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A phase transition in the evolution of bootstrap percolation
processes on preferential attachment graphs

Mohammed Amin Abdullah* Nikolaos Fountoulakis!

February 6, 2017

Abstract

The theme of this paper is the analysis of bootstrap percolation processes on random
graphs generated by preferential attachment. This is a class of infection processes where
vertices have two states: they are either infected or susceptible. At each round every
susceptible vertex which has at least r > 2 infected neighbours becomes infected and
remains so forever. Assume that initially a(t) vertices are randomly infected, where ¢
is the total number of vertices of the graph. Suppose also that r < m, where 2m is
the average degree. We determine a critical function a.(¢) such that when a(t) > a.(t),
complete infection occurs with high probability as ¢ — oo, but when a(t) < a.(t), then
with high probability the process evolves only for a bounded number of rounds and the
final set of infected vertices is asymptotically equal to a(t).

1 Introduction

The dissemination of contagion within a network is a fundamental problem that arises in a
wide spectrum of social and economic sciences. Among the mechanisms which underlie this
phenomenon is a class of dissemination processes where local decisions (or microbehaviours)
aggregate into a large outbreak or pandemic. Quite frequently, these phenomena begin on a
rather small scale and may end up contaminating a large part of the network. What are the
particular characteristics of a network that enable or inhibit such an outbreak?

A general class of models that incorporates this kind of behaviour is what is called the
general threshold model [31]. Here it is assumed that each vertex has one of two states: it is
either infected or susceptible. Furthermore, each vertex of the underlying graph is equipped
with a threshold function which depends on the states of its neighbours. This function
expresses the probability that this vertex remains in a particular state given the states of its
neighbours. A central problem in viral marketing is given a network, a parameter k£ > 1 and
such a set of functions, find a set of vertices S of size k which maximizes the expected number
of infected vertices at the end of the process. In [29], Kempe, Kleinberg and Tardos proved
that finding such an optimal set is NP-hard. Moreover, they showed that it is NP-hard to
approximate the size of the maximum expected outreach even within a polynomial factor.
See also [30] for similar results.
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In this paper, we study an instance of this class of models known as bootstrap percolation
processes. This is a threshold model that was introduced in the context of mathematical
physics by Chalupa, Leath and Reich [17] in 1979 for magnetic disordered systems.

A bootstrap percolation process with activation threshold an integer r > 2 on a (multi)graph
G = G(V,E) is a deterministic process. Initially, there is a subset Zp = Z(0) C V of
infected vertices, whereas every other vertex is susceptible. This set can be selected either
deterministically or randomly. The process evolves in rounds, where in each round, if a
susceptible vertex has at least r edges connected to infected neighbours, then it also becomes
infected and remains so forever. This is repeated until no more vertices become infected. We
denote the final infected set by Z;. We denote the set of susceptible (infected) vertices at
round 7 in the process by S(7) (respectively, Z(7)). Thus, S(7), Z(7) form a partition of the
vertex set V', and Zy = Z(00). Of course, the above definition makes also perfect sense when
r =1 — in this case Ty coincides with the set of vertices of the union of those components of
G which contain vertices in Zj.

Such processes (as well as several variations of them) have been used as models to describe
several complex phenomena in diverse areas, from jamming transitions [36] and magnetic
systems [33] to neuronal activity [5, 22]. Bootstrap percolation processes also have connections
with the dynamics of the Ising model at zero temperature [23], [32]. These processes have
also been studied on a variety of graphs, such as trees [10, 24], grids [16, 26, 8], lattices
on the hyperbolic plane [34], hypercubes [7], as well as on several distributions of random
graphs [4, 11, 28]. Ebrahimi et al. [21] showed that given a graph G, a subset of vertices V'
and a positive parameter s, the question whether the final set of the bootstrap percolation
process starting at V'’ has size at least s is P-complete. A short survey regarding applications
of bootstrap percolation processes can be found in [3]. The theme of this paper is the study
of bootstrap percolation processes on a preferential attachment random graph on t vertices,
which we denote by PAy(m, 9).

