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Abstract

Thyme as a perennial herb has been recognized liyldba its antimicrobial, antiseptic and
spasmolytic effects. In this investigation, we hawsed non-targeted metabolite and volatile
profiling combined with the morpho-physiological rameters in order to understand the
responses at the metabolite and physiological levdtought sensitive and tolerant thyme plant
populations. The results at the metabolic levehidfied the significantly affected metabolites.
Significant metabolites belonging to different cheamh classes consisting amino acids,
carbohydrates, organic acids and lipids have b@snpared in tolerant and sensitive plants.
These compounds may take a role through mechanischeding osmotic adjustment, ROS
scavenging, cellular components protection and mengblipid changes, hormone inductions in
which the key metabolites were proline, betain, mi@h sorbitol, ascorbate, jasmonate,
unsaturated fatty acids and tocopherol. Regarditty wolatile profiling, sensitive plants showed
an increased-then-decreased trend at major terpgaesfrom alpha-cubebene and germacrene-
D. In contrast, tolerant populations had unchariggoenes during the water stress period with
an elevation at last day. These results suggeshag the two populations are employing
different strategies. The combination of metabolw®fiing and physiological parameters
assisted to understand precisely the mechanisiplaimif response at volatile metabolome level.

Key words: Drought, FTICR, GC/MS, Metabolomicshymus, Tolerance

Abbreviations: DI-FTICR (Direct Infusion- Fourier Transform lonCyclotron Mass
spectrometry), VOC (volatile compound), ROS (ReactDxygen Species), GC/MS-TOF (gas
chromatography time of flight), KI (Kovat Index),ATs (Quaternary ammonium compounds),
AsA (Ascorbaic Acid), PQN (Probabilistic Quotienbiinalization), QC (quality control), KNN
(K-Nearest Neighbour), SIM (Selected Ilon Monitoding Glog (Generalized Log
Transformation), PCA (Principal Component AnalysBY (Drought Tolerant population), TW
(Tolerant population Watered), DS (Drought Sensiopulation), SW (Susceptible population
Watered), Mi-Pack (Metabolite Identification PackagKkEGG (Kyoto Encyclopedia of Genes
and Genomes),MGDG (MonoGalactosyl DiacylGlycerol)DGDG  (DiGalactosyl
DiacylGlycerol), PC (Phosphatidyl Choline), PI(Ppbatidyl Inositol), ABA (Abscisic Acid),
CK (Cytokinin), 1AA (Auxin), GA (Gibberelline), JAJasmonic acid), SA (Salicylic acid), NO
(Nitric oxide), BR (Brassinosteroids), SL (Strigciane).



1. Introduction

Thyme is a perennial herb belonging to ltlaeniaceae (Labiatae) family consisting of more than
250 species and subspecies(Stahl-Biskup and S&82).2Thymus products and uses are
widespread and include essential oils, oleoredmresh and dried herbs, and even landscape
usage. As a medicinal plant, thyme extracts arggrgml oils can be used as antiseptic,
antibacterial and spasmolytical agents (Sagtia., 2002). Response to water deficit stress at
the physiological level has been demonstrated weraé species of the genus includifigymus
vulgaris (Aziz et al., 2008; Babaeet al., 2010; Bahreininejaet al., 2013; Letchamet al.,
1994), Thymus zygis (Sotomayoret al., 2004) andT. hyemalis (Jordanet al., 2003), but no
detailed study of the underlying metabolic changesler drought of this genus has been
reported. In other plants such as soybean, whaaglyptus, potatddrabidopsis, grapevine and
tomato, metabolite profiling has been used to swdter deficit (Bowneet al., 2012; Crameet

al., 2007; Foitoet al., 2009; Leviet al., 2011; Maneet al., 2008; Rizhskyet al., 2004;
Sanchezt al., 2012; Semett al., 2007; Silventest al., 2012; Vasquez-Robinet al., 2008).

In the mentioned studies, they compared metabditelstranscriptional responses to drought in
contrasting genotypes. They focused on metabotitegributed in primary metabolism and
reported significantly altered metabolites betw#®n genotypes along with their mechanism of
action. The advantage of this approach is not emlglemonstrate the common and adverse
responses, but also at quantitaive level, the réiffees may account for difference in drought

tolerance.

To cope with unfavourable conditions (the main destlimiting the plant productivity), plants
have evolved mechanisms which allow them to maintaeir productivity and/or survival
(Rowley and Mockler, 2011). Drought stress is thanrenvironmental factor that limits plant
production worldwide (Boyer, 1976). Water supplfeats almost all plant processes directly or
indirectly (Akinci and Lésel, 2012), hence watefidestress due to reduction of available water
will affect plants in various ways. The effect abdght on plants can be discussed relation to
morphological, photosynthesis, proteins, lipidsnenal uptake and Reactive oxygen species
(ROS) factors (Lisaet al., 2012).

In spite of a detailed knowledge of plant resporisesater deficit, there are many aspects that

require further study, including strategies agadetydration and correspondingly biochemical
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mechanisms. Comprehensive metabolite profilingubhodescribing the molecular mechanisms
underlying drought tolerance can inform future egsk to develop drought tolerant plants
(Umezawaet al., 2006; Valliyodan and Nguyen, 2006). Whilst colesable studies have been
performed to understand plant responses to draaigbds at the metabolic level (Bhargava and
Sawant, 2013; Shae al., 2009), no comprehensive investigation has beemedaout using
metabolomics in thyme to date. In the current sty thyme populations previously identified
with differing drought toleranceT( wulgaris, drought sensitive and. serpyllum, drought
tolerant, (Moradiet al., 2014a) were subjected to water deficit stressrder to determine the

major metabolites that might contribute to drouigih¢rance in thyme.

