).
Since S is a sheet for the action of P ∩H on N (p ∩ h), we deduce that

dim CH,S ≤ (rankG− ssrankH) + dim p + mod(P ∩H : N (p ∩ h)). (5.3)
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By construction we have the disjoint union

C(p) =
⊔
H∈H
S=ṠH

CH,S,

where ṠH denotes a set of representatives for the NP (P∩H)/(P∩H)-orbits in SH . Moreover,
the closure CH,S of each CH,S is closed and irreducible. Thus the irreducible components of
C(p) are given by some of the CH,S.

We have CT,{0} contains Creg
ss (p) as an open subset, so that CT,{0} = Creg

ss (p) is an irreducible
component by Lemma 5.1.

Now suppose that mod(P ∩H : N (p∩ h)) < ssrankH for all H ∈ H\ {T}. Then we have
dim CH,S = dim CH,S < dim p+ rankG for all S ∈ SH and therefore CH,S is not an irreducible

component of C(p) by Lemma 5.3. Therefore, Creg
ss (p) is the only irreducible component of

C(p) and hence C(p) is irreducible.
Conversely, suppose that there isH ∈ H\{T} such that mod(P∩H : N (p∩h)) ≥ ssrankH.

Then there is S ∈ SH,j for some j ∈ Z≥0 such that dimS − j ≥ ssrankH. Then we have
dim CH,S = dim CH,S ≥ rankG+dim p. Since CH,S∩Creg

ss (p) = ∅, and dim CH,S ≥ dim Creg
ss (p),

we have CH,S * Creg
ss (p). Hence, C(p) is not irreducible by Lemma 5.1.

Finally, it is immediate from Lemma 5.1 that dim C(p) = dim p + rankG when C(p) is
irreducible. �

We have the following immediate corollary, which gives a monotonicity for irreducibility
of C(p).

Corollary 5.4. Suppose that C(p) is irreducible and let H be a Levi subgroup of G containing
T . Then C(p ∩ h) is irreducible.

In fact, the commuting variety of p gets much more complicated as rankG− ssrankL gets
large, as explained, in particular for the case P = B, in the next remark.

Remark 5.5. Let H be a Levi subgroup of G containing T and let X be an irreducible
component of C(p ∩ h). We remark that the methods in our proof of Theorem 1.1 can be
extended to show that the closure of P · X = {(g · X, g · Y ) | g ∈ P, (X, Y ) ∈ X} is an
irreducible component of C(p).

Let P = B be a Borel subgroup of G. In this case N (b) = u, and as a consequence of
[Rö1, Theorem 3.1], we have that mod(B : u) → ∞ quadratically as ssrankG → ∞. We
may choose inside G a sequence of Levi subgroup 1 = H0 ≤ · · · ≤ HssrankG = G such that
ssrankHj = j for each j. Then we can see that for each j such that j ≤ mod(B ∩ Hj :
u∩hj) < mod(B ∩Hj+1 : u∩hj+1)− 1, there are more irreducible components of C(b∩hj+1)
than of C(b ∩ hj). Since mod(B : u) → ∞ quadratically as ssrankG → ∞, we can deduce
that the number of irreducible components of C(b) gets arbitrarily large as ssrankG → ∞.
Indeed the number of components grows at least linearly in the rank, and the dimension of
some irreducible components get much larger than dim b + rankG.

We end this section by recording a useful inductive result regarding irreducibility of C(p).

Proposition 5.6. Let P and Q be parabolic subgroups of G. Suppose that P ≤ Q. Then
C(q) = Q · C(p). In particular, if C(p) is irreducible, then C(q) is irreducible.
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Proof. Let (X, Y ) ∈ C(q) with Jordan decompositions X = Xs +Xn and Y = Ys +Yn. Then
Xn, Yn ∈ cg(Xs)∩cg(Ys), which is the Lie algebra of the Levi subgroup H = CG(Xs)∩CG(Ys)
of G. By [He, Corollary 5.5], there is a Springer isomorphism φ : N (h)→ U(H), where U(H)
denotes the unipotent variety of H. Since φ is H-equivariant we deduce that φ(Xn), φ(Yn)
commute. Therefore, φ(Xn) and φ(Yn) lie in a Borel subgroup BH of Q ∩ H. Since Borel
subgroups of Q ∩H are conjugate, there exists g ∈ Q ∩H such that gBHg

−1 ⊆ P ∩H. By
H-equivariance, we have that φ sends N (h)∩p to U(H)∩P and thus that (g ·X, g ·Y ) ∈ C(p).
Hence, C(q) = Q · C(p).

