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Highlights 

 Acetazolamide lowers intracranial pressure in healthy rats 

 Acetazolamide inhibits the activity of the Na/K ATPase 

 Acetazolamide increase aquaporin 1 in the membrane of choroid plexus 

 Acetazolamide has a dual action in choroid plexus affecting both ion transport and protein 

expression 
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Abstract 

Acetazolamide is one of the most widely used drugs for lowering intracranial pressure (ICP) and is 

believed to reduce cerebrospinal fluid (CSF) secretion via its action on the choroid plexus (CP). In 

the CP the main driving force for CSF secretion is primarily active transport of Na+ ions facilitated 

by the Na/K ATPase. Transmembrane water channels, known as aquaporins (AQP), are also 

present in the CP and play an important role in the movement of water. In the present study, we 

investigated the effect of a single dose acetazolamide on the activity of the Na/K ATPase and ICP. 

Furthermore, we investigated the expression of Na/K ATPase, AQP1 and AQP4 in the CP tissue 

following acetazolamide treatment.    

12 female Sprague Dawley rats were randomized into two groups; one group received 200 mg 

acetazolamide and the other vehicle treatment. All animals were subjected to ICP recordings and 

the CP tissue was collected for qPCR and western blot analysis. The effect of acetazolamide on the 

Na/K ATPase activity was evaluated in an in vitro assay of primary CP epithelial cells isolated from 

rats.  

Acetazolamide significantly lowered ICP within 10 minutes of injection compared to the vehicle 

group (P<0.05), reaching a maximum reduction at 55 minutes 66 ± 4% (P<0.00001). Acetazolamide 

also significantly decreased the activity of the Na/K ATPase in CP epithelial cells compared to 

vehicle (P=0.0022).   

Acetazolamide did not change the AQP1, AQP4 or Na/K ATPase mRNA content in the CP tissue. 

However, we did record an increase in the amount of AQP1 (p=0.0152) and Na/K ATPase 

(p=0.0411) protein in the membrane fraction of the CP, but not AQP4 (p=0.0649).   



4 
 

A single dose of acetazolamide lowers ICP and modulates the CSF secretion pathway in healthy 

rats - Firstly, by inhibiting the Na/K ATPase to slow the CSF production, secondly, by increasing 

AQP1 and Na/K ATPase protein in the membrane of the CP epithelial cells. 
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Introduction  

Acetazolamide is one of the most widely used drugs for lowering intracranial pressure (ICP) in 

disabling conditions like idiopathic intracranial hypertension (IIH)[24]. The high ICP associated with 

IIH often leads to chronic severe headaches, visual disturbances and papilloedema[9, 14, 15], 

which causes permanent blindness in 20% of cases[3, 23]. Currently, management of IIH aims 

primarily to avoid visual damage by reducing ICP. Acetazolamide is a carbonic anhydrase inhibitor 

that is believed to reduce cerebrospinal fluid (CSF) secretion[2, 7, 25] and ICP[11, 12] via its action 

on the choroid plexus (CP). The largest clinical study evaluating the efficacy of acetazolamide on 

ICP in IIH patients demonstrated a beneficial effect on ICP compared to placebo[12], whilst 

another randomized controlled trial of acetazolamide highlighted a very high drug withdrawal rate 

due to side effects[4]. The most commonly reported side effects of acetazolamide by IIH patient 

are paresthesia, nausea, and fatigue[24]. Currently, a detailed molecular mechanism of action of 

acetazolamide in CP has yet to be elucidated. 

In the CP the main driving force for CSF secretion is primarily active transport of Na+ ions into the 

brain ventricles facilitated by the Na/K ATPase[5, 6]. Inhibitors of this pump, such as ouabain, have 

been shown to efficiently reduce CSF secretion and the movement of Na+ into the CSF[7, 18, 26]. 

The Na/K ATPase is predominantly expressed in the apical membrane of the CP epithelial cells[8]. 

This luminal localization is crucial in driving Na+ transport and CSF secretion.  