2. Results

2.1.Drought stress responses at physiological level

To monitor the morpho-physiological responses ghté plants to water deficit, plants were
grown under controlled conditions- as describeeXperimental section- subsequently water was
withheld at 38' day after sowing from the pots containing plartat twould be exposed to
drought stress. Next, physiological parameters hamater content, water potential and shoot
dry weight were recorded at 0, 4, 8, 12 and 15 ddigs water withholding in both controlled
and treated plants. Soil moisture sharply decreasdubth plants after 4 days but reached a
plateau after 12 days of water limitation. The odlfference was a slower rate of decline for DT
plants. Water potential declined off day and was around -4 bar until the end of stpes®d,
except forT. serpyllum, where water potential dropped on day 15 to -10 DBalerant plants had

a water potential slightly higher than DSs df @d 13' days (Figure 1). Water content in
sensitive plants (initially 94%) dropped to 88% ttwe 8th day and then 84% on 12th day. In
contrast tolerant plants had 88% water contenalhjitwhich remained constant until 12th day,
then it dropped to 80% at 15lay. Sensitive plant shoot dry weight increased4falays but
reached a plateau until the end of the stress ghefibe dry weight of tolerant plant shoots was
initially lower than sensitive plants but the ingse in weight continued for 11 days after
withholding water.

2.2.Changes in primary metabolite level during watedeficit stress



To assess the drought driven metabolome respamrdapkgical replicates sampled from plants

grown under well-watered and water-withheld potstfoth tolerant and sensitive plants at the
end of water deficit period. Subsequently, singi@et point harvest materials were analysed by
non-targetted metabolite profiling platform baseddd-FTICR mass spectrometry.

To visualize the differences between the metabgilitdile of the plants grown under watered
and droughted conditions and also to identify thajam metabolites responsible for this
difference, the dataset was subjected to Princmahponent Analysis (PCA). This statistical
approach is used to show similarities and diffeesnbetween groups in addition to pattern
recognition (Goodacret al., 2000). A score plot of all detected peaks over first two PCs
illustrated a good separation of four groups i.B, TW, SD and SW (Figure 2). Figure 2.A
showing polar positive ions, PC1 with 30.35% of thial variation clearly classified all samples
into susceptible and tolerant groups, while PC2laerimg 13.33% of the total variation, just
divided tolerant population into watered and sidsgroup. In figure 2.B, non-polar negative
ions shows the first PC with 23.47% of the totafiatton categorized samples to tolerant and
sensitive, while the second principal componentcidiesd 16.04% of variation. The QCs
(Quality Control consisting of an equal volume @ndom samples representative of all
biological replicates) being centred supports t®ieacy of this experiment.

Venn diagram shows total number of peaks incrgasindecreasing in the populations (Figure
3). It shows that 53 peaks (in polar and non-p&factions) increased significantly in tolerant

plants, but in sensitive plants the increasing pea&re 342, which 17 peaks were common. In
decreasing peaks, tolerant and sensitive plant4&Xand 295 peaks significantly changing

respectively with 41 peaks in common.

The altered metabolites included amino acids, darth@ates, organic acids, secondary
metabolites and hormones. A summary of metaboliezation with respect to their biological
role was listed in Figure 4. For amino acids, derssiplants had a decrease in all detected
compounds except for tryptophan (m/z= 243.0529)ilemolerant plants had elevation in all
detected amino acids except for serine. Proling£@#1.0211) and citrulline (m/z=349.1709)
had the largest increase. Moreover in sensitivatpldhomomethionine (m/z=164.074) had the
largest decrease. Regarding carbohydrates, all eleseated in tolerant population with the

highest being xylulose (m/z=215.0143), while in stwe plants, galactoglycerol
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(m/z=255.1075) and erythrose (Mm/z=159.0054) wereredsed and D-Xylulose-5-phosphate
(m/z=253.0084) increased. Most of the organic abiad increased in both populations except
for gibberellins (m/z=347.1864) in tolerant plaated homocitrate (m/z=247.0038) and aconitate
(m/z=212.9796) in sensitive thyme. Various compauwere detected as significantly changing
metabolites belonging to wide diverse metabolitéeegaries mainly secondary metabolites.
Membrane lipids had increased significantly in sdel tolerant plants except for lyso PC

(m/z=523.3642), whereas most of the lipids in gemsplants declined.

To understand the responses of DS population,abe bf all detected peaks (3328 peaks) in
control plants were compared to the same metableltel in stressed plants. This comparison
resulted in 605 peaks as significantly alteredusceptible population. Submission of the peak
list (m/z along with intensities) to Metabolite rddication Package (Mi-Pack), putatively
identified 92 metabolites which 57 increasing artdl decreasing (for a complete list of

significant metabolites see table 1 in (Moradi,mitted)).

