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A Multi-Modal Model of Object Deformation under
Robotic Pushing

Veronica E. Arriola-Rios, Jeremy L. Wyatt

Abstract—In this paper we present a multi-modal framework
for offline learning of generative models of object deformation un-
der robotic pushing. The model is multi-modal in that it is based
on integrating force and visual information. The framework
consists of several sub-models that are independently calibrated
from the same data. These component models can be sequenced to
provide many-step prediction and classification. When presented
with a test example–a robot finger pushing a deformable object
made of an unidentified, but previously learned, material–the
predictions of modules for different materials are compared so as
to classify the unknown material. Our approach, which consists of
offline learning and combination of multiple models, goes beyond
previous techniques by enabling i) predictions over many steps,
ii) learning of plastic and elastic deformation from real data, iii)
prediction of forces experienced by the robot, iv) classification of
materials from both force and visual data, v) prediction of object
behaviour after contact by the robot terminates. While previous
work on deformable object behaviour in robotics has offered
one or two of these features none has offered a way to achieve
them all, and none has offered classification from a generative
model. We do so through separately learned models which can
be combined in different ways for different purposes.

Index Terms—deformable objects, prediction, classification,
learning.

I. INTRODUCTION

AMajor challenge in robot manipulation is to plan actions
with objects so as to deform them into new shapes.

Most objects that are manipulated by animals in natural
environments are deformable, including objects that are elastic,
plastic, breakable, tearable, and spreadable. The work reported
here is based on the premise that in order to plan manipula-
tions of deformable objects, the sensorimotor contingencies
governing object deformation are required. A sensorimotor
contingency is simply defined as the relationship between the
robot’s actions and the resultant changes in its observations.
Different materials (here, elastic and plastic materials) have
different sensorimotor contingencies. The main hypothesis is
that predictive models of these sensorimotor contingencies can
be learned from data. The predictions of a learned model can
be fed back into itself, so as to predict an object’s deformation
behaviour over many time steps. These learned models can
then be used to make the predictions required for planning
manipulation.

There are various models of deformation used in engineer-
ing, such as finite element models, but these typically require
careful optimisation by hand, and cannot run in real time. In
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graphics there are many methods used for generating qualita-
tively plausible simulations of deformable objects, but these
are not easy to fit to real data. In contrast, robots must learn
model parameters from data, in reasonable amounts of training
time. This includes learning from the limited sensing typically
available, such as training data gathered from a specific view(s)
of an object, and force-torque monitoring only at contact
points. Thus, tackling the prediction problem in robotics adds
additional difficulties to an already challenging problem. In
this paper we address some of these—we learn from real
visual and force-torque data—while simplifying others—we
set a convenient fixed viewing location and perform off-line
rather than on-line learning.

Previous work on learning sensorimotor contingencies for
deformable objects in robotics has been limited. Table I sum-
marises the features of the major efforts to date. In each case
some abilities are missing: either models cannot be learned
from data; or only address one type of deformation (e.g.
elastic); or cannot perform classification; or cannot predict the
forces felt; or cannot predict what will happen when the robot
loses contact with the object (will it retain or recover from
the deformation?). In this paper we present an approach for
solving all these problems. Although our framework requires
two separate learned models, they are combined into a single
machine for prediction of the behaviour of deformable ma-
terial. In a second machine, multiple copies of this predictor
can be compared to an actual outcome deformation, so as to
classify the material.

There are two novel technical contributions. First, we show
how the learning problem can be decomposed into two sepa-
rate learning problems, one for predicting forces from finger
motions, and one for predicting object deformations from
forces. Both models are generative, and we show how to learn
each from data. Second, we show how to use these learned
generative models not only to predict deformation, but also
to classify an unidentified material. To limit the scope of
the paper we develop this framework using offline learning
methods. We do not address the issue of online learning [48],
[2], leaving this for future work.