Aquaporin 1 (AQP1), a transmembrane water channel, also has an important role in movement of 

water across the CP epithelial cells. AQP1 is highly expressed in the apical membrane of the CP 

epithelium and hence have been implicated to have a key role in CSF secretion[16, 21]. For many 

years, no direct evidence for this was established. However, in 2004 it was shown that AQP1 null 
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mice had significantly impaired CSF production and lower ICP compared to wild-type mice[17]. 

Furthermore, AQP1 expression and water movement are decreased after acetazolamide 

treatment in primary CP epithelial cells isolated from rats[1].  

Another water channel is also present in CP; Aquaporin 4 (AQP4) expression has been shown in CP 

and in a cell culture of CP to be located in the cytoplasm of the cells[21]. This localization suggests 

that AQP4 is not normally involved in water movement across the CP epithelium. However, since 

the only known function of the AQP4 is water transport it might potentially be translocated to the 

CP epithelia cell membrane and play a role in CSF secretion in response to drugs or pathological 

conditions.  

Studies of ICP in rodent models can be challenging, mainly due to the lack of commercial 

transducer systems specifically designed for small rodents. Many established methods involve 

penetration of the dura mater and implementation of cannulas in the lateral ventricles or in the 

cisterna magna[22]. These procedures introduce a risk of disturbing the CSF system and/or the CP. 

However, we recently developed and validated a novel method for reliable and minimally invasive 

repeated ICP measurements in the epidural space of rats[22]. In the present study, we used this 

methodology to investigate the effect of a single dose acetazolamide on ICP in healthy rats. 

Furthermore, we investigated the expression of Na/K ATPase, AQP1 and AQP4 in the CP tissue in 

the same animals. Finally, we employed an in vitro assay to establish the effect of acetazolamide 

on the activity of the Na/K ATPase as an indirect measure for CSF secretion.    

Material and methods  

Animals 
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For the in vivo work, 230-260g female Sprague-Dawley rats (Taconic, DK) were used. The rats were 

group housed in the animal facility at the Research Institute, Rigshospitalet Glostrup, and kept 

under a 12 h light/dark cycle with free access to food and water ad libitum. All experimental 

procedures were approved by the Danish Animal Experiments Inspectorate (license number 2014-

15-0201-00256).  

For the in vitro work, 150-200g female Sprague-Dawley rats (Charles River, UK) were used. The 

rats were housed at the University of Birmingham in accordance with the Animals and Scientific 

Procedures Act 1986, licensed by the UK Home Office and approved by the University of 

Birmingham Ethics Committee.  

Study design 

Initially 3 rats were used to identify the time point of maximum acetazolamide (Diamox®, Mercury 

pharma, Germany) effect on ICP as well as its duration. The animals were anesthetized and 

underwent ICP guide cannula implantation (described in detail below) after which the baseline ICP 

was recorded over 30 minutes. Then 200 mg acetazolamide dissolved in sterile saline was 

administered by i.p. injection. The recording was continued until the ICP returned to baseline 

(Figure 1A, top panel). For the main experiment, 12 rats were randomized into two groups with 6 

rats in each; the treatment group received 200 mg acetazolamide dissolved in sterile saline and 

the vehicle group received sterile saline, both groups by i.p. injection. All animals were subjected 

to the same procedure as above except ICP was only recorded for 60 minutes post dosing. The rats 

were then euthanized with an overdose of pentobarbital, transcardially perfused with ice cold PBS 

and the CP tissue was collected 1½ hours post acetazolamide or vehicle treatment. 

ICP 
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The surgical procedure and the actual ICP recording technique were recently published as a 

methodological paper describing all technical details[22]. In brief, all rats were anaesthetized with 

a mixture of Hypnorm® (Vetapharma, UK) and midazolam (B. Braun, Germany): 1.25 mg/mL 

midazolam, 2.5 mg/mL fluanisone and 0.079 mg/mL fentanylcitrate; 2.7 mL/kg by subcutaneously 

injections. Eyes were covered with Viscotears® eye gel (Novartis Healthcare, Copenhagen, 

Denmark) and the rat was placed in a stereotactic frame (David Kopf Instruments, US). A heating 

pad with connected rectal thermometer was used to keep the body temperature at 37˚C. Then a 

two-centimeter midline incision was made on top of the skull and the bone was exposed by 

retraction of skin and soft tissue.  