These metabolites were broadly classified into amatids, sugars, organic acids, phyto-
hormones. Screening the complete list of identifredtabolites, performed using literature
review particularly through submitting in BioCYC crKEGG database. However only the
metabolites with the available description of fumetwere selected. Of the amino acids and
sugars, the only compounds significantly increaserk tryptophan and ribose respectively. The
most pronounced elevated metabolites were compourasding guanine (m/z=152.0567),

shikimate (m/z=213.016), isochorismate (m/z=2474)2isojasmonic acid (m/z=249.0886),
hydroxyferulate (m/z=249.0159) and dehydroquinatéz£243.0265). Within the significantly

declined metabolites, outstanding compounds werein@macids including alanine

(m/z=199.048), glutamate (m/z=148.0604), phenylaln(m/z=204.0421), phospho-hydroxy-
threonine (m/z=214.0112), aspartate (m/z=172.0@0 methionine (m/z=). This population
had a decrease in organic acids including aconftate=212.9796), ascorbate (m/z=182.0578)
and homocitrate (m/z=247.0038). Some sugars decliodowing water deficit included

galactosylglycerol (m/z=255.1075) and erythrosez&hb59.0054). The interesting compound
detected within the decreased metabolites wasolhakince it is a commercially important

volatile.



To profile lipids in DS plants, FT-ICR analysis waerformed in negative ion mode of non-polar
fraction inT. vulgaris extracts. Peak intensities of control plants wasmpared with those of
droughted plants. Of 2527 metabolites detected, p8&ks were statistically significantly
different (compared by T-test), with 94 peaks puddy identified by Mi-Pack (Weber and
Viant, 2010). For the complete list of non-polartaimlites affected by water stress in DS plant
see table 2 in (Moradi, submitted). The most reieveetabolites among the non-polar
metabolites were Methyl salicylate and 1-18:2 Ii&X6 for increased and decreased lipids across
the diverse categories lipids including MGDG, DGD®; and PS as well as tocopeherol and

gibberelline.

For polar metabolites of tolerant speciesStatistical analysis revealed 144 peaks out of 3328
that were significantly altered between droughted watered plants assessed by metabolite pool
size. Those 144 peaks included known and unknowsabuktes, enabling identification of 56
metabolites (see table 3 in (Moradi, submitted)f.the carbohydrates significantly affected, all
were elevated, including xylulose (m/z=215.0143)ycgnic acid (m/z=417.1522), sorbitol
and/or mannitol and/or iditol (m/z=169.0261). Theniao acids betaine and/or valine
(m/z=213.037), proline (m/z=221.0211), and citra@li(m/z=) increased in drought stressed
plants in comparison to controls, except for serfdgganic acids mostly increased in tolerant
compare to sensitive, including salicylate (m/z=0325), succinate (m/z=146.0924), oxoadipat
(m/z=168.0421), shikimate (m/z=213.016), dehydrogte (m/z=243.0265) and citrate
(m/z=423.1053), while only gibberelline (m/z=33151% decreased.

Regarding non-polar metabolites, Metabolite profiling of DTs was undertaken followgin
withholding water compared to control plants. Sligant compounds changing were 591 in the
non-polar fraction of which 61 metabolites weregtwely identified and are listed in table 4 in
(Moradi, submitted). The majority of lipids belongito diverse classes increased in DTs (
serpyllum) under drought. Notable lipids changing includékses of MGDG, DGDG, PD, PC,
Pl while lyso PC decreased. Moreover, elevatinglaxianthin (m/z=599.4114) is very
interesting. Since it is substrate of ABA and migitrease the level of ABA concentration
under stress condition (Freyal., 1999).



2.3.Changes in terpenes content during drought stes
In order to track VOCs in response to water degtiess between drought tolerant and sensitive
thyme, six independent biological replicates frolangs sampled at 0, 4, 8 and™@ays, were
analyzed using GC-MS volatile profiling platform.u©comparisons were including eleven
major volatiles in total consisting three sesqpigres (alpha-cubebene, B-caryophyelene and
germacrene) and eight monoterperfesfrcene, O-cymendi-pinene, alpha-thujene, ocimene,
gamma-terpinene, thymol and alpha-phellandrenegu(gi 3). For volatiles with available
external standards (p-cymene, B-myrcene, thymol alptha-phellandrene) comparison was
made on absolute quantities (pg/mg fresh weighhjijenfor others relative abundances have
been applied. Apart from alpha-cubebene, ten ottetabolites exhibited significant differences
between DT and DS plants. There was a high coratésrir of germacrene D in tolerant
compared to DSs, while other compounds showedaire pattern which increased in intensity
in DSs on 4 day and similar intensities throughout the stpessod (Figure 6). In contrast, most
of the terpenes of DTs were unaffected during thess apart from the final day where there was
a sharp elevation. When DSs are exposed to droetgkds conditions, terpenes are elevated
within 4 days, but return to the same intensitypaer to the stress. DTs did not change their
terpenes except for germacrene and thymol whiche@sed on 12 day. ForT. wulgaris
(susceptible) the™day was the turning point with increasing volatifer all monoterpenes and
sesquiterpenes at this point. The critical day(fés was 12 day, since the increase in terpenes

was been observed at this stage.

The altered metabolites are illustrated along wmiigtabolic pathways perturbed to water deficit

in both tolerant and sensitive populations (Figlixe
3. Discussion

Water depletion in both sensitive and tolerant fgaesults in exhibition of various responses
from metabolic to physiological and whole plantdevAt the physiological level, soil moisture
reduction lower leaf water content, which reductrates in tolerant plants were slower than
sensitive ones. Whilst lowering water potential maxe uptake of soil water particularly in
tolerant plants (Chavest al., 2003). At metabolic level, sensitive plants exieith more
metabolites significantly altered rather than tafgr plants, but qualitavely tolerant plants

showed increase in the accumulation of osmolytes 40 maintain water in cells and likewise,
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antioxidants (including terpenes) help to protdanpcells from ROS (Reddst al., 2004; Seki
et al., 2007; Milleret al., 2008).