2 Preferential attachment graphs

The preferential attachment models have their origins in the work of Yule [37], where a
growing model is proposed in the context of the evolution of species. A similar model was
proposed by Simon [35] in the statistics of language. The principle of these models was used
by Barabdsi and Albert [12] to describe a random graph model where vertices arrive one by
one and each of them throws a number of half-edges to the existing graph. Each half-edge is
connected to a vertex with probability that is proportional to the degree of that vertex. This
model was defined rigorously by Bollobés, Riordan, Spencer and Tusnady [14] (see also [13]).
We will describe the most general form of the model which is essentially due to Dorogovtsev
et al. [19] and Drinea et al. [20]. Our description and notation below follow that from the
book of van der Hofstad [25].

The random graph PA;(m,d) is parameterised by two constants: m € N, and § € R,
0 > —m. It gives rise to a random graph sequence (i.e., a sequence in which each member
is a random graph), denoted by (PA;(m,d));2,. The tth term of the sequence, PA;(m, ) is
a graph with ¢ vertices and mt edges. Further, PA;(m,d) is a subgraph of PA;;1(m,d). We
define PA(1, d) first, then use it to define the general model PA;(m, J) (the Barabasi-Albert
model corresponds to the case § = 0).

The random graph PA;(1, ) consists of a single vertex with one self-loop. We denote the



vertices of PA4(1,9) by {051)7 vél), A vél)}. We denote the degree of vertex vgl) in PA,(1,0)
by D;(t). Then, conditionally on PA4(1,0), the growth rule to obtain PA;11(1, ) is as follows:

We add a single vertex vi +)1 having a single edge. The other end of the edge connects to v&)l

itself with probability W, and connects to a vertex vz(l) € PA(1,0) with probability

T(1te
D;(t)+d

oo Lasy - ve write ”&)1 — vgl). Any self-loop at a vertex adds 2 to the degree of that

vertex. For any t € N, let [t] = {1,...,t}. Thus,

TS fori=t+1
1 1 5 5 ’
P (vrng)l — UZ.( ) | PAt(l,(s)) — { t(2Eiz$S};_ )
t(2+8)+(1+9)
The model PA;(m,d), m > 1, with vertices {1,...,t} is derived from PA,,:(1,§/m) with

vertices {vgl),vél),..., mt} as follows: For each i = 1,2,...,t, we contract the vertices

{v(zl) D41 (zl) 1420 7@((11) L +m} into one super-vertex, and 1dent1fy this super-vertex as 7 in
PAt(m J). When a contractlon takes place, all loops and multiple edges are retained. Edges
shared between a set of contracted vertices become loops in the contracted super-vertex.
Thus, PA;(m, d) is a graph on [t].

The above process gives a graph whose degree distribution follows a power law with
exponent 3 + 0/m. This was suggested by the analyses in [19] and [20]. It was proved
rigorously for integral 6 by Buckley and Osthus [15]. For a full proof for real ¢ see [25]. In
particular, when —m < § < 0, the exponent is between 2 and 3. Experimental evidence
has shown that this is the case for several networks that emerge in applications (cf. [2]).
Furthermore, when m > 2, then PA;(m, d) is whp connected, but when m = 1 this is not the
case, giving rise to a logarithmic number of components (see [25]).

We describe an alternative, though equivalent, direct construction of (PA¢(m,d));~,. Let
PAi(m,0) be a single vertex with label 1, having m loops. Given PA;_1(m,0d), t > 2, the
construction of PA;(m, d) is as follows: To add vertex t to the graph, we split time step ¢ into
m sub-steps, adding one edge sequentially in each sub-step. For j = 1,2,...,m, denote the
graph after the jth sub-step of time ¢ by PA; ;(m,d). Hence PA;(m,d) = PA¢,,(m, ). For
notational convenience, let PA; o(m,d) = PA;_1(m, ).

Denote the jth edge added by e;. One end of e; will be attached to vertex ¢ and the other
end will be attached randomly to another vertex (which may be t). Let g(t, j) be the random
variable representing this vertex. For j = 1,2,...,m, let D;(t,j) be the degree of vertex i
in PA; j(m,0). That is, for j = 1,2,...,m, D;(t, j) is the degree of vertex ¢ after both ends
of e; have been attached. Furthermore, for notational convenience, let Dy(¢,0) = 0 and for
1€ [t — 1], let Di(t, 0) = Di(t — 1).