A dental drill was used to make four burr holes in the skull; one to enable implementation of the 

epidural guide cannula (PlasticsOne, C313G, US) and three to fit small anchoring screws to the 

skull. At the site of the epidural guide cannula placement the dura mater was exposed and bone 

residues removed in an atraumatic and very careful procedure to avoid penetration or damage to 

the dura mater and associated blood vessels. Then the epidural guide cannula and the anchoring 

screws were placed and aligned with the interior surface of the skull and secured using dental 

resin-cement (Clearfil SA Cement, RH Dental, Denmark). Next the ICP guide cannula and the 

transducer (DTX-Plus™, Argon Medical Devices, US) were connected by a polyethylene tube filled 

with sterile water. Air bubbles in the tubing or transducer were eliminated if observed. All ICP 

recordings were initiated with confirmation of proper signal by observing an ICP increase induced 

by jugular vein compression (Queckenstedt test) (Figure 1). The pressure signal was visualized and 

recorded using Perisoft for Windows v.2.5.5 (Perimed, Sweden).  

Na/K ATPase activity in primary CP cell culture 
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Choroid plexus tissue from lateral and 4th ventricles were isolated and incubated with 0.25% 

trypsin solution for 2.5 hours at 4°C followed by 30 minutes at 37°C. Trypsin digestion was stopped 

by the addition of newborn calf serum and the cell suspension was centrifuged at 20 g for 10 

minutes. Cells were re-suspended in DMEM/F12 (Gibco, Thermo Fisher Scientific) supplemented 

with 10% fetal bovine serum, 1% penicillin/streptomycin, 4mM L-glutamine, 200ng/ml 

hydrocortisone, 5ng/ml sodium selenite and 10ng/ml EGF. 20µM cytosine arabinoside was used 

for the first 5 days in culture to limit the growth of fibroblasts[10]. Initially the cells were seeded 

onto laminin coated flasks (20µg/ml) and allowed to grow for 2 days before being transferred to 

12 well inserts (Greiner Bio-One Ltd). On day 4 the media was replaced with DMEM/F12 

supplemented with 10% FBS and 1% penicillin/streptomycin and refreshed every 2-3 days. After 

reaching confluency, CP epithelial cells were serum deprived for 3 days prior to the beginning of 

the studies (Day 10-14 after initial CP tissue isolation).The effect of acetazolamide on Na/K ATPase 

activity in the CP epithelial cells was evaluated by the colorimetric measurement of phosphate 

released from ATP with the use of a phosphate assay kit (ab65622, Abcam). The total Na/K ATPase 

activity was defined as the portion of phosphate production that was inhibited by 1mM ouabain. 

The cells were incubated with aCSF for 1 hour at 37:C before incubation in aCSF containing; 

100µM acetazolamide or saline-, in the presence and absence of 1mM ouabain for 30 minutes at 

37:C. The cells were then lysed with NP-40 lysis buffer on ice and spun at 13,000g to remove cell 

debris. Phosphate was measured per manufacturer’s instructions. Briefly a reaction mix was added 

to the sample and incubated at room temperature for 60 minutes before the plate was analyzed 

at 650nm. Na/K ATPase activity was calculated as the difference between the amount of 

phosphate produced in the presence and absence of ouabain for each treatment. 

qPCR and Western blot of CP membrane fractions  
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Choroid plexus from lateral and 4th ventricles were collected immediately following transcardial 

perfusion with ice cold PBS. The tissue was then stored in -80 degrees until analysis. RNA was 

purified using the GenElute™ Mammalian Total RNA Miniprep Kit (Sigma-Aldrich). Following 

elution the RNA yield and purity was assessed spectrophotometrically (Nanodrop 200C, Thermo 

Fisher Scientific Inc.). cDNA was synthesized from 200 ng RNA using the iScript cDNA Synthesis Kit 

(Bio-Rad, CA, USA). Then qPCR analysis was performed using the QuantiTect SYBR Green PCR 

system (Qiagen, Hilden Germany) per manufacturer's instructions; QuantiFast SYBR Green I dye 

(Qiagen), primers and cDNA from each sample were mixed in wells of a qPCR plate in duplicates. 