3.1.Physiological basis of water saving and drought tefance inT. serpyllum compared

to T. wlgaris

Water content as a direct indicator of plant watatus, clearly identified the tolerant population,
since there was no significant difference of watantent between watered and droughted plants
in the tolerant population. Assessment of waterempidl and shoot dry weight identified
vulgaris (sensitive) population as a water spender Bnserpyllum (tolerant) as a water saver.
This strategy could result in less use of soil waed less shoot dry matter for tolerant.
Therefore, the presented results indicated Thaerpyllum behaved as a water saver, while
vulgaris exhibited water spender behaviour (Larcher, 2088rording to the definitions and
concepts proposed by Levitt (1972), plants can eynphe of two strategies: water spending or
water saving (Levitt, 1972; Monson and Smith, 198&alapos, 1994). Water savers close their
stomata even in adequate soil moisture, hence irgltianspirational water loss (Reynolds
al., 1997; Roark and Quisenberry, 1977). These plantddition to having more rigid cell
walls (due to higher modulus elasticity) and lowsmotic potential are less vulnerable to xylem
cavitation (Gyengeet al., 2005). Plant species classified as water spenaistain open
stomata and assimilate more £@herefore have more yields (growth rate) thanewatvers
(Dong and Zhang, 2001; Roark and Quisenberry, 19M@re growth rate is suitable trait for
plant in general, but it seems for plants undegssticondition or extracting certain products, this

trait is not appropriate.
3.2.Metabolic mechanisms of drought tolerance ifT. serpyllum compared toT. vulgaris

On the basis of the present results the tolerarehamisms of thyme to water deficit stress

could be divided into four categories as follows:

3.2.1. Osmotic adjustment as a key mechanism of drought response
Many plants employ this mechanism to cope with dgnostress by large scale
synthesis/accumulation of common solutes includamgino acids such as proline, aspartic acid,
and glutamic acid (Samuet al., 2000; Hamilton and Heckathorn, 2001; Bacetal., 2009),



carbohydrates (Vijn and Smeekens, 1999), methylajedternary ammonium compounds
(Rathinasabapathet al., 2001) such as betaines, polyols (Smirnoff, 1998J low molecular
weight proteins (Ingram and Bartels, 1996).

In T. serpyllum (tolerant plants), proline, betaine, valine andnale all increased. While in
sensitive population the only increasing amino awigs tryptophan, all other amino acids
decreasing. Amino acids are main product of inoigamitrogen assimilation, and are
components of proteins and nucleic acid (GreenwayMunns, 1980). Significant accumulation
of free amino acids under drought stress has bbsareed in a number of plants (Shaal.,
2009) such as wheat (Munesal., 1979), soybean (Fukutoku and Yamada, 1981), otice
and groundnut. Their accumulation enhances pldataioce, probably by osmotic adjustment
(Greenway and Munns, 1980). Increasing levels oliqpg have been detected in various drought
tolerant plants (Hassiret al., 2008; Paridat al., 2008; Everst al., 2010). Large regulation of
proline metabolism at the transcript level has destrated that proline accumulation is a stress-
induced and adaptive response of plant (VersluesStrarma, 2010). Considerable work has
established some possible functions for prolineiamdation under water deficit condition which
include lowering of cytoplasmic osmotic potentidogtberg and Sharp, 1991; Verslues and
Sharp, 1999). Proline may also protect cellulanctre by acting as a water substitute during
dehydration (Yancey, 2005). Betaine (glycine betpis one of the four common zwitterionic
QACs (Quaternary ammonium compounds) which canaacbsmoprotectants under drought
(Hansonet al., 1994). The most common QACs (glycine betaine Jipgobetaine,-alanine
betaine, choline o-sulfate and 3-dimethylsulfonaggponate) (Rhodes and Hanson, 1993;
McNeil et al., 1999) are amino acid derivatives with a fully mgated nitrogen atom (Chen and
Murata, 2002).

All the carbohydrates including xylulose, glucoaitid, sorbitol and mannitol were increased in
the tolerant population, while in sensitive plaatgthrose elevated and D-Xylulose-5-phosphate
decreased. Previous studies demonstrated thathyahtades such as soluble sugars increases or
at least being maintained fixed under stress cmmdiPinheiroet al., 2001). These sugars, in
addition to their role as osmolytes (Hoekstal., 2001; Jang and Sheen, 1994), might act as
stress response signals (Jang and Sheen, 1994yes#taal., 2003). Increases in xylose (a

monosaccharide) and sugar acids such as glucoicgrathe tolerant population are consistent
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with other studies such as eucalyptus (Wareeml., 2012). These carbohydrates are major
components of the cell wall (Keegs#taal., 1973) and have been demonstrated to contribude to
drought stress response as protective functiorhbypging cell wall composition (Joly and Zaerr,
1987; Zwiazek, 1991). Increases in acyclic polyalsh as mannitol and sorbitol have been
observed in response to water stress in many p(aloisaudet al., 2000). These compounds can

act as osmoregulators as well as oxygen radicakscgrs (Halliwell and Gutteridge, 1999).