Suppose C(p) that is irreducible. Then C(q) is the image of the irreducible variety Q×C(p)
under the morphism (g, (X, Y )) 7→ (g ·X, g · Y ), and thus is irreducible. �

We end this section with a discussion of when the commuting variety C(p) is equidimen-
sional. By Lemma 5.1, if C(p) is equidimensional then it must have dimension dim p+rankG.
Now the proof of Theorem 1.1 can be adapted to show that C(p) is equidimensional if and
only if mod(P ∩H : N (p∩ h)) ≤ ssrankH for all Levi subgroups H 6= T of G containing T .

In the case P = B, it is now natural to consider whether C(b) is a complete intersection, as
is done in [Ke, Section 6], and the argument in the last paragraph of the proof of [Ke, Lemma
6.4] suffices to show that C(b) is a complete intersection whenever it is equidimensional.
The reason to consider this question just for P = B is that in this case the image of the
commutator map b × b → b lies in u. Whereas for general P there is not a subspace of
codimension rankG in p in which the image of the commutator map p× p→ p lies.

We remark that after this paper was completed, the paper [Ba] of Basili appeared. In
loc. cit. the question of whether C(b) is a complete intersection is considered in the case
G = GLn(k), and results similar to those in this paper are obtained.

6. On normality of C(p)

In this section we consider whether C(p) is a normal variety in the case where it is irre-
ducible. This question was considered by Keeton for the case P = B in [Ke, Section 6.2],
and we take a similar approach here.

We work with the commuting scheme CS(p), which is the subscheme of p× p defined by
the ideal I(p) of k[p× p] generated by the regular functions (X, Y ) 7→ f([X, Y ]) for f ∈ p∗.
We let A(p) = k[p× p]/I(p) be the algebra underlying CS(p). The commuting scheme CS(l)
of l is defined similarly, as are the ideal I(l) of k[l× l] and the algebra A(l) = k[l× l]/I(l).

Our results depend on whether A(l) is Cohen–Macaulay, so we include this as a hypothesis
in the statements of our results. Also for the case P = B, we have l = t and A(t) =
k[t× t], which is certainly Cohen–Maucaulay. Further, we only consider cases where C(p) is
irreducible.

We start by showing that CS(p) is a Cohen–Macaulay under these assumptions.

Proposition 6.1. Assume that A(l) is Cohen–Macaulay and that C(p) is irreducible. Then
A(p) is Cohen–Macaulay.

Proof. Let J(l) be the ideal of A(p) generated by I(l), and let B(l) = k[p×p]/J(l). We have
k[p×p] ∼= k[l× l]⊗k[uP ×uP ], and under this identification J(l) = I(l)⊗k[uP ×uP ]. Thus we
have that B(l) ∼= (k[l× l]/I(l))⊗ k[uP × uP ], which is Cohen–Macaulay by [Ei, Proposition
18.9].
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For α ∈ Φ(uP ), we define pα ∈ u∗P by pα(
∑

β∈Φ(uP ) aβEβ) = aα and fα ∈ k[p × p] by

fα(X, Y ) = pα([X, Y ]). Let J(p) be the image of I(p) in B(l). Since I(p) is generated by
the set of fα for α ∈ Φ(p), we have that J(p) is generated by the images of the fα in B(l).
Further, we have that A(p) ∼= B(l)/J(p).

The zero set of J(l) in p× p is L as defined in the proof of Lemma 5.3 and has dimension
dim l + rankG + 2 dim uP . Our assumption that C(p) is irreducible implies that it has
dimension dim p + rankG = dimL − dim uP . Therefore, as J(p) is generated by dim uP =
|Φ(uP )| many elements and B(l) is Cohen–Macaulay, we deduce that A(p) ∼= B(l)/J(p) is
Cohen–Macaulay, see [Ei, Proposition 18.13]. �

We remark that the only place that we use the fact that C(p) is irreducible in the proof
above is in saying that the dimension is dim p + rankG. Therefore, the proof is also valid
under the assumption that C(p) is equidimensional, because in this case it has dimension
dim p + rankG by Lemma 5.1.