These technical contributions enable us to learn models of
sensorimotor contingencies, and then to use these as com-
ponents to build different machines. This approach enables
i) predictions over many steps, ii) learning of plastic and
elastic deformation from real data, iii) prediction of forces
experienced by the robot, iv) classification of materials from
either or both force and visual data, v) prediction of object
behaviour after contact by the robot is removed. In the rest
of the paper we present related work (Section II); give an
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overview of the framework (Section III); describe the two
component models in detail (Section VI); describe how the
model parameters are learned from real data for the shape
prediction model (Section VII) and for the force prediction
model (Section V); report experiments on prediction and
classification with elastic and plastic objects (Section VIII);
and finish with a short discussion (Section IX).

II. BACKGROUND

It is known that the human motor system uses predictive
(or forward) models of the effects that motor actions have
on sensory state [16], [15], [23]. These are believed to be
particularly important for dexterous manipulation. In robotics,
prediction of physical interaction is a well studied but incom-
pletely solved problem. There is a large body of work on the
effects of pushing on rigid objects. This includes physics based
models [28], [42], [31] and learning approaches [37], [35],
[14], [27], [46], [34], [44], [25], [26], [4]. These predictive
models have many applications, including visual tracking [40],
[13], [43] and push planning [45], [12], [29], [49], [9].

There is much less work in robotics on predicting the
behaviour of deformable objects under manipulation. This
paper focuses on learning to predict what happens when an
elastic or plastic object is pushed by a robot finger. These
predictions include the response forces and the deformations
of the object’s shape over many future steps. The predictive
models can be used to classify materials, even when the
interactions (e.g. the contact point) are novel. Although there
is a large body of work on deformable object tracking, some
of which makes use of forces, models and predictions to
improve tracking accuracy [7], [20], [1], those predictions
are typically used only for the next frame and can not be
used for robotic planning, where predictions must be made
many steps into the future [11]. Others like [30], [10] make
use of templates or make assumptions about the shape of the
objects that would not work with highly deformable objects
like plasticine. There is also an abundant literature in industrial
robotics for modelling 1D and 2D materials (e.g. string, hair,
metallic sheet and textile), but there is little research about
predicting the deformation of 3D deformable objects [24]. We
now review the most closely related work to that presented
here.

First, Howard and Bekey [22] address robotic grasping and
lifting of viscoelastic objects. Their model of the material can
predict a net amount of deformation given the applied forces,
but does not evaluate details of the deformed shape. This
model is inspired by the crystalline structure of atoms in solids.
The space lattice of the crystal is approximated by a particle
system where elements with mass are connected by springs
and dampers, thus representing the attraction and repulsion
between atoms in equilibrium with a damped mass-spring
system. The masses are calculated by measuring the force
required to lift the object without sliding. The deformation
and damping coefficients are estimated as functions of:

• the force applied while pushing against the material with
two robot arms in opposite directions and,
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• the global displacement and velocity vectors resulting
from adding the displacements and velocities of all par-
ticles.

The estimated values of the mass, deformability and damping
coefficients are used as the input to a neural network that
outputs the minimum necessary force to lift the object without
sliding. This function is used to compliantly adjust the force
during an interaction. However, they do not evaluate the
quality of the overall shape prediction, and use only the final
values of the prediction after the system has stabilised; that is,
they do not evaluate the predictions during the dynamic phase.

Teschner et al. [47] proposed an enhanced 3D mass-spring
model, in which constraints are expressed as potential energy
terms. These terms encode the tendency of springs to recover
their length (with damping), of triangular faces of a mesh to
recover their area and of tetrahedrons to recover their volume.
He sketches the inclusion of plastic deformation. Morris and
Salisbury [39] developed a method to calibrate Teschner’s
model automatically with respect to a finite element model
(FEM). The search begins with a uniform random sampling
of possible values for the elasticity constants, which are latter
modified using adaptive simulated annealing to minimize the
difference between the deformations in the FEM mesh and
those in the mass-spring mesh. However, they only compare
the steady states and do not include plastic deformations. We
extend this work, by replacing the FEM model with force and
2D visual data gathered from real materials. Furthermore, we
analyse the quality of the predictions while the deformations
take place.