Now, for j = 1,2,...,m, conditionally on PA; j_i(m, d), PA; ;(m, J) is generated according
to the following probability rules:

for i € [t]

Dy (t,j—1)+14j6/m

P(g(t,ﬁ:irPAt,j_1<m,5>>={ R s

D;(t,j—1)+0 :
(2m+0)(t— 1§+2] 1+j0/m for i € [t — 1]

for 1 = t,

It is not difficult to see that these two constructions give rise to the same probability
distribution over realisations of (PA¢(m,d));2,. It will be sometimes convenient to refer to
one form over the other.



2.1 Results

Here as well as in the rest of the paper the term with high probability (whp) means with
probability 1 — o(1) in the space of PA;(m,d), as t — co. We will be using the same term for
events over the product space between PA;(m, d) and the choice of Zy on [t].

Let X; be a random variable on the above product space. If a € R, we write that X; 5
(X: converges to a in probability) if for any € > 0 we have P (| X; —a| >¢) - 0 as t — oo.

The selection of Zy is random and each vertex is infected initially with probability p =
p(t) = a(t)/t, independently of any other vertex. Hence, if a(t) — oo as t — oo, the size of
Ty /a(t) converges in probability to 1.

Recently, Ebrahimi et al. [21] investigated a threshold phenomenon that occurs in the
evolution of the process on a variant of the preferential attachment model, that is very similar
(though not identical) to PAy(m,d). In our context, their results can be stated as follows. Let
Y=g I a(t) > t'7logt, then whp Z; = [t], that is, we have complete infection. They
also identified a subcritical range for a(t). Assume first that ry > 1. If a(t) < t!77, then
whp Z; = 7y, that is no evolution occurs. Now, if ry < 1, then the same holds but provided
that a(t) < t'=1/7. Since v < 1/r, that is, 1 —~ > 1 — 1/r, it follows that this function is
asymptotically smaller than the t!~7. Similar results were obtained by the two authors in [1]
for PA¢(m, 9).

In this paper, we complete the landscape and show that a critical phenomenon occurs
“around” the function '~ =: a.(t) = a.. Our results show that when a(t) > a.(t), there is
complete infection whp, but if a(t) < a.(t) then either there is no evolution of the process
or it halts in a bounded number of rounds. (In fact, for r = 2 we show a slightly weaker
result that requires a(t) < a.(t)/logt.) Theorems 1 and 2(i) recover the results of Ebrahimi
et al. [21], but Theorem 2(ii) covers also the case where ry < 1, closing the gap between the
two threshold functions that were identified by Ebrahimi et al. We should also point out that
Ebrahimi et al. [21] achieve strong probability bounds, that is, the related events occur with
probability that tends to 1 polynomially fast. In this case, the process accumulates only a
small number of infections beyond those incurred initially, so that Zy is almost equal to Zy.
Inside the critical window, that is, if a(t) = ©(a.(t)), then with probability asymptotically
bounded away from zero there is complete infection, and with probability bounded away from
zero we have similar behaviour as for the a(t) < a.(t) case.

Let w = w(t) — oo as t — oo arbitrarily slowly. With v =
above can be formalized as follows.

ﬁ and a.(t) = t'77, the

Theorem 1 (Supercritical case). If 1 < m and a(t) = wac(t) then all vertices in PA¢(m,d)
get infected whp.

Theorem 2 (Subcritical case). If r < m then the following hold:
(i) If a(t) = ac(t)/w and ry > 1, then whp, Z; = Iy.

(ii) Ifa(t) = ac(t)/w and r > 3 then |Zy|/|Zo| 21 and whp the process stops in at most L%J
rounds.

(iii) Ifa(t) = ac.(t)/logt and r =2, then |Zy|/|Zo 2,1 and whp the process stops in at most
L%J + 1 rounds.



It should be noted that when § < 0, ry > 1 is always satisfied, since we insist that r > 2.