The plate was then analyzed using the Quant studio 12K Flex Real-Time PCR System (applied 

biosystems by LifeTechnologies) and the resulting Ct value for each sample was obtained. The 

relative abundance of mRNA transcripts in each experimental sample was established by 

calculating the detection ratios between each target gene (AQP1, AQP4 and Na/K ATPase) and the 

reference gene (GAPDH). The primers used were all pre-validated gene-specific primers from 

Qiagen’s QuantiTect Primer Assay: AQP1 (QT00173789). AQP4(QT01084580). Na/K ATPase alpha1 

subunit (QT02384046). GAPDH (QT00199633).  

For western blotting the protein membrane fraction was extracted by lysing the CP tissue with the 

Mem-PERTMPlus Membrane Protein Extraction Kit (Catalog number 89842, Thermo Scientific) 

according to manufactures instructions. The final protein concentration of each sample was 

evaluated using Bradford protein assay (BioRad DCTM protein Assay, BioRad). 10 µg of total protein 

were separated on a 4-12% SDS-PAGE gel (PAGEgel Inc.). The proteins were then transferred via 

dry blotting using the iBlot2 system (LifeTechnologies) onto a PVDF membrane (Invitrogen) and 

blocked with 5% BSA in TBST. The membranes were then incubated overnight (5ᵒC) with 

appropriate primary antibodies and subsequently washed and incubated for 1 hour with 
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secondary antibodies at room temperature. The protein bands were visualized using an ECL-

reagent (ECL selectTM, GEHealthcare) and a digital image of the blot were obtained with the LAS-

4000 imaging system (Fujifilm Life Science).  Primary antibodies: Na/K ATPase alpha1 subunit 

(#3010, Cell Signaling). AQP1 (ab168387, Abcam). AQP4 (ABN411, Merk Millipore). Pan-cadherin 

(ab51034, abcam). Secondary antibody: Goat-anti-rabbit (P0448, DAKO).  

Data Analysis and Statistics  

Data is presented as mean ± SEM. All data were processed using GraphPad Prism 5.02. P-values 

below 0.05 were considered statistically significant. The repeated measures of ICP were analyzed 

using 2-way ANOVA followed by Bonferroni multiple comparison post-test. The remaining data 

were analyzed using Mann-Whitney tests.  

Results  

ICP 

To determine the effect of acetazolamide on ICP in healthy rats, the rats were anesthetized and 

ICP measured before and after an i.p. injection of either 200mg acetazolamide or vehicle. 

Representative examples of the ICP traces following acetazolamide and saline treatment are 

presented in figure 1A.  A single i.p. dose of 200 mg acetazolamide significantly lowered ICP within 

10 minutes of the injection 18 ± 5%, compared to the saline group 5 ± 2% (P<0.05), reaching a 

maximum reduction at 55 minutes 66 ± 4% (P<0.00001), (Figure 1B). The maximum response to 

acetazolamide ranged from 56-85% (Figure 1B) and was sustained for approximately 30 minutes 

after which the ICP began to normalize and returned to baseline levels 5 hours post dosing (Figure 

1A). Saline had no significant effect on ICP (Figure 1A, lower panel and 1B). 
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Na/K ATPase activity  

Total Na/K ATPase activity was determined as the concentration of inorganic phosphate generated 

by the hydrolysis of ATP that was sensitive to ouabain treatment. This show how much of the 

measured phosphate that originates from Na/K ATPase. Thirty minutes of 100 µM acetazolamide 

treatment significantly reduced the level of inorganic phosphate production by the Na/K ATPase to 

16 ± 3% compared to the control 47 ± 6% (P=0.0022). Our data confirms that acetazolamide acts 

on the CP epithelial cells to reduced Na/K ATPase activity by approximately 65%. (Figure 2). 

qPCR 

To determine if the ICP decrease could be connected to alterations in transcription of protein 

encoding mRNA for AQP1, AQP4 and Na/K ATPase, this was analyzed by qPCR. The CP was isolated 

1½ hours post administration of either acetazolamide or vehicle. At this time point we observed 

the maximal ICP decrease that had been sustained for 30 minutes (figure 1A, top panel). No 

significant difference was seen between the two groups for any of the target genes; AQP1 

(p=0.699), AQP4 (p=0.421) and Na/K ATPase (p=0.937). (Figure 3).  