Frank et al. [17] use a force sensor and a bumblebee stereo
camera to measure the Young modulus and the Poisson ratio
of unknown deformable objects. By assuming a homogeneous
material, they propose candidate values for these constitutive
parameters and simulate the expected behaviour of the object
with a FEM method. The volume of the prediction is compared
with a 3D reconstruction of the 3D surface of the object. A
gradient descent search is used to minimize the difference.
Once the parameters are selected, a collision detection al-
gorithm informs the model of the position of the actuator,



IEEE CDS 3

Fig. 1. The visual tracking and force measurement system subserves the
offline learning system. The offline learning (or calibration) method comprises
two learned models of sensorimotor contingencies. Both are learned from
the same data. The first (FP) learns to predict the force experienced for
some motion and material. The second (SP) predicts the deformation of the
object given the applied force. The strain st is calculated directly from the
interpenetration of the finger into the object. This can be calculated by vision
(V) or from the planned motion of the finger.

thus implying the amount of local deformation. The FEM
simulation provides estimates for the global deformation and
response forces. However, a quasi-static assumption is made
and a detailed study of the dynamic process is not offered.1

The resulting model is applied to estimating costs of robotic
navigation around deformable objects [18].

The advances of our work with respect to these related
approaches is summarised in Table I.

Other interesting work includes that of Conti et al. [8] which
introduced six-degree of freedom macroscopic elastic spheres
described by mass, inertial and volumetric properties that are
used to approximate the volume of deformable objects. The
open source project Chai3D includes an implementation of
this model. The spheres are placed along the skeleton of the
object and are connected together with elastic links which
model elongation, flexion and torsion properties. Each vertex
of the surface mesh is attached to the nearest sphere or link
with a damped spring. In [6], Burion and Baur, collaborated
with Conti’s group to automatically calibrate this model using
particle filters. Again, there is no analysis of the dynamics
and no real objects are used. Furthermore, this model is more
adequate for objects that deform around fixed joints.

Finally, Cretu et al. [11], used growing neural gas networks
to learn to predictively track the deformation of objects. Even
though they managed to make predictions about the defor-
mation of the overall shape of the object, under previously
unseen sets of forces, their predictions were evaluated only
for the next frame.

Additionally, there is a vast literature on modeling of
deformable shapes and deformation processes [19], [32], [36],
[38], [41], particularly within the area of computer graphics.
However, these types of models have not been successfully
applied to robotics tasks beyond what is presented above.

1With the quasi-static assumption a small force is applied and a state
of equilibrium is reached before a new force is applied. Therefore the
deformation process is approximated by a series of states of equilibrium.

Fig. 2. The two learned models can be sequenced, so as to predict an object’s
shape and reaction forces when the robot finger will push in a particular way.
The predicted shape is fed back on itself so as to predict over many steps
for a planned sequence of finger motion. PC is the position controller for the
robot, which outputs each planned finger position p at each time. This is used
to calculate the strain st from the interpenetration using a fixed function, as
well as providing an input to the shape predictor (SP).

III. MODEL OVERVIEW

The framework consists of four separate systems: a visual
tracking and force measurement system, an offline learning
(or model calibration) system, a prediction system, and a
classification system.

Visual tracking and force measurement both serve the learn-
ing system (Figure 1). The visual analysis is not a contribution
of the paper, any method that provides accurate tracking of
the outline of the deformed object would suffice. We employ
a Canny edge detector, filtering out irrelevant edges using the
colour of the manipulated object. Then we fit the outline and
track using a linear snake. This is also used to initialise the
mesh for the spring mass system.

The learning system is depicted in Figure 1. This enables
learning of sensorimotor contingencies from real robot data.
Learning of the force prediction (FP) model relies on compar-
ing the predicted f̂ and the experienced f forces at the finger
tip, as measured by a force-torque sensor (FM). Learning
of the shape prediction (SP) model relies on comparing the
predicted deformation ŝh with the actual deformation sh
measured by visual tracking (V).

In machine learning there is division between discriminative
and generative models. Discriminative models are powerful
for classification, but cannot be used to regenerate the data, or
to generate new imagined data. In our application this would
mean we could not predict deformations, only being able to
classify materials directly based on their deformations. Instead,
following others, we use a generative model. But we show how
this can be used not just for prediction, but also for material
classification. Thus a generative model is appealing because
it allows us to solve both the prediction and classification
problems.