Theorem 3 (Critical case). Let r > 3 and a(t) = Aa.(t) where X is a constant. Then there
exist constants 0 < p1,pe depending on A\ such that the following hold:

(1) if r < m, then the following holds with probability at least py: vertices are infected for at
most L%J rounds, and |L¢|/|Io| < 1+ ¢, for any € > 0 and any t large enough.

(ii) if r < m, then with probability at least pa, there is a complete infection.

The function a.(t) was also identified by the second author and Amini [6] in the case of
inhomogeneous random graphs of rank 1. However, results of Amini [4] imply that if the
kernel of such a random graph gives rise to a power law degree distribution with exponent
larger than 3 (corresponds to § > 0), then whp, a sublinear initial infection only results
in a sublinear outbreak. As our results and the results in [21] show this is not the case
in the preferential attachment model. In other words, a sublinear initial infection leads to
an outbreak where every vertex becomes infected, provided that the amount of the initial
infection is not too small. Theorems 1 and 2 identify this critical amount.

Lack of outbreak is also the case in random regular graphs of constant degree [11] as well
as in binomial random graphs with constant expected degree [28]. In the latter case, the
authors show that if a(t) = o(t), then |Zf|/|Zo| %, 1. This behaviour is radically different
from that in the preferential attachment model, where Theorem 1 implies that a sublinear
initial infection may lead to pandemics.

2.1.1 The casesr=m and r > m

It can be shown that there are a logarithmic number of self-loops in PA;(m,¢). For r = m,
these loops make analysis of the outcome difficult. This is a rather specific artifact of the
model and, is not shared with slight variations of the model, e.g., one in which self-loops are
not allowed.

For r > m the following “folklore” argument shows that if the number of initially infected
vertices is sublinear, then the final number will be sublinear as well: Let G be the subgraph
induced by all the vertices in Zy. The number of edges in G is at least (|Z¢| —|Zo|)r but at the
same time, the total number of edges in G can be at most m|Z¢|. Therefore (|Z¢| — |Zo|)r <
m|Zy| implying |Zy| < ——|TZo|.

r—m

2.2 Further notation and terminology

1 14+46/m
216/m> srorm- Observe the

condition § > —m (which must be imposed), implies 0 < v < 1. Furthermore, 6 < 0 if and
onlyif%<7<1.

For integers i, j with ¢ < j, we shall sometimes write [i, j] to denote the set {i,i+1,...,5}.
We also use S;(t) to denote the sum of degrees for vertices in the interval [1,1], i.e., Si(t) =
Z;:l Dj(t).

We will sometimes say a vertex j throws an edge e to vertex ¢ if, in the construction of
PA;(m,d), vertex j connected edge e to vertex i. We will also say i receives the edge e.

Throughout this paper we let v = ~(m,d) = hence 1 —~ =



Furthermore, for two non-negative functions f(t), g(t) on N we write f(¢) < g(t) to denote
that f(t) = O(g(¢)). If, in addition, g(t) = O(f(t)), then we write f(¢) < g(¢). In this paper,
the underlying asymptotic variable will always be ¢, the number of vertices in PA;(m, d).

m,d

We use the notation f(c) (5) g(c) to mean that there is a constant C(m,d) such that
fle) < C(m,d)g(c), and C(m,d) depends only on m, 4.

We will begin with some general results in the next section on the concentration of the
degrees, which will be used mainly in the Proof of Theorem 1.

3 Vertex degrees: expectation and concentration

As we mentioned above, the degrees in PA;(m, ) roughly follow a power-law degree distribu-
tion with exponent 3 4+ §/m, that is, the empirical probability mass function on the degrees
scales like W In fact, many networks that emerge in applications have a degree distri-
bution that follows a power law with exponent between 2 and 3 (cf. [2] for example), which
corresponds to 6/m € (—1,0). The Barabasi-Albert model gives power-law with exponent
3 (6 = 0). Observe that the variance on the degrees is finite if and only if the exponent is
greater than 3 (corresponding to § > 0).