Western blot of membrane fraction 

Since acetazolamide did not affect the transcription of the protein encoding mRNA for any of the 

three target genes mentioned above we did not expect to find any changes on the protein levels at 

this early time point either. Instead we speculated if the CSF pathway could be affected not by 

increased transcription and subsequent translation of mRNA into protein in the entire CP tissue, 

but maybe just in by altered protein levels in the membrane of the CP tissue where the water 

transport takes place.  
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We found that both AQP1 (p=0.0152) and Na/K ATPase (p=0.0411) protein was significantly 

increased in the CP epithelial membrane 1½ hours after a single dose of acetazolamide. The 

amount of AQP4 protein in the extracted membrane fraction was not significantly different 

between the vehicle and acetazolamide treated animals (p=0.0649). (Figure 4).  

Discussion  

In this study we have demonstrated that a single dose of acetazolamide lowers ICP in healthy rats, 

with the maximum effect occurring roughly one hour after dosing. The low ICP is maintained for 

30 minutes before slowly returning towards the baseline value. The main mechanism of action of 

acetazolamide is to inhibit the carbonic anhydrase enzyme, which normally catalyzes the 

conversion of H2O and CO2 to HCO3
- and H+. Carbonic anhydrase is not directly involved in water or 

ion transport in the CP; though its inhibition by acetazolamide has been shown to reduce CSF 

secretion[2, 25] and ICP[11, 12]. CSF secretion by CP is governed by a number of ion transporters 

specifically located on either the basolateral or the apical surface of the CP epithelial cells. The net 

flow of ions across the CP facilitates the movement of water and thus CSF secretion[6]. Na/K 

ATPase in the apical surface is the main driving force for transporting Na+ into the CSF against its 

concentration gradient[6], therefore its activity is directly linked to CSF production by the CP. 

Hence, we find it credible that the drop in ICP is facilitated by the inhibition of the Na/K ATPase 

activity by acetazolamide. This means that Na+ transport across the CP epithelia is suppressed and 

the rate of CSF production will slow down and lead to a fall in ICP. Our finding that acetazolamide 

inhibits the activity of this pump in primary cultures of CP epithelial cells fits well with other 

studies showing that the Na/K ATPase activity is inhibited and secretion of CSF reduced in the 

absence of CO2/HCO3
-[19], which is substrate and product of the enzymatic reaction enabled by 
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carbonic anhydrase. The connection between carbonic anhydrase and Na/K ATPase in the CP is not 

well established, but in other tissues acetazolamide is believed to facilitate its effect by reducing 

the amount of H+ ions available for the Na/H exchanger[13, 27]. This in turn limits the amount of 

Na+ to be transported by the Na/K ATPase and thus lowers its activity. We believe that a similar 

mechanism exists in the CP where the Na/H exchanger is also present. This is supported by studies 

done in rats showing that acetazolamide reduces CSF production and that the mechanism of 

action is not simply a direct inhibition of Na/K ATPase[20]. However, to fully verify this hypothesis, 

additional studies of ion transport and interplay between various transporters would be needed. 

Furthermore, we have for the first time shown an increased expression of AQP1 and Na/K ATPase 

proteins in the membrane fraction of CP 1½ hours after in vivo administration of acetazolamide. 

Both AQP1 and Na/K ATPase are key players in the CSF secretion pathway across the CP cells. The 

expectation would therefore be that a decrease in the amount of these two proteins would lead to 

a decrease in CSF production with subsequent decrease of ICP and vice versa. Interestingly, our 

study shows that both proteins are increased in the cell membrane after acetazolamide treatment. 