In Theorem 6.3 we give a sufficient condition for A(p) to be normal. Before we move on
to this it is helpful to make some observations about smooth points in CS(p), which lead to
Lemma 6.2.

Let (X, Y ) ∈ C(p) considered as a closed point of CS(p). The (scheme theoretic) tangent
space of CS(p) at (X, Y ) is

T(X,Y )(CS(p)) = {(W,Z) ∈ p× p | [X,Z] + [W,Y ] = 0}.
Suppose that C(p) is irreducible so that dim C(p) = dim p + rankG. Then we have that
(X, Y ) is a smooth point of CS(p) if and only if dimT(X,Y )(CS(p)) = dim p + rankG, or
equivalently dim([p, X] + [p, Y ]) = dim p − rankG. We recall that X ∈ p is regular if and
only if dim cp(X) = rankG, so that dim([p, X]) = dim p− rankG. Therefore, if X is regular,
then dim([p, X] + [p, Y ]) = dim p− rankG.

In the previous paragraph, we have proved the following lemma.

Lemma 6.2. Assume that that C(p) is irreducible. Let (X, Y ) ∈ C(p) considered as a closed
point of CS(p) and suppose that X (or Y ) is regular in p. Then (X, Y ) is a smooth point of
CS(p).

We are now ready to proceed with Theorem 6.3. In the proof below we use the notation
given in the proof of Theorem 1.1.

Theorem 6.3. Assume that A(l) is Cohen–Macaulay and that mod(P ∩ H : N (p ∩ h)) <
ssrankH − 1 for all Levi subgroups H 6= T of G containing T with ssrankH > 1. Then C(p)
is irreducible and normal.

Proof. By Theorem 1.1, we have that C(p) is irreducible, so we just have to prove normality.
To do this we prove that A(p) is normal, which in turn implies that I(p) is a prime ideal,
and k[C(p)] = A(p).

Since, A(p) is Cohen–Macaulay, it suffices by Serre’s criterion for normality, see [Ei, The-
orem 11.5], to show that the singular locus of CS(p) has codimension at least 2. We let
C(p)ssm be the set of points in C(p), which are smooth as closed points in CS(p). Then we
have to show that C(p) \ C(p)ssm has codimension at least 2.

Let (X, Y ) ∈ CT,{0}. Then X is regular (semisimple), so that (X, Y ) is a smooth point of
CS(p) by Lemma 6.2. Thus CT,{0} ⊆ C(p)ssm.
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Consider a Levi subgroup H of G containing T with ssrankH = 1. We have two possibil-
ities for H ∩ P , either this is equal to H or is a Borel subgroup of H; it turns out that the
analysis of these two cases can be done simultaneously.

There are two P ∩H-orbits in N (p ∩ h) namely the regular nilpotent orbit and the zero
orbit. Thus SH has these two orbits as its elements.

First consider S = {0} ∈ SH , and look at C ′H,S. We have that C ′H,S = {(X, Y ) | X ∈
z(h)reg, Y ∈ h}. Let Y = {(X, Y ) | X ∈ z(h)reg, Y ∈ hreg} ⊆ C ′S; we recall that z(h)reg =
{X ∈ z(h) | cg(X) = h} and that hreg denotes the set of regular elements in h. By Lemma
6.2 we have that Y and, thus P ·Y ⊆ C(p)ssm. Also P ·Y is the subset of CH,S of those (X, Y )
for which Y is regular, and is thus open in CH,S. Therefore, the complement of P · Y has
codimension at least 1 in CH,S. In the proof of Theorem 1.1, we have shown that CH,S has
codimension 1 in C(p). So we can deduce that CH,S \ (P · Y) has codimension at least 2 in
C(p).

Next consider the case S is the regular orbit of P ∩H in N (p ∩ h). Here we observe that
any element of C ′H,S is of the form (X + Z, Y + aZ), where X, Y ∈ z(h)reg, Z ∈ N (p ∩ h)
is regular in h, and a ∈ k. Then X + Z is regular in g, so it follows from Lemma 6.2 that
C ′H,S ⊆ C(p)ssm, and thus CH,S = P · C ′H,S ⊆ C(p)ssm.