The two learned generative models, FP and SP, can be
sequenced to create a single, multi-modal predictor (Figure 2).
This combined model takes a planned motion of the finger,
and predicts the resulting forces that will be experienced at
the contact points. It then uses both the planned positions and
predicted forces to predict the resulting object deformations.
Typically, a sequence of planned finger positions will be
known. In prediction mode the models make predictions based
on this sequence. To create the prediction for time t+1 the pre-
vious predicted state at time t is required: thus the predictions
are recursive. This enables predictions over arbitrarily long
time periods, but makes learning a good predictor challenging.

The third system is for material classification (Figure 3).
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Fig. 3. Prediction sequences for several predictors–each of which has been learned for a different material–can be compared against real data. The most
accurate predictor at any one moment gives the classification for the material type. The notation is explained in the text.

This simply comprises multiple copies of the prediction sys-
tems, one for each type of material that an unknown object
might be made of. The predictors each make many-step
predictions. At each step a classification is made, based on
which predictor has made the better prediction of the shape at
that step.

In summary, this way of learning and using models involves
several choices. First, the learned models are generative.
Second, our approach can be seen as one in which two
contingencies are learned separately, and then sequenced to
produce an overall prediction. Third, although here we only
compare two material models for prediction, the scheme
follows the principle of modular motor learning [26], [21],
where prediction and control is specialised into many modules,
each of which covers a relatively small portion of the input
space, such as an object or material type. Thus the aim
of a generalised version of our scheme will be to acquire
many specialist models of different deformable objects rather
than a very few rather general models. The specific model
forms we choose here could be replaced while retaining the
overall scheme. In this paper, we implement the scheme using
a regression approach to force prediction, and we follow
several other authors in employing a mass-spring system with
learnable parameters for the deformation prediction.

For clarity, the algorithm is described in exactly these
phases: training, simulation (i.e. the prediction phase), and
classification. In empirically evaluating the model new data
was used, acquired from new finger pushes. We now proceed
to describe first the visual analysis and force measurement, the
force predictor (FP), which is a regression model (Section V),
and then the shape predictor SP (Section VI), which is based
on a mass-spring system.

IV. VISUAL ANALYSIS

Although the visual analysis is not an original contribution
of the paper, it is necessary to track the shape of the object
as it deforms. This tracking is performed on the two training
movies to provide training data for the shape predictor (SP).
For the test movies the system only requires visual analysis of
the first frame to initialise the predictors. The test movies are

Algorithm 1: Regularised Linear Spline
1: Let L be a linear spline representing the contour of a

2D shape, and Li the ith control point in a cyclic order.
2: for all Li in L do
3: if dist(Li, Li−1) > max distance then
4: Insert midpoint(Li, Li−1) after Li

5: else if dist(Li, Li−1) < min distance then
6: erase Li

7: else if angle(Li−1, Li, Li+1) < min angle then
8: erase Li

9: end if
10: end for

Fig. 4. Algorithm used to regularise the number of elements of a linear spline,
in accordance with the level of detail required.

analysed for each frame, but only for experimental evaluation
purposes. We now give details of the visual analysis method.

A. Tracking to Provide Ground Truth

The contour of the deformable object is used to obtain the
ground truth for the training phase, which is the area enclosed
by the contour. Since we only require a tracking algorithm
which is good enough to evaluate the predictions of the mass-
spring system, a very simple one was used. Geometrically, the
contour is represented by a polygon with hundreds of sides,
which can also be called a linear spline [33]. The vertices
of the polygon work as control points which can be moved
to adjust the polygon to the shape of the object as it gets
deformed. We call our algorithm for tracking a linear snake,
because this implementation is inspired by the theory of active
contours, however it works with a much simpler and faster,
but less accurate, algorithm, instead of minimizing a global
energy. This causes some shadowed corners of the material
to be missed at some frames, but as Fig. 5(b) at its bottom
left shows, these errors are not significant in comparison to
the errors made by the mass-spring model. This is explained
below. The tracking of the deformable target in the ground
truth has two stages:

1) The target object is segmented from the environment.
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Fig. 5. (a) Experimental set up. A robot finger pushes a block of deformable
material sitting on a table. A camera registers the events of the plane where
the main deformations take place. (b) Evaluation function. Left top: Mesh
over real block of material. Left bottom: The typical error of the model vs.
the ground truth (red) and the typical error of the tracker (blue). Right top:
tracked ground data. Middle: TP in yellow, FP in blue, FN in red and TN in
gray. Bottom: simulated mesh.