Consider two vertices ¢ and j; their total weight is D;(t) + D;(t) + 20, meaning probability
of an edge being thrown to them is proportional to this value. Now a vertex with degree
D;(t) + D;(t) would have weight D;(t) + D;(t) + §. Thus, we cannot treat two separate
vertices ¢ and j as a single one of the combined degree, except when § = 0. In the special
case that 6 = 0, the weight of a vertex is proportional to its degree, and the weight of a
set of vertices is proportional to the sum of their degrees. When § = 0, we can treat a set
of vertices as a bucket of half-edges, or stubs, conceptually distributing the stubs across the
vertices however we like. However, when § # 0, the weighting is non-linear. Conceptually
grouping stubs together means that one has to sum their weights not their degrees.

In summary, the probability of a vertex receiving the next edge thrown is proportional to
its weight. The same holds for a set of vertices; the probability a set of vertices receiving an
edge is proportional to the total weight of the set. When, and only when, § = 0, then the
weight of a vertex is its degree, and the weight of a set is the total degree of the vertices in
the set.

A number of results on the degree sequence are collected in van der Hofstad [25] which
shows, amongst other things, that E[D;(t)] = (14 o(1))a (%)” where a is a constant that
depends only on m and 4.

3.1 Sum of degrees

Recall that S;(t) denotes the sum of degrees for vertices in the interval [1,7]. We state the
following without proof. It is a simple consequence of results in, e.g., [25].

Proposition 4. There exist constants Cyp, Cy, > 0 that depend only on m and § such that for
each vertez i € [t],
CotVi' ™7 <E[S;(t)] < Cyut"i' ™.

We next derive a concentration results for the sum of degrees. Lemma 5 is an elaboration
of Lemma 2 in [18]. Its proof can be found in the appendix.



Lemma 5. Suppose § > 0. There exists constants Ko, hg > 0 that depend only on m and ¢,
such that the following holds for all i € [t], K > Ky and h < hy,

P (Sz’(t) < Il(IE[SZ.(t)O < ot

Lemma 6. Lete > 0 be a constant. If § < 0, then there exists a positive constant ¢ = c¢(m, 0, €)
ci

that depends only on m, § and e, such that with probability at least 1 — e~
Si(t) = (1= e)E[Si(t)] (1)
for alli € [t].
Proof. We will use a Doob martingale in conjunction with the Azuma-Hoeffding inequality.
Define M (i,t) = E[S;(t) | PAn(m, 8)]. Observe, for n = 1,2,...,i, M{™9 (i,t) = E[S;(1)].
Now we want to bound \M(T’fg) (i,1) — M (i,t)| for n > 4. Observe that S;(n) is measurable
with respect to PA,(m,d), and E[S;(t) | Si(n),PA,(m,d)] = E[S;(t) | Si(n)], i.e., that the
expectation of S;(t) is independent of PA,(m,d) given S;(n). Hence, we will instead write
M (i,t) = E[Si(t) | Si(n)]. We have, for t > n,

E[Si(t) +6i | Si(n)] = E[E[Si(t) + 01 [ Si(t — 1), Si(n)] | Si(n)]
= E[E[S;(?) +di | Si(t — 1)] | Si(n)].
We will analyse the m = 1 case first. Considering the inner conditional expectation,

Syt — 1) + &i
2ro)t—1)+1+0

E[S;(t) +8i | Si(t—1)] = Si(t—1)+di+

B (2+ )t | .
- (2+5)(t—1)+1+6(S’(t_1)+5l)'

Therefore,
t
E[S;(t) + i | Si(n)] = ﬁE[Si(t — 1)+ di | Si(n)]
2okl
= (Sin)+0) [[ — 5%
k=n k+ ;%
T(t+1) T(n+ 35
_ (Si(n) + 0i) L +1+25 (n+ 545)
I(t+515) Tn+1)
Consequently,

MG 1) = M 60| = [BIS(0) | Siln -+ D]~ EISi(t) | Si(m)

I't+1 T(n+1+ 19 D(n+ 129)
B F(t(:%i?é) (Siln +1) +8) —Fr 5™ = (Siln) +60) =B
= Fft(t—i_‘g;;) I(\(n++2-{35> (Si(n+1) 4 61) n++2-{6 — (Si(n) + 67) -