Now consider the decomposition

C(p) =
⊔
H∈H
S=ṠH

CH,S,

given in the proof of Theorem 1.1.
Let H ∈ H with ssrankH > 1. Then by assumption we have that mod(P∩H : N (p∩h)) <

ssrankH − 1, so dim CH,S < dim p+ rank−1 by (5.3). Thus CH,S has codimension at least 2
in C(p) for each S ∈ SH .

Moreover, we have shown above that (C(p) \ C(p)ssm)∩ CH,S has codimension at least 2 in
C(p), for H of semisimple rank 0 or 1 and S ∈ SH .

Hence, we have proved that (C(p)\C(p)ssm) has codimension at least 2 in C(p) as required.
�

In the case P = B is a Borel subgroup, we can remove the assumption that A(l) is Cohen–
Macaulay in Theorem 6.3, as l = t and A(t) = k[t × t]. The converse also holds as stated
Theorem 6.4 below. In its proof we use the setup given in the proof of Theorem 1.1.

Theorem 6.4. Let B be a Borel subgroup of G and u = N (b) the Lie algebra of the unipotent
radical of B. Then C(b) is irreducible and normal if and only if mod(B ∩ H : u ∩ h) <
ssrankH − 1 for all Levi subgroups H of G containing T with ssrankH > 1.

Proof. For the case P = B, we have L = T and A(t) = k[t × t], which is certainly Cohen–
Macaulay. Thus if mod(B ∩ H : u ∩ h) < ssrankH − 1 for all H, then C(b) is normal by
Theorem 6.3. So we just have to prove the converse.

First we make the simplifying observation that, under the assumption that C(b) is irre-
ducible, we have that A(b) is reduced. To prove this we consider the functions fα ∈ k[b× b]
for α ∈ Φ(u) = Φ+, as defined in the proof of Proposition 6.1.

Let (X, Y ) ∈ C(b). The differential (dfα)(X,Y ) : T(X, Y )(b × b) → k can be viewed as a
linear map b × b → k and a calculation shows that this is the map (W,Z) 7→ fα([X,Z] +
[W,Y ]). Thus the differentials (dfα)(X,Y ) for α ∈ Φ+ are linearly independent whenever
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(X, Y ) ∈ C(b) is such that [b, X] + [b, Y ] = u; this holds for example when X is regular
semisimple. Now we can deduce that Ib is radical and thus A(b) is reduced, see for example
[Ja, Lemma 7.1].

We just have to consider the case mod(B ∩ H : u ∩ h) = ssrankH − 1 for some Levi
subgroup H of G with ssrankH > 1. In this case we prove that the singular locus of C(b)
has codimension equal to 1; we can work just with the variety here, because A(b) is reduced.
Then we can apply Serre’s criterion for normality to deduce that C(b) is not normal.

We have that H is conjugate in G to a standard Levi subgroup, so since B ∩H is a Borel
subgroup of H, we may as well assume that H is a standard Levi subgroup. Let J ⊆ Π be
such that Φ(h) = ΦJ .

In the notation given in the proof of Theorem 1.1, we have that there is some S ∈ SH
such that dim CH,S = dim b + rankG − 1. From the proof of [GMR, Theorem 5.1] we can
assume that Z(H)CU(U ∩ H) has finite index in CB∩H(X) for any X ∈ S; in other words
the connected component of the centralizer of X in the B ∩ DH is unipotent, where DH
denotes the derived subgroup of H. This implies that mod(U ∩H : u∩ h) = 2 ssrankH − 1.
Let j ∈ Z≥0, be such that S ∈ (SH)j. Then we have dimS = j + ssrankH − 1.

Let X ∈ S. Then we have dimCB∩H(X) = dim(B ∩ H) − j for any X ∈ S, so
dimCU∩H(X) = dim(U ∩ H) − j − ssrankH. By Theorem 1.2, we have dimCB∩H(X) =
dim cb∩h(X), and also we have dimCU∩H(X) = dim cu∩h(X), see for example [Go, Corollary
4.3]. From this we deduce that cb∩h(X) = z(h)⊕ cu∩h(X).