The Canny algorithm is used to extract the edges of
the image. Since the object of interest has a distinctive
colour, its characteristic hue range is extracted from the
area enclosed by the initial contour. Then the hue of the
pixels on every edge are used to keep only edges that
could belong to it. If the average hue of the pixels on
an edge falls outside the calibrated range, the edge is
eliminated.

2) The internal representation of its contour, the linear
snake, is adapted to its new shape. The algorithm as-
sumes that no occlusions take place and that the contour
does not bend over itself.

For the first frame, the snake is initialised as a rectangle
around the target. This rectangle fragments itself into smaller
pieces. Each new vertex adheres itself to the closest point on
an edge, as reached by growing rings of pixels around its
current position, up to a certain threshold distance [Fig. 5(a)].
If there is no edge within that area, the control point remains
where it is. This criterion was selected to make the repre-
sentation more robust against edges that are easier to detect
on some frames than in others. Once the edge reappears, the
control point adapts itself again. Also, the distance between
two consecutive control points is kept within the interval
[min distance,max distance] and two adjacent edges do
not form angles smaller than min angle. See Algorithm 1.
This allows the snake to adapt very quickly to the complexity
of the contour it represents.

V. LEARNING TO PREDICT FORCES

It is possible to learn the force predictor (FP), by using
information from the stress-strain diagram obtained from the
data set of measured positions and forces. This diagram is
obtained from the video recorded by the visual system of
the robot and the forces recorded by the sensor located at
the wrist. When the readings of the force sensor start to
increase and the figer collides with the block of material,
the point of zero deformation is identified. From here on,
the displacement of the finger is considered equivalent to
the amount of deformation in the material. Even though this
method is not as rigorous as an engineering test, the estimation
is good enough for robot manipulation of common materials.

The stress strain curves in [Fig. 13] are approximated by
segmented regression curves. Several candidates are proposed
using the least squares technique and the best are chosen
as follows. Since there is only one independent variable the
equations for adjusting a line are straightforward:

y = mx+ y0 + Error (1)

m =
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2i − (

∑
xi)2

(2)

y0 =

∑
yi
n
− y0

∑
xi
n

(3)

Error =
∑

(yi − (mxi + y0))2 (4)

Where y is the dependent variable, x the independent one,
m is the slope of the line, and y0 the y intercept. To
adjust logarithmic curves a change of variable is used. Before
computing the line, the natural logarithm of the independent
variable is calculated, that is: x′i = ln(xi). In this case, the
final equation will be of the form: y = m lnx+ y0. It would
be possible to add other types of curves, but these were enough
for the materials covered.

For automatic calibration of the force prediction model for
the pushing (as opposed to retraction) phase both families of
lines (logarithmic curves and straight lines) are considered.
To determine the points of discontinuity between segments,
each family is evaluated incrementally. The candidate line for
a particular family is obtained by fitting a growing subset of
data points and calculating the fitting error. We begin with a
small number of points (e.g. five). To detect the discontinuity
new points are added until the corresponding normalized error
increases beyond a threshold value. This marks the point of
discontiuity. Having discovered one best parameterized line
for each family, the two resulting candidates are compared.
We select the type of curve that covers more points in a single
segment. This model is used to predict the forces for the mass-
spring simulation Fig. 11 and Fig. 13.