1+6

We have -t < :fl”s < 1and S;j(n) < Si(n+1) <S;(n)+1, so

140

0 1+9
N , N % n+ao5
i 1 — (5 < (S -
(Si(n+ 1) + 09) o (Si(n) + 61) (S(n)+5z)| | |
Sz(n) + 01
— =+ L
(24+d)(n+1)
Since S;(n) < 2i+n—1i=n+1i and i < n, the right-hand side is at most 2:
Si(n) + di < n+i(1+9) < n+n(l+9) <1
240)(n+1) = 24+0)(n+1) =~ 2+9)(n+1) )
Thus,
T(t+1) T(n+ 333
MOy - 9| <2 DD T ¥ E)
Recall that when m > 1 we define PAy(m,d) in terms of PA,,;(1,d/m), and S, (b) in the
former corresponds to Sy, (mb) in the latter. Therefore, with v = v(m,d) = 5 +§ T
M,SH )(z,t) — Mfl 4) (z,t)‘ = ‘Mm n/H;(mz, mt) — Mr(nl;f/ )(mz,mt)‘
o - (1,6/m) . (1,6/m) .
= > (Mm(n+1) e (00,0 — Mm(n+1)—k(m7”mt)>|
k=1
S (1,6/m . 1,0/m .
< Z ’Mm n/+1) g1 (M, mt) — an(nﬁlgik(mz,mt)’
k=1
['(mt + 1) ir mn+1)—k+1—7)
F(mt+1—~ k:l Fm(n+1)—k+1)
We have
Fmn+k—-v)  mn+k—-1—-ymn+k—-2-vy mn+1-—yT(mn+1-7)
Lmn+k) —  mn+k—-1 mn+k—2 " mn+l1l T(mn+1)
Fimn+1-—7)
I(mn+1)
SO . .
Zf(m(n+1)—k+l— Zan—{—k ’y)SmF(mn+1—7)
— Fm(n+1)—k+1) — I'(mn + k) I'(mn+1)

Therefore,

: Fmt+1) T(mn+1-—7)
M0 (i ¢y — Mlmd) t}<2
’ wit O Y] s mI‘(mt+ 1—7v) I'(mn+1)
Re-writing the above, we get

F'mt+1—~y+4+7v) DI(imn+1-—7)
Fmt+1—7v) I'(mn+1-—v+7)

v
Cm,d (t) )
n

8

IN

m,0 m .
(M ) = MO )

IN



where C,, 5 is a universal constant that depends only on m and §.
Now, applying the Hoeffding-Azuma inequality,

—d?
2v
t t
C’rzn,& Zj:z’ﬂ (;)

P (Si(t) — E[Si(t)] < —d) < exp

2y
Hence letting d = eE[S;(t)] > eCyt?i' ™7 for some constant ¢ > 0,

—e20242v;2(1—) .
M&@—MMM<—®§wp<6%tl )_fm

Cy sEat2il =2y

for some constant ¢ = ¢(m, d,¢) > 0 that depends only on m, § and e.

4 Supercritical Case: Proof of Theorem 1

The proof of this theorem relies on the fact that with high probability all of the early vertices
of PA¢(m,d) become infected during the first round. Subsequently, the connectivity of the
random graph is enough to spread the infection to the remaining vertices. The infection of
the early vertices requires sufficiently high lower bounds on their degrees. We show these
using the concentration results of the previous section together with a coupling with a Pdlya
urn process.

4.1 Podlya Urns

Consider the following Pélya urn process with red and black balls. Let ¢ > 2 be an integer
and let the weighting functions for the red and black balls be Wr(k) = k + § and Wp(k) =
k + (i — 1)d, respectively. Under such a weighting scheme, if there are a red balls and b
black balls, then the next time a ball is selected from the urn, the probability it is red is
" (%TS[ZB T = aFo Jj’i‘giil) 5 = aj:z:‘_si 5- Whenever a ball is picked, it is placed back in the urn
with another ball of the same colour. We can ask, if there are initially a red and b black balls,
and we make n selections, what is the probability that d of those selections are red?