Consider the set Sreg of elements of u ∩ h of the form∑
α∈ΦJ∩Φ+

aαEα,

where aα 6= 0 for all α ∈ J . The elements of Sreg are precisely the regular nilpotent elements
in u∩h, and they form a single B∩H-orbit. Moreover, Sreg is a sheet for the action of B∩H
on u∩h and Sreg ∈ (SH)dim(u∩h). We have dimSreg = dim(u∩h) < ssrankH+dim(u∩h)−1,
because ssrankH > 1. Therefore, S 6= Sreg.

For β ∈ J , we let (u∩h)β =
⊕

α∈Φ(u∩h)\{β} gα. Then we have (u∩h)\Sreg =
⋃
β∈J(u∩h)β,

and it follows that S ⊆ (u ∩ h)β for some β ∈ J .
Next we consider C(u∩h), which has dimension dim(u∩h)+mod(U ∩H : u∩h) by Lemma

2.1. We define C(u∩ h)S = C(u∩ h)∩ (S× (u∩ h)). The projection onto the first component
C(u∩ h)S → S is surjective and the fibre of X ∈ S is equal to {X}× cu∩h(X). As seen above
we have that cu∩h(X) = dim(U ∩H)− j − ssrankH and that this is independent of X ∈ S.
Therefore,

dim C(u ∩ h)S = dimS + dim(U ∩H)− j + ssrankH

= j + ssrankH − 1 + dim(U ∩H)− j + ssrankH

= dim(U ∩H) + 2 ssrankH − 1

= dim(u ∩ h) + mod(U ∩H : u ∩ h)

= dim C(u ∩ h).

Further, C(u ∩ h)S is irreducible, so its closure in C(u ∩ h) is an irreducible component of
C(u ∩ h).
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Therefore, C(u ∩ h)S is stable under the flip (X, Y ) 7→ (Y,X), see for example [GR, Lemma
2.3]. Since S ⊆ (u∩h)β we deduce that C(u∩h)S ⊆ (u∩h)β×(u∩h)β, so that cu∩h(X) ⊆ (u∩h)β

for any X ∈ S.
Now consider C ′H,S as defined in the proof of Theorem 1.1. Let (X, Y ) ∈ C ′H,S. Then

X = X1 + X2, where X1 ∈ z(h)reg and X2 ∈ S. We have shown above that cb∩h(X2) =
z(h)⊕ cu∩h(X2), so we can write Y = Y1 + Y2, where Y1 ∈ z(h), Y2 ∈ cu∩h(X2) ⊆ (u ∩ h)β.

Now we aim to show that (X, Y ) is a singular point of C(b). We recall from the discussion
before Theorem 6.3 that (X, Y ) is a smooth point of C(b) if and only if dim([b, X]+[b, Y ]) =
dim u. However, we know that X ∈ z(h)⊕(u∩h)β, which implies that [b, X] ⊆ uβ. Similarly,
Y ∈ z(h)⊕(u∩h)β, so that [b, Y ] ⊆ (u∩h)β. Thus, [b, X]+[b, Y ] ⊆ uβ so dim([b, X]+[b, Y ]) <
dim u. Hence, (X, Y ) is a singular point of C(b).

We deduce that all elements of CH,S = B · C ′H,S are singular in C(b). Further, dim CH,S =
dim C(b)− 1. Hence, C(b) is not normal by Serre’s criterion for normality. �

7. Classification of irreducibility and normality of C(b)

We consider the case where P = B is a Borel subgroup, where we can give a full classifica-
tion of irreducibility and normality of C(b). This requires recent results in [GMR] and [PS]
giving mod(B : u) for simple G of sufficiently large rank, here we recall that N (b) = u is the
nilradical of b. We also use lower bounds for mod(B : u) established in [Rö1, Theorem 3.1].

In [GMR] a parametrization of the coadjoint orbits of U in u∗ is given for G of rank at most
8 apart from G of type E8. It is known that mod(U : u) = mod(U : u∗), see [Rö2, Theorem
1.4]. Also in [GMR, Theorem 5.1] it is proved that mod(U : u) = mod(B : u) + ssrankG.
Thus values of mod(B : u) for G up to rank 8 apart from G of type E8 were determined.
This extended previously known values of mod(B : u) given in [JR, Tables II and III].