Similar results have previously been published by other groups[1, 28] and might provide an 

explanation for this contradiction; in studies performed in kidney tissue and cells it was 

demonstrated that acetazolamide treatment leads to a degradation of AQP1[28]. The study 

showed that AQP1 is translocated to the plasma membrane of the cells as an acute response to 

acetazolamide, and then subsequently tagged for degradation by ubiquitination and degraded by 

proteasomes[28]. This indicated that acetazolamide does in fact decrease AQP1 protein content, 

but at later time points than investigated in our study. The decrease in AQP1 is not caused by 

reducing mRNA and protein synthesis, but by promoting translocation to the membrane and 

tagging the protein for subsequent degradation. A similar mechanism could potentially be present 
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in the CP, however due to our relatively early time point post treatment we do not see AQP1 

degradation, but only the increase of AQP1 in the membrane fraction. This hypothesis is 

supported by the fact that even though we see increased protein levels in the membrane in CP, we 

do not record any change in the synthesis of mRNA, which indicates that the increased amount of 

protein in the membrane does not originate from increased mRNA translation. A similar 

mechanism might exist for Na/K ATPase. But the increase in membrane AQP1 and Na/K ATPase 

could also be a compensatory mechanism to the inhibition of Na+ transport activity and CSF 

secretion caused by acetazolamide. Since both AQP1 and Na/K ATPase are essential for CSF 

secretion, the increased membrane content of the two proteins could be a way to try to maintain 

the necessary level of Na+ and water transport into the brain ventricles.    

In 2004 Oshio et al[17] showed that acetazolamide reduces CSF secretion in mice (ICP was not 

recorded) but interestingly, the reduction was similar in wild type and AQP1 null mice. This 

indicates that the acute ICP decrease seen in the present response to acetazolamide treatment 

may circumvent the AQP1 route. This would explain why ICP is decreased rapidly by acetazolamide 

and seems to have no direct correlation with the amount of AQP1 present in the membrane of CP. 

This means that the acute ICP decrease seen after acetazolamide treatment is most likely linked to 

the inhibition of Na/K ATPase and that the increase in membrane AQP1 and Na/K ATPase is less 

important for the acute effect of acetazolamide.  

Other studies suggest that acetazolamide could also have a direct inhibitory effect on AQP1 

besides the effect seen on carbonic anhydrases[1, 28]. However, the experiment performed in 

AQP1 null and control mice showing that AQP1 null mice also have significantly decreased ICP 

contradicts this theory[17].  
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AQP4 mRNA and membrane protein were unchanged following a single dose of acetazolamide in 

rats. According to the literature and our own observations (data not shown), AQP4 should not be 

present in the membrane of the CP. Hence, we speculated if this water channel could potentially 

be translocated to the cell membrane following acetazolamide treatment and facilitate an 

increased CSF secretion as a compensatory mechanism to the reduction in ICP. However, we did 

not see any indications for this. The minor signal seen in the western blot analysis is most likely 

from cytoplasmic contamination of the membrane fraction. The manufacturer of the Mem-

PERTMPlus Membrane Protein Extraction Kit informs that there will be a contamination of 10% or 

less from the cytosolic to the membrane fraction. However, since no more AQP4 is present after 

acetazolamide treatment compared to control, we believe that AQP4 is most likely unlinked to the 

observed ICP change. Still the presence of AQP4 and especially its location in the CP is puzzling and 

it is likely that AQP4 could be involved in the CSF secretion pathway during pathological 

conditions.  

In conclusion, we have employed both in vivo and in vitro techniques to demonstrate that a single 

dose of acetazolamide lowers ICP and modulates the CSF secretion pathway in healthy rats. Firstly, 

inhibiting the Na/K ATPase reduces the Na+ flux into the brain ventricles, which slows the 

production of CSF. Secondly, AQP1 and Na/K ATPase protein is increased in the membrane of the 

CP epithelial cells, which may represent an early compensatory mechanism for the reduced ICP. 

Further studies are warranted to elaborate on the detailed molecular mechanism behind these 

observations. This could include administration of acetazolamide in an IIH model to establish the 

molecular response during a pathological condition. Furthermore, it would be interesting to study 

the long term effect after a single dose as well as repeated dosing of acetazolamide of the CP.   
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Figure legends 

1. Rats were anesthetized and ICP measured before and after an i.p. injection of either 200mg 

acetazolamide (n=6) or vehicle (n=6).  