VI. A MASS-SPRING MODEL OF DEFORMATION

The shape predictor (SP) is based on a mass-spring model of
deformation. A mass-spring model is a very well established
abstraction, commonly used to simulate the behaviour of
certain types of deformable objects. As a physics based model,
once its parameters are acquired, its behaviour is determined
by the evolution of a set of differential equations. Therefore, by
offering a method to automatically calibrate those parameters,
this model can make long term predictions about the behaviour
of deformable objects, under previously unseen interactions,
if only the externally applied forces are known. The range of
validity of these predictions greatly depends on the quality of
the calibration, but also on the suitability of the mass-spring
model as a model of the particular object. For this reason,
there are variations that address specific issues, like [5] and
[47]. In this work, we focus on the machinery required to
achieve this automatic calibration of a physics based model
and its integration into a system that exploits it to solve
prediction and classification tasks. We emphasize that the
physics based model could be easily substituted by another
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equivalent model. For example, the same machine will work
if another type of mass-spring model is used, or a FEM model,
even though numerical results will differ to some extent. For
these experiments we chose to use a slightly modified version
of the mass-spring model proposed by Teschner in [47].

In a simple mass-spring model, the shape of an object is
approximated by a uniform geometric mesh, usually made of
triangles (2D) or tetrahedrons (3D). At every vertex i in the
mesh, an ideal particle with no volume, but with mass mi, is
located, and is known as a mass particle. The edges between
vertices roughly model the interactions between particles,
which attract each other up to a certain critical distance, but
repel each other if they become closer, therefore maintaining
the cohesion of the solid, while avoiding the collapse of the
material on itself. The simplest model associates a linear
spring with each edge, as if those forces would occur only
between connected neighbours. The resting state of the solid
corresponds to a configuration of the masses and springs where
the sum of all forces acting over each particle is zero, and they
are said to be in equilibrium.

When one or more particles are displaced from their equi-
libirum positions, the forces that tend to restore an elastic
body to its original shape are modeled by the forces of springs
(along the edges of the mesh) that try to recover their original
length). These forces act upon the particles modifying their
positions in time. Traditionally, the relationship between the
position of the particle pi and those forces F obeys the second
law of Newton:

F = m
∂2~p

∂t2
(5)

where t is time and ~p, the position. However, it is possible
to deviate from this equation if we need to model a different
behaviour.

The above equation is a second order differential equation,
which is continuous by definition. In order to perform a
computer simulation we need to obtain the position p of
all vertices as a function of time p(t) using this equation.
A numerical method is selected to approximate a solution
[41]. Time is discretized in intervals of length h, positions
and forces at discrete past times are used to estimate the
new positions at time t + h, according to an integration
scheme which must be selected. The fact that the values of
the forces remain constant in this approximation, for the whole
interval h (also know as time step), introduces errors which
can be severe. For this reason, computer simulations may add
procedures that help to alleviate these effects.

To simulate the effect of an external actuator (like the finger
of the robot) interacting with the deformable object, external
forces Fext acting on vertices of the mesh must be added to
(5):

F + Fext = m
∂2~p

∂t2
(6)

Another option could be to induce response forces by displac-
ing vertices from their position of equilibrium.

Fig. 6. Spring Forces. Recovery of: (a) Length, forces act along the spring.
(b) Area, forces act along the heights of the triangles. (c) Angle, masses slide
trying to restore the angle.

A. Elastic Deformation

The mass-spring model proposed by Teschner et al. in [47],
which is explained below, was reduced to a 2D model, so
that the predictions could be compared with 2D images of the
deformable object. The main idea being that an agent can make
rough real time predictions of what it can see and touch and
use those predictions to solve various tasks, like classification
or grasping. Here, the surface of the deformable object is
approximated by a regular triangular mesh of unitary masses
and springs. Since the location of the masses and direction of
the springs will bias the deformation response of the object, it
is important to distribute the masses uniformly and place the
springs with a symetric arrangement for an isotropic material.
This placement can be done with an algorithm that takes
into account the symmetries of the object at the begining of
the experiment. If the material gets permanently deformed
a properly calibrated physics based model, like the one we
propose here, will produce an adequate new arrangement from
which new interactions can be studied.

The potential energy terms for the preservation of length
with damping and preservation of area were included in
our system exactly as they were defined by Teschner. To
compensate for the lack of a term for preservation of volume,
which tends to prevent distortions of the graph in the original
model, we derived a new term for the preservation of the
angles in every triangle. The relevant equations are presented
in the following paragraphs, while detailed derivations can be
found in [3].