3.2.2. ROS scavenging and cellular structure protection during water deficit
Ascorbate and tochoherol significantly increasetblarant plants (Figure 4). These antioxidants
have been observed to alter under various enviratahstresses including drought (Sharma and
Dubey, 2005; Maheshwari and Dubey, 2009; Mishia., 2011; Srivastava and Dubey, 2011;
Hernandezet al., 2001). ROS or free radicals {Q"OH, H,O,, 0,) are produced in cellular
compartments as a by-product of various biochemiesctions or in the chloroplast,
mitochondria and plasma membrane by exposure to éngrgy electron leakage from electron
transport (Foyer, 1997; Foyeral., 1994; Luiset al., 2006; Blokhina and Fagerstedt, 2010;
Heynoet al., 2011). Various studies have established an iseré&a ROS under osmotic stress
(Serratoet al., 2004; Borsanet al., 2005; Miaoet al., 2006; Abbaset al., 2007). Plants have
complex defence mechanisms using enzymatic andenaymatic antioxidants to mitigate
oxidative damage caused by ROS ([ea@l., 2000). Of the non-enzymatic compounds, low
molecular weight ascorbate (AsA), is the most plehand powerful antioxidant in plants with a
key role under oxidative stress by protecting maxiecules (Sharmet al., 2012; Smirnoff,
2000).

3.2.3. Membrane lipid composition change in addition to fatty acid unsaturation

Different trends for a number of non-polar metatesliwvere observed when comparing stressed
and control conditions for both sensitive and taher plants. Tolerant thyme plants that
experienced drought stress showed an increase mbraee lipids in comparison with the
watered except for lyso PC. However, leaf lipidcrdased in the sensitive plants of all
categories with the exception of 18:1 lyso PE amd Phe two populations with diverse
tolerance to water stress had very different respsrof lipid concentrations to stress. Declining
leaf lipids, as in the sensitive plants, has baenipusly observed in various crop plants such as
sunflower (Navarizzoet al., 1993), lupin (Hubaet al., 1989), oat (Lillenberg and Kates, 1985)

11



and cotton (Pham Thet al., 1982). The decrease in lipid contents is thesequence of
deleterious effects of drought stress which incloelé membrane degradation (Aehal., 1985;

De Pauleet al., 1990), inhibition of lipid biosynthesis (Pham Thial., 1987; Monteiro de Paula
et al., 1993) and lipolytic and peroxidant processesréfetliou et al., 1994; Sahsabkt al.,
1998; Matost al., 2001). Tolerant plants employ mechanisms to redhe negative effects on
lipid metabolism such as protoplasmic tolerancep@fim et al., 1997). Plants through this
mechanism rearrange membrane lipids (L6sch, 1998rner and Jones, 1980) to maintain
membrane structure and fluidity. Maintenance ofrappate membrane fluidity during stress
allows continued functioning of membrane proteinghs as the photosynthetic machinery
(Upchurch, 2008). In contrast, previous experimentslrought-tolerant cultivars of tobacco and
maize demonstrated that these plants are able itataimaor increase polyunsaturated level of
fatty acids (Zhangt al., 2005; Berbericlet al., 1998; Mikami and Murata, 2003). It has been
observed under salinity stress that tolerance @merthanced through increasing the level of
polyunsaturated fatty acids (Rodriguez-Varghsal., 2007; Allakhverdievet al., 1999). In
agreement with the previous results, increasing bmane lipid unsaturation occurs in response

to various stresses including drought in tolerdants.

3.2.4. Therole of phytohormonesin response of thyme to water stress
In the present study plants cataorgised as toleré&A and neoxanthin (precursor of ABA)
significantly increased and GA decreased under magsécit stress conditions. While sensitive
plants had lowered neoxanthin and increased JAu(€ig¢). Meanwhile indol-3-acetaldehyde
(IAAld, (Woodward and Bartel, 2005)) as a precursblAA elevated in both populations under
stress conditions. Increasing ABA in tolerant psamg consistent with a role for ABA in
dehydration tolerance mechanisms which has prelyi@stablished (Seet al., 2009; Ramirez
et al.,, 2009; Legnaiolet al., 2009; Honget al., 2008; Liet al., 2008; Wilsonet al., 2009;
Mishra et al., 2006). Moreover, accumulation of SA in tolerafdand under drought condition,
correlates with the contribution of this hormoneemhancing drought tolerance (Munne-Bosch
and Penuelas, 2003; Chetial., 2004), osmotic stress (Borsaatial., 2001) and regulation of
antioxidant enzyme activity (Durner and Klessig939 Durner and Klessig, 1996). Currently
known hormones are including ABA (abscisic acidiytene, CK (cytokinin), 1AA (auxin), GA
(gibberelline), JA (jasmonic acid), Sa (salicylicid), NO (nitric oxide), BR (brassinosteroids)

and SL (strigolactone) (Peleg and Blumwald, 20These hormones play a key role in the
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adaptation to environmental stress in synergisti@mtagonistic manner (Jaillais and Chory,
2010; Santner and Estelle, 2009). They play tbis through regulating various adaptive
responses (Messirgj al., 2010; Argueset al., 2009; Wanget al., 2009). It is well established
that IAA (Mahouachiet al., 2007; Albacetet al., 2008; Arbona and Gémez-Cadenas, 2008),
ethylene (Pieterset al., 2009), JA (Wasternack, 2007) and SA (Raskin, 1292 implicated in
response to various biotic and abiotic stressesl§iegoet al., 2012). Metabolic pathways can
be altered due to the specific stress, the dedraktavations depends upon plant species and the
type and length of stress (Krasensky and Jonak?)2@omparative analysis of metabolites in
stress-sensitive plants along with the stressdaotespecies of the same plant is an appropriate
way to demonstrate the role of metabolism in nattrass tolerance (Gomal., 2005; Hannah
etal., 2006; Zutheetal., 2007; Janetal., 2010; Korret al., 2010; Lugaret al., 2010).