A: Examples of ICP traces following acetazolamide and saline treatment are presented. The 

maximum response to acetazolamide ranged from 56-85% and was sustained for approximately 

30 minutes after which the ICP began to normalize and returned to baseline levels 5 hours post 

dosing. Saline had no significant effect on ICP.  

B: A single dose of 200 mg acetazolamide significantly lowered ICP within 10 minutes of the 

injection 18 ± 5%, compared to the saline group 5 ± 2% (P<0.05), reaching a maximum reduction at 

55 minutes 66 ± 4% (P<0.00001).  

2. Total Na/K ATPase activity was measured by determining the concentration of inorganic 

phosphate generated by the hydrolysis of ATP that was sensitive to ouabain (a Na/K ATPase 

inhibitor). In these studies primary rat CP epithelial cells were treated for 30 minutes with aCSF 

(n=6) or 100µM acetazolamide (n=6), in the presence or absence of 1mM Ouabain. The graph 

presents the ouabain-sensitive Na/K ATPase activity ± SEM (% change from ouabain control). 

Acetazolamide significantly (P<0.01) reduced Na/K ATPase activity in the CP compared to vehicle. 

3. To determine if the ICP decrease could be connected to alterations in transcription of protein 

encoding mRNA for AQP1, AQP4 and Na/K ATPase, this was analyzed by qPCR. No significant 

difference was seen between the two groups for any of the target genes; (A) AQP1 (p=0.699), (B) 

AQP4 (p=0.421) and (C) Na/K ATPase (p=0.937).  
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4. We speculated if the CSF pathway could be affected by altered protein levels in the membrane 

of the CP tissue where the water transport takes place. We found that both (A) AQP1 (p=0.0152) 

and (B) Na/K ATPase (p=0.0411) protein was significantly increased in the CP epithelial membrane 

1½ hours after a single dose of acetazolamide. (C) The amount of AQP4 protein in the extracted 

membrane fraction was not significantly different between the vehicle and acetazolamide treated 

animals (p=0.0649).  

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

 Figures 

1A 

 

1B 

 

 

 

 

ICP

       Minutes post treatment

P
e
rc

e
n

ta
g

e
 c

h
a
n

g
e
 f

ro
m

 b
a
s
e
lin

e

B
as

el
in

e 5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

Diamox

Vehicle

ns

*

****

****
**** **** ****

**** **** **** **** ****



22 
 

2 

 

 

 

 

3A 

AQP1 mRNA, whole tissue

D
ia

m
ox

V
eh

ic
le

0.00

0.05

0.10

0.15

0.20

ns

N
o

rm
a
li
z
e
d

 C
o

p
y
 N

u
m

b
e
r

 

 

 

 

 

 

 

V
eh

ic
le

D
ia

m
ox

0

20

40

60

P
h

o
p

h
a
te

 p
ro

d
u

c
e
d

 b
y
 t

h
e

N
a
/K

 A
T

P
a
s
e
 i
n

 %

**

Na/K ATPase activity



23 
 

3B 

 

Na/K ATPase alfa1 mRNA, whole tissue

D
ia

m
ox

V
eh

ic
le

0.0

0.2

0.4

0.6 ns
N

o
rm

a
li
z
e
d

 C
o

p
y
 N

u
m

b
e
r

 

3C 

AQP4 mRNA, whole tissue

D
ia

m
ox

V
eh

ic
le

0.000

0.005

0.010

0.015

0.020

ns

N
o

rm
a
li
z
e
d

 C
o

p
y
 N

u
m

b
e
r

 

 

 

 



24 
 

4A 

 

AQP1 protein in membrane fraction

D
ia

m
ox

V
eh

ic
le

0

1

2

3 *

N
o

rm
a
li
z
e
d

 r
a
ti

o

 

4B 

 



25 
 

Na/K ATPase protein in membrane fraction

D
ia

m
ox

V
eh

ic
le

0

5

10

15 *

N
o

rm
a
li
z
e
d

 r
a
ti

o

 

4C 

 

AQP4 protein in membrane fraction

D
ia

m
ox

V
eh

ic
le

0.0

0.5

1.0

1.5

2.0

ns

N
o

rm
a
li
z
e
d

 r
a
ti

o

 