Teschner defined a generalized version of the simple mass-
spring model by using the concept of constraint. He makes
use of different constraints to model the tendency of an object
to recover several of its attributes. For every desired constraint
C(~p1, ..., ~pn) acting over n vertices, a potential energy E is
defined. When the value of the constraint is zero, the potential
energy is zero as well. When the constraint is not satisfied, the
potential energy increases. This behaviour is obtained through
the following definition for the energy:

E(~p1, ..., ~pn) =
1

2
kC(~p1, ..., ~pn)2, (7)

where k is a proportionality constant and pi is the position of
particle i.

In order to reduce the energy of the system when a con-
straint is not satisfied, the force ~F i acting on the ith mass
particle is defined as the negative gradient of this potential
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energy with respect to the position of the particle ~pi (8).

~F i(~p1, ..., ~pn) = − ∂

∂~pi
E = −kC ∂C

∂~pi
. (8)

Given the oscillatory nature of these equations, when using
constraints that model the behaviour of springs, damping can
be introduced to stop the oscillations. This is modelled with
a force acting in the opposite direction to the velocity of the
affected particles, thus slowing down motion. Teschner wrote
this as a function of the constraints as well [47]:

~F i(~p1, ..., ~pn, ~v1, ..., ~vn) =−kC − kd ∑
1≤j≤n

∂C

∂~pj
~vj

 ∂C

∂~pi
, (9)

where ~vj =
∂~pj

∂t is the velocity of the jth particle connected
to i, when the constraint acts on n particles.

1) Preservation of Length: The constraint for the potential
energy is given by:

C =
|~pj − ~pi| −D0

D0
, (10)

where ~pi and ~pj are connected by a spring and D0 is the rest
length of that spring. The force derived from this constraint
pulls the masses in the direction of the spring that joins them
[Fig. 6(a)]. Teschner normalised the value dividing by D0 to
make the elasticity constants scale independent [47]. Morris
[39] omitted that in his final equations for the force. Here we
use the normalised force ~F i

D (20), which has the effect that,
if we obtain a good set of parameters for a certain mesh of
high resolution, the same set can be used for a mesh of lesser
resolution that preserves the same type of symmetries. Details
about the final form of this and following equations are in
Appendix A.

2) Preservation of Area: The constraint for the potential
energy is given by:

C =
1
2 |(~pj − ~pi)× (~pk − ~pi)| −A0

A0
(11)

where A0 is the initial area of the triangle. This constraint is
applied per triangle in the mesh. Since Teschner and Morris
found that the use of damping for the preservation of areas
does not significantly improve the stability of the simulation,
it is not included here either. Therefore the force ~F i

A is derived
from the constraint and (8) as shown in the appendix.

3) Preservation of Angles: The previous terms can not do
anything to restore the mesh if triangles get flipped during
deformation, which is not a valid state since the mesh models
the surface of a 3D object. For this reason we included a new
term that enforces the preservation of the original angles of the
triangles. [Fig. 6(c)] gives an idea of how these forces look.
Here the energy depends on the difference between the current
angle, between adjacent edges, and the angle between them
at the equilibrium position. The constraint for this potential

Algorithm 2: Plastic Deformation of an Edge
1: Let l be the length of the edge at time t + h, after

an integration step where new positions of its vertices
pi(t+ h) where calculated. And max α the maximum
proportional permanent deformation being allowed.

2: if α > max α then
3: l0 ← l
4: else
5: l0 ← (1.0− α)D0

6: end if
7: elastic deformation← l0−l

D0

8: if elastic deformation > yield then
9: α← α+ creep ∗ elastic deformation

10: if α > max α then
11: α← max α
12: end if
13: end if

Fig. 7. Algorithm to calculate the permanent deformation of an edge.

energy is given by2:

C = ϕ− ϕ0 (12)

ϕ(pi, pj , pk) = arccos

(
(pj − pi) · (pk − pi)
‖pj − pi‖ ‖pk − pi‖

)2

where ϕ is the angle between adjacent edges, and ϕ0 is the
angle at rest.

The force emerging from this term is a linear combination
of the vectors along the edges that form the angle of interest,
acting in the direction of the gradient. It tends to restore the
angles in the most efficient way, but does not take the original
size into account [Fig. 6(c)]. Therefore, it helps to recover a
similar triangle, but it may produce tiny or very big triangles
if it is not accompanied by some of the other terms that tend
to restore the original dimensions, in addition to the angles.