3.3.Volatile compound alterations during water stras

Volatiles of thyme mainly consist of monoterpenad aesquiterpenes, hence the major terpene
intensities were compared throughout the stressghéFhe observed pattern for all of the eleven
terpenes was similar apart from thymol, alpha-cebeband germacrene. In sensitive plants all
the terpenes were elevated at day four then demteasprevious levels. While tolerant plants
maintained the same level of terpenes during themgress period and elevated af Hay of
stress period. These trends observed in sensiivgspcan be explained by drought stress effects
through declining photosynthesis and diversion afbon allocation to defence molecule
production systems. Since, following to decreasghimot water content, photosynthesis starts to
decline likely due to stomatal closure (£@ffusion limitation) (Chaves, 1991; Cornic, 1994
Ort et al., 1994) or metabolic perturbation (Boyer, 1976; wla, 1995) such as declining
Rubisco activity or concentration (Rennenbetrgl., 2006). Certain volatile compounds’ carbon
is provided mainly by photosynthesis (Schnitzitral., 2004) and drought stress affects
photosynthesis (Bhagseaei al., 1976; Flexast al., 2004). Therefore water stress influences
volatile compounds indirectly (Simpraga al., 2011). The increase at the end observed in
tolerant plants can be attributed to oxidativesstrand plant strategy against deleterious effects
of ROS. In spite of the likely role of terpenestine protection of leaves under drought, their
exact mechanism in drought tolerance is unknownwe¥@r, results obtained in this

investigation might suggest that sensitive plaratpsynthesis was affected strongly by stress,
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while tolerant plants having appropriate stratedmswater use such as osmoregulation in

addition to ROS scavenging, maintained the terpahssnilar levels even during severe stress.

The increasing and decreasing trend observed inseusitive plants has been published
previously in precise studies imposing water stiestuding monitoring water potential and
water content on some of the Mediterranean plaatisp (Ormenat al., 2007). As previous
researchers found, it seems changing the volatifeposition might be due to either carbon
diversion from photosynthesis to terpenes (Shaikey Loreto, 1993; Pefuelas and Llusia,
2003) or serving terpenes as non-enzymatic amkions to scavenge ROS (Gersheneal.,
1978; Llusia and Pefuelas, 1998).

4. Experimental

4.1. Plant material and experimental design

Seeds ofThymus vulgaris and Thymus serpyllum (as representative of drought sensitive and
drought tolerant plants respectively) were obtaifi@in the company Semillas Silvestres®,
Spain. Seeds were grown in a growth room with 8 {éght: dark) cycle and a temperature of
22°C and watered with tap water weekly. Drought stsgas applied and measurement of soil
moisture, water content, water potential and shiygtweight were carried out as described
previously (Moradiet al., 2014b). Measurements were made at 4 day intefuafs day O.
Similar aged leaves of individual plants were hatgd every four days for volatile profiling. An
additional harvest was carried out for FTICR pinglat the last sampling date. To illustrate the
experimental design in a simple form, Figure 7 ldigp three platforms used to assess the
response of morpho-physiologic (No.1 blue colongn-targetted volatile profiling using DI-
FTICR (No.2 in green colour) and volatile compourmsfiling using GC/MS (No.3 in red

colour).

4.2. Leaf sampling and extraction for DI FTICR

Leaf samples were harvested and flash frozen udigitrogen. Frozen samples were freeze
dried for 48 hours. For extracting metabolites, fileeze-dried samples were weighed and then
extracted using the methanol: chloroform: watetquol. Briefly, 32 ul MeOH and 12.8ul water
per mg tissue were added and tissue homogenisad asPrecellys 24 homogeniser (Bertin
Technologies Ltd, USA). Next, 32 ul CHCI3 and 16ydter were added and the mixture was
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centrifuged. Each fraction of the biphasic solutiwwas transferred to separate vials as polar
(upper layer) and non-polar (lower layer) extra®slar extracts were dried with a vacuum
concentrator (Thermo Savant, Holbrook, NY, USA) arwh-polar extracts were dried under a

stream of dried nitrogen gas. The dried extractewtored at -70°C until analysis.

4.3. Sampling and extraction procedure for volatileprofiling

From the first day of withholding water until dag,Iplants were harvested every 4 days. Similar
aged leaves from one plant were removed with s@sflash frozen in liquid nitrogen, weighed
and stored at -PC. Six biological replicates were collected eaam@iéng point. The weight of
fresh samples ranged between 30 to 100 mg. Exdrawtas performed using a modified liquid
extraction method: samples were taken from thezéeand immediately put in liquid nitrogen.
Leaves were ground in a microfuge tube, and retutaghe liquid nitrogen . After weighing, 1
ml hexane including 10ng/ul internal standard (BerAxetate) was added to each 1.5 ml tube.
Next, tubes were vortexed for 15s and centrifugeti3®00 rpm for 10 min. The supernatants

were transferred into 1.5 ml brown glass vialssiarage.