To start with, one may calculate the probability of a particular sequence of n outcomes.
If an n-sequence has d reds followed by n — d blacks, then it has probability p, 4.4, Where

a+9 a+1+96 a+d—14+96

a+b+ifa+b+1+i6 a+b+d—1+1id
b+(i—1)0 b+1+(—1) b+n—d—1+(—1)

Pn,d,ab =

a+b+d+ida+b+d+1+i5 " a+b+n—1+1
Tla+d+0)T(b+n—d+ (i—1)§) T(a+0b+id)
- T(a+9) b+ (i—1)) T(a+b+n+id)

It is not hard to see that this is the same probability for any n-sequence with d reds and
n — d blacks, regardless of ordering (this is the exchangeability property of the Pdlya urn



process). As such, letting Xpr(n,a,b) be the number of reds picked when n selections are
made, we have

P(Xg(n,a,b) =d) = <”>pn’d’a7b _ (n) Lla+d+8)T(b+n—d+(i—1)5) T(a+b+id)

d d) T(a+9) L(b+ (i —1)9) I'(a+b+n+1id)
(2)

Now let ¢ > 2 and consider the vertices [1,:] in (PA¢(m,d));2,. With every vertex ¢t =
i+1,i+2,..., there are m edges created, some of which may connect to vertices in [1,4]. We
ask, what is the probability that an edge connects to ¢, given that it connects to some vertex
in [1,4]7 A coupling with the above Pélya urn process is immediate: after the creation of
PA;(m,d), we create an urn with D;(i) red balls and 2mi — D;(i) black balls. Every time a
vertex ¢ > i connects an edge into the interval [1,4], a selection is made in the urn process. A
red ball is chosen if and only if the edge connects to i.

To demonstrate that the probabilities correspond, suppose in PA;;_1(m,d) we have
D;(t,j—1) = a. Denoting S;_1(t,j —1) = 2;11 Dy (t,j7 — 1), suppose also S;_1(t,7 — 1) = b.
Then it is easily checked that P (g(t,j) =i | g(t,j) € [1,i]) = aigfﬁ. Hence, if in PA;(m, )
there are n edges with one end in [1,4] and the other end in [i 4+ 1,¢], then the probability
that d of those edges are attached to vertex i is given by (2). As such, we have the following
proposition.

Proposition 7. Let m > 1,i > 2 be integers and let § > —m be a real number. Suppose a
Polya urn process starts with m < a < 2m red and b = 2mi — a black balls, and has weighting
functions Wr(k) = k+ 6 and Wg(k) =k + (i — 1)0 for the red and black balls, respectively.
Let the random variable Xr(n,a) = Xg(n,a,2mi — a) count the total number of red choices
after n selections have been made. Furthermore, consider a random graph PA;(m,d). Ift > 1,
then for 0 < d < n,

P(D;(t) =d+a| Si(t) —2mi =n,D;(i) = a) = P(Xgr(n,a) = d).
The following lemma will be used to bound individual vertex degrees.

Lemma 8. Let Xr(n,a) be the random variable defined in Proposition 7 and let I = i(2m +
0) — 1. Then for 1 < d <mn,

(m,0) 1 Id a+é dI
P(X - < (" “Tin
( R(n7a) d) ~ d (I+n_d) e It ? (3)

and

PCXu(rna) = 0) S (7 in>a+6. (1)

Proof. As per Equation (2),

P(Xgp(n,a) = d) = (”)F(“+d+5)r(b+n—d+(i—1)5) T(a+ b+ id)

d) T(a+9) I'(b+ (i —1)9) L(a+b+n+1id)
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That is, since a + b = 2mi and a + b + 1§ = i(2m + J), we have

P(Xg(n,a) = d) = <n> Pla+d+d)T(i(@2m+0)+n—(a+0+d) T(i(2m+0))

d) T(a+0) T(i2m+0)— (a+0)) T(i(2m+0)+n)

We re-write the above as

()

P(Xn(n,a) = d) — <n>F(a+5+d)F(I+1+n(a+5+d)) T(I+1)

d) T(a+)9) 'I+1-(a+9)) II+1+n)
Suppose first that d > 0. We can write the above as

I'(a+6+d) I'I+1) n)al'l+1+n—(a+d+d))

PR 0) =) = “0m 8y T 41— (a o) T +1+n)

(6)