The results in [PS] can be used to determine mod(B : u) for G = GLn(k) and n ≤
16, as we explain below. Let q be a prime power, let U(q) be the subgroup of upper
unitriangular matrices in GLn(q) and let u∗(q) be the dual space of the space u(q) of strictly
upper triangular matrices in gln(q). Then U(q) acts on u∗(q) via the coadjoint action. The
number k(U(q), u∗(q)) of coadjoint orbits of U(q) in u∗(q) is determined for n ≤ 16 in [PS]
and this number is shown to be a polynomial in q, see [PS, Theorem 1.2]. Although [PS]
only deals with finite fields, the methods used can be adapted to apply for other fields.
In particular, this means that the calculations carried out as part of [PS] can be used to
determine mod(U : u∗) for G = GLn(k) and n ≤ 16; moreover, we see that mod(U : u∗) is
equal to the degree of the polynomial in q giving k(U(q), u∗(q)). Combining this with the
fact that mod(U : u∗) = mod(U : u) = mod(B : u) + ssrankG, we deduce the values of
mod(B : u).

Combining the results in [GMR], [PS] and [Rö1], gives Tables 1–5, containing the exact
value or a lower bound for mod(B : u) for G of low rank. We note that in higher rank cases
the lower bounds from [Rö1] do give that mod(B : u) > rankG in these cases.
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Type of G A1 A2 A3 A4 A5 A6 A7 A8 A9

mod(B : u) 0 0 0 0 1 1 2 3 4

Type of G A10 A11 A12 A13 A14 A15 A16 A17

mod(B : u) 5 7 8 10 12 14 ≥ 16 ≥ 19

Table 1. Modality of the action of B on u for G of type A

Type of G B2 B3 B4 B5 B6 B7 B8

mod(B : u) 0 1 2 3 5 7 9

Table 2. Modality of the action of B on u for G of type B

Type of G C3 C4 C5 C6 C7 C8

mod(B : u) 1 2 3 5 7 9

Table 3. Modality of the action of B on u for G of type C

Type of G D4 D5 D6 D7 D8

mod(B : u) 1 2 4 5 8

Table 4. Modality of the action of B on u for G of type D

Type of G G2 F4 E6 E7 E8

mod(B : u) 1 4 5 10 ≥ 20

Table 5. Modality of the action of B on u for G of exceptional type

From Tables 1–5 and Theorem 1.1, we immediately deduce Theorem 1.3. Also from Tables
1–5 and Theorem 6.4, we can deduce the classification of when C(b) is normal given in the
following theorem.

Theorem 7.1. Let B be a Borel subgroup of G. Then C(b) is irreducible and normal if and
only if the type of each simple component of G is one of the following.

• Al for l ≤ 14;
• Bl for l ≤ 5;
• Cl for l ≤ 5; or
• Dl for l ≤ 7.

We end this paper by briefly discussing some cases where we can determine whether
C(p) is irreducible or reducible for P 6= B. In general little is known about the values of
mod(P : N (p)), so that we can only present limited results in this direction.

First we note that by Proposition 5.6 and Theorem 1.3, we have C(p) is irreducible when-
ever G satisfies the conditions in Theorem 1.3.

In [Rö1, Table 1] Röhrle lower bounds for mod(P : uP ) are given, where uP is the Lie
algebra of the unipotent radical of P . Of course, we have mod(P : uP ) ≤ mod(P : N (p)).
From these lower bounds, we can determine many instances where C(p) is reducible. In
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particular, these lower bounds are quadratic in ssrankG − ssrankL, so for a fixed value of
ssrankL, we have that C(p) is reducible if rankG is sufficiently large.

If the number of P -orbits in N (p) is finite, so that mod(P : N (p)) = 0, then certainly
C(p) is irreducible. It follows from results of Murray in [Mur] that mod(P : N (p)) = 0
for P a maximal parabolic subgroup of GLn(k) such that one block has size less than 6.
Very recent work of Bulois–Boos in [BB, Main theorem] gives a classification of cases where
mod(P : N (p)) = 0 for G = GLn(k). Further, in [BB, §6], there is a discussion of cases of
higher modality. In particular, it is shown that for the maximal parabolic subgroup P of
GLn(k) with block sizes (200, 400), we have that C(p) is reducible.
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