4.4. Non-targeted metabolite profiling using FT-ICRMass spectrometry

Prior to loading samples, freeze dried samples wesaispended in HPLC grade 80:20
MeOH:H,O with addition of 0.25% formic acid for polar extts and 20 mM ammonium
acetate for non-polar extracts. Dilution ratios ever.5:1 and 3:1 (dilution solvent: original
extract volume) for polar and non-polar extractspeetively. The reconstituted samples were
mixed by vortexing and then sonicated for 5 minutes quality control (QC), representative
samples containing an equal volume of randomlycsede samples were prepared. QCs in
addition to other samples were centrifuged at 41C1D minutes at 14000 rpm. Three technical
replicates containing 10 pl aliquots from each ofiege tube were loaded into auto-sampler
plates. Samples were analyzed using a hybrid 7dri€oTransformed lon Cyclotron Resonance
Mass Spectrometer (LTQ FT, Thermo Scientific, Brap@ermany) equipped with a chip-based
direct infusion nanoelectrospray ionisation assgribtiversa, Advion Biosciences, Ithaca, NY).
ChipSoft software (version 8.1.0, Advion Biosciesicavas controlling the Nanoelectrospray
conditions which had 200 nL/min flow rate, 0.3 paicking pressure, and +1.7 kV electrospray

voltage for positive ion analysis and -1.7 kV fargative ions. A total range of 70- 590 m/z
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range for polar and 70- 2000 m/z was scanned werlapping SIM scans which took 2 min, 15

sec in total.

4.5. Data analysis for FTICR

4.5.1. Pre-processing. In order to process the mass spectra generatedhical replicates out

of 2 with an 80% sample filter were retained (peaksurred at least 80% of samples within
group independently). Next, raw data was subjetbedustom-written code including sum of
transient files and their process (Southaral., 2007). Then, processed transient data files were
submitted to custom written codes in MATLAB (SIMtsh algorithm version 2.8). Three more
MATLAB scripts were applied to datasets, which redd to peak filtering (Paynet al., 2009).

At this stage, a peak list and a peak matrix wereegated. The peak list comprised two columns,
namely m/z (mass to charge) and related intensifies peak matrix consisted of a multivariate

dataset that recorded all the peaks detected &br l@alogical replicate.

4.5.2.Metabolite identification. The peak mass list, along with peak intensitieese submitted to
the Mi-Pack software package (Weber and Viant, 2@@0identify. For each given accurate
mass within the peak list, the correct number ofpieical formulae were calculated by
implication of seven ‘golden rules’ (Kind and Fie#007). It must be noted that, despite the
high mass accuracy, one mass may linked to diffesi@mental formula, or even similar formula
but different structures. Hence, in this paper,résults tables, all the possible compounds have
been inserted. For instance, for m/z=128.0108cath$ of alanine namely D-alanine, L-alanine

and beta-alanine are considered and FTMS cannaiglissh between these isomers.

4.5.3. Satistical analysis. Prior to PCA, dataset normalization was perforiased on the PQN
(Probabilistic Quotient Normalization) method ([2de et al., 2006) to diminish the effect of
extreme peak intensities. Next, the data matrix tneeted using the KNN imputation technique
(K-Nearest Neighbour imputation method) (Dixon, 297Hrydziuszko and Viant, 2012) to
estimate the missing values. Finally the sample® wansformed using the GLog (Generalized
Log Transformation) method (Parsazisl., 2007) to remove the domination of highest intignsi
peaks through stabilising the whole variance. P@Angcipal Component Analysis) was then
performed using MATLAB software, PLS Toolbox.
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4.6. GC-MS analysis

One microliter of volatile extracts were injectedio the GC/MS-TOF (gas chromatography time
of flight) (Pegasus Ill, Leco, St. Joseph, MI) gsthe autosampler. Compounds were separated
using a capillary column DB-5MS Ul, 10 m long, 0018im id and 0.18 pm film thickness
(Hewlett Packard, Palo Alto, CA) at 2C for 3 min and then raised at 30 min'to 250°C and
maintained for 2 min. Helium was the carrier gathwi flow rate set to 3 mL miinfor 2 min and

1.5 mL min! thereafter. The mass spectrometry was set to gEnarmass spectrum at 70 eV
with a 90s solvent delay at 1597 eV at 20 scansgeond. The mass range was 50-350 atomic
mass units. Volatile compounds were identified gsaither automatic identification based on
spectral library of the instrument software (LEC@r@na TOF version 1.00 Pegasus driver
1.61) or literature survey. Peaks were identifigdristrument software, confirmed by checking

with volatile compound reference (Adams, 2007) amav.pherobase.com. For unknown peaks,

the Kovat Index was calculated based on RetentiomeTand searched on references. Kovat
Index (KI) for each compound was calculated ushig formula KI (x) = 100 x ([log RT (x) —
log RT(alkane on the left)] — log RT(alkane on k)] x [number of carbon atoms of alkane on
left]. Calculated Kls were then compared to thaseeference (Adams, 2007) to confirm the
identification. Identified peaks were quantifiedings correction of peak areas by an internal
standard (benzyl acetate), sample weight and elextmnal standards includingphellandrene,
myrcene, a-terpinene, -phellandrene, Cig;ocimene, y-terpinene, terpinolene, linalook-
humulene, thymol and carvacrol as previously dbsdri(Kantet al., 2004). For each sample,

five technical replicates were run by GC/MS.