((n)q denotes the falling factorial (n)g =n(n—1)...(n —d+1)).
To bound the above, we shall use the following fact: For real z > 0,

MNx+1)=cyV 9me gtz

where ¢, € [1, eﬁ]. Suppose now x — oo and a is a constant. Then, the above implies that
when z + a > 0,
I'(z+a)
()

Now we bound (6): using (7), we deduce that

= 29(1+ O(1/z)). (7)

(a+6+d) (M)

<’ doto—1
dT'(a+6) ™~ ’
ran) s
AISO by (7), m S I y and SO
(m,0)
IFa+d+d) I+1) < E(Id)‘”‘s. (8)
dl'(a+9) TI+1—(a+9)) d
Now,
(n)adl'I+1+n—(a+d+d) n n-1 n—(d-1) T'U+14+n—(a+6d+d))
I'(I+14n) I+nl+n—-1"T4+n—(d-1 TUI+n—-(d-1))
We have

n n—1 n—(d—1) n \* _ _ar
< <e I+n,
I+nl4+n—-1 I+n—(d-1) " \I+n) —

Furthermore, by (7)

(I +14n—(a+3+d) md 1
T(I+n—(d—1)) ~ (I +n—d)sts

Consequently, we have the following bound:
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(m,d) 1 Id a+0 al
]P) X = < —_ _— T n.,
( R(n7a) d) ~ d (I+n_d) € +

Now suppose d = 0, then going back to (5) we have

rI+1) TI(I+1+n—(a+96)) (ngs)( I >a+6.

IP’(XR(T%@:O):p(1+1—(a+5)) I(I+1+n) ~ \I+n

4.2 Proof of Theorem 1

For convenience, we rewrite as a(t) = w'%a.(t) where w = w(t) — oo arbitrarily slowly (we

can assume w < logt, since if not, we can just substitute logt for it and get full infection
whp; a larger w can only increase the probability of this happening).

Let £ = [w!T%/™] and choose [k] as a core. We wish to show all vertices in the core are
infected for this a(t).

For 0 > 0, we apply Lemma 5, taking h to be a sufficiently small constant such that for
some constant Ky, we have S, (t) > K,t7x'~" whp. For § < 0, we apply Lemma 6 to get the

same result. We set n = n.(t) = Kpt'k!=7 — 2mx.
”
Now we wish to show that whp, D;(t) > (W) % over all i € [k], for some appropri-

ately chosen z = z(t) — co. Applying Lemma 8 with [ = x(2m +0) — 1,

n/(x2)
P(XR(n,a)gﬁ) = Y P(Xg(n.a) = d)
d=0

Rz
I o\otd n/(kz) I a+é . s
+6-1 —FL
(I—I—n) * ; <I+n—d> d °n

I a+4d Ia+6 n/(kz) t5o1
< o+,
= <I+n) T 00— nf(re))e ;

N

Since K — oo and z — 0o as t — 0o, we have n/(kz) = o(n)

1 1
8O T () S (TFn)ers
Furthermore,

n/(kz

) n/(k2) atd
da+5—1 5/ $a+6_1 dr < 1 (ﬂ) * .
0 a+06 \Kz

d=0

2

Choosing z = w*, we have

a+o
I o\otd B k(2m + ) — 1 a+6 _ Wlto/m v(a+5) B 1
I+n A\ k@2m +0) — 1+ Ktk — 2mk ~ t 0\ )

Hence,

n 7o\t I O\ o\ ats 7 o\otd 1 1
P (X La) < 7) < (7) < <
r(n a)_mz N<I+n> +<I+n> KZ ~\IL+n +z“+5_zm+5
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Thus,

n 1
P(Xr(n,a) < ) S o5

Taking a union bound over all vertices in [k], we have a probability asymptotically bounded
by (Zim)l—i_&/m _ 0(1)

gl
So given D;(t) > (W) 2 for each i € [k], we calculate the expectation of the number

of infected neighbours a vertex in the core has. This would be at least

a(t) t 71 W 1 K > 7
omt \wi+o/m ) w2~ om \@ivo/m ) =
for large enough t.

To calculate the probability that at least r neighbours are infected for a fixed vertex ¢ in
the core, we bound the corresponding binomial random va