5. Conclusion
The present study demonstrated that tolerant amgltse populations had different responses to
water stress at both physiological and metabolelte Water content as a direct indicator of
plant water status, clearly identified the tolergpulation, since there was no significant
difference of water content between watered andighted plants in the tolerant population.
Assessment of water potential and shoot dry wadgritified T. vulgaris (sensitive) population
as a water spender amdserpyllum (tolerant) as a water saver. This strategy coesdlt in less

use of soil water and less shoot dry matter faartoit.
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The general picture of metabolites shows that tagntlasses of metabolites consisting amino
acids, carbohydrates, lipids and organic acids vardlifferentially affected in the thyme
populations at early vegetative growth stages spaase to water stress. However, increase in
the major metabolites pool size in tolerant poporet (T. serpyllum) was associated with
increased tolerance. This is likely to occur thiowggveral mechanisms which are including
osmotic adjustment, ROS scavenging and cellularcttre protection and membrane lipid
composition change. Osmotic adjustment might inelugetabolites such as proline, betaine,
mannitol and sorbitol. Likewise, ROS scavengingrisbably carried out by enhanced ascorbate
and tocopherol levels and also cellular protecbhgrmetabolites such as proline and mannitol.

Membrane lipid changes might be resulted by inénggsoly unsaturated fatty acids.

The highlighted differences between the tolerantl aensitive group of samples are
demonstrated by the first component of PCA. Furtheestigations on the selected metabolites
may provide more information on the biochemicalhpatys under water stress conditions.
Eventually, with genetic engineering of the invalvgenes or by exogenous application of key
metabolites it may be possible to enhance plagssttolerance in sensitive thyme plants which
is the end target, as the metabolites synthesizettrudrought by tolerant plants were not
produced by sensitive plants. Some of these matabare including osmolytes, antioxidants

and phytohormones.
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Figure legends

Figure 1. Physiological parameters influenced by lwg-term water stress in tolerant and
sensitive thyme. One month old plants of tolerantrad sensitive populations T. serpyllum
and T. wulgaris respectively) were exposed to long-term water lirfation by water

withholding. Next, physiological parameters were reorded at 4 day intervals. Soil moisture
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and water content drastically declined in DS plantswhile those parameters in tolerant
plants were gently decreased. Moreover, shoot dry eight of DSs was greater at similar

time points.

Figure 2. Score plot of PCA on polar and non-polametabolite extracts for the tolerant and
susceptible thyme plants grown in control and drouted conditions and harvested at the
end of stress period. DI FT-ICR spectral data of catrol and droughted leaves derived from
two thyme populations with varied tolerance to droght subjected to PCA. Four groups
(TD: Tolerant Droughted, TW: Tolerant Watered, SD: Susceptible Droughted and SW:
Susceptible Watered) well separated by the first taw PCs. A) polar positive ions. B) non-

polar negative ions. The QCs (Quality Control consiting).

Figure 3. Total number of peaks significantly incrased/decreased in droughted plants
compared to watered. Venn diagram shows that 53 pka (in polar and non-polar
fractions) increased significantly in tolerant plarts, but in sensitive plants the increasing
peaks were 342, which 17 peaks were common. In deasing peaks, tolerant and sensitive
plant had 480 and 295 peaks significantly changinggspectively with 41 peaks in common.

Figure 4. Metabolite changes regarding with their mjor classes of compounds. Vertical
axis represents the fold change between control antleated plants. There are striking
guantitative and qualitative differences between ppulations with the profile of amino
acids, carbohydrates, organic acids and other compads. In amino acid class, sensitive
plants have decreased all the detected compoundscept for tryptophan, while tolerant
plants have increased all detected amino acids extdor serine. Proline and citrolline had
the largest increase. Moreover in sensitive plantshomomethionine had the largest
decrease. Regarding with carbohydrates, all the chaohydrates increased in tolerant
population with the maximum of xylulose, while in ensitive plants galactoglycerol and
erythrose decreased and D-Xylulose-5-phosphate edded. Most of the organic acids have
increased in both populations except for Gibberelhis in tolerant plants and homocitrate
and aconitate in sensitive thyme. Various compoundsvere detected as significant
metabolites belonging to wide diverse metabolite tagories mainly secondary metabolites.

Membrane lipids have increased significantly in stessed tolerant plants except for lyso PC,
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whereas most of the lipids in sensitive plants havdeclined. Tolerant plant: Thymus

serpyllum and Sensitive plant: Thymus vulgaris. Y ais: Fold change

Figure 5. Volatile compounds affected in 4 week ol®@T and DS thyme plants under water

deficit stress. After withholding water, we harvesed the leaves at 4 day intervals. For p-
cymene, B-myrcene, thymol and alpha-phellandrene thgraphs show absolute quantities
(pg/mg fresh weight), while for others show relatie abundance. a) Gamma-terpinene, B-
Myrcene, Alpha-Phellandrene, O-Cymene, B-Pinene, pha-Thujene, Ocimene, b) Thymol,

c) Germacrene, d) B-caryophylene, e) Alpha-cubebenBlue lines represent DSs and green
tolerant ones. Error bar= +SEM, Rep=5.

Figure 6. Presentation of the selected metabolitemnd metabolic pathways affected by
drought stress in tolerant and sensitive thyme plais. Diagram representing the response of
tolerant and sensitive thyme plants to water stresat metabolite level. Bar charts illustrate
the nearby metabolite fold change in droughted plats compare to watered plants. Blue
coloured metabolites represent for alteration in tterant, red-coloured for sensitive
population and green-coloured metabolites referredto metabolites changed in both

populations. Image made using powerpoint and excel.

Figure 7. Experimental design illustrated for both sensitive and tolerant thyme plants.
Morpho-physiologic (No.1 blue colour), DI-FTICR (Na2 in green colour) and GC/MS
(No.3 in red colour).
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Figure6
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Figure 7
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