The terms for the preservation of length and angle model
elastic deformations. Even though the preservation of area
by itself would allow some plasticity, it is still necessary to
incorporate permanent deformations in the rest lengths of the
springs, to stop the triangles of the mesh from trying to recover
their original shape.

B. Plastic Deformation

The simplest method to model plastic deformation consists
in changing the length at rest D0 of the springs, in (20). The ef-
fect of the permanent deformation can be either to permanently
compress this length, or to permanently expand it (up to the
breaking point). However, arbitrarily changing the value of D0

can produce geometrical oddities like collapsed edges. For this
reason, in this work, the permanent modification is expressed
in terms of a constant of compression α, with respect to the
original length D0, so that the effective value of the length
at rest becomes l0 = (1.0 − α)D0. The value of α changes

2It was also considered to multiply Eϕ by the lengths of the edges, but it
hasn’t improved the performance of the model.
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every time the spring is deformed beyond the threshold value
yield. A maximum deformation limit is introduced to avoid
collapsing edges due to compression: if the new length l is
smaller than a given fraction of the original length at rest (e.g.
l = 0.2D0), the length at rest suffers no further modifications.
See Algorithm 2.

C. Integration Scheme

Rather than using traditional Newtonian equations with a
numeric integration scheme like Euler or Verlet, used twice
to solve the second order differential equations, we made the
force proportional to the velocity:

F (t) = m
∂~p(t)

∂t
= m~v(t) (13)

which implies the following assumption:

~a(t) =
∂~v(t)

∂t
= ~v(t) (14)

this equation of the form f = f ′ can only be satisfied with an
exponential function f(x) = ex, thus avoiding the oscillatory
behaviour of sinusoid solutions for springs, in favour of forcing
critically damped springs to model the elastic materials.

Then we applied Euler only once to solve for p:

~p(t+ h) = ~p(t) + h
~F (t)

m
(15)

with ~F (t) = ~FD(t)+ ~FA(t)+Fϕ(t) being the sum of the forces
for the preservation of length, area and angle respectively
and ~p(t + h), the position of the vertex at time t + h. We
acknowledge that this is not the proper Newtonian model,
however the simulations obtained were closer to the observed
behaviour, because there is no inertia in the oscillation. When
experimenting with different integration steps, force values
were interpolated between measurements.

D. Collision Detection

In the simulation, rigid objects (like the robotic finger
and the table) are treated as geometric obstacles. When the
simulation of the mesh deformation runs—used to model the
sponge—the predicted positions of the vertices may indicate
that the mesh penetrates an obstacle. This should be interpreted
as a collision between the sponge and an obstacle. Since the
sponge can not penetrate an obstacle, these overlaps must be
eliminated.

In order to model this, we model the finger and table using
geometric primitives. For the table obstacle, any interpenetra-
tion by the sponge is solved by pushing vertices of the mesh
of the sponge back to the border of the table. The springs
will then propagate the effect to their neighbours. For the
finger obstacle, resolution is in two stages: by vertex and then
by edge. A vertex will be pushed out to a distance ε of the
finger, in the direction of the radius. For edges, the standard
algorithm in Algorithm 3 is used to estimate the shortest
distance between the centre of the finger and the edge. Given
this distance, the algorithm in Algorithm 4 indicates how far
and in which direction the edge must be displaced.

Algorithm 3: Closest Point on a Segment to Any Other Point
1: Let a, b be the ends of the edge AB, c the external point,

and x the closest point to c in the line.
2: Let the vectors ~AB = b− a and ~AC = c− a.

3: The projection of ~AC over ~AB is ‖x‖ =
~AC · ~AB
‖ ~AB‖

4: if ‖x‖ < 0 then
5: closest← a
6: else
7: if ‖x‖ > ‖ ~AB‖ then
8: closest← b
9: else

10: closest← a+ ‖x‖ ·
~AB

‖ ~AB‖
11: end if
12: end if

Fig. 8. Algorithm to find the closest point on a segment to any other point.

Algorithm 4: Push Edge Out
1: Let a, b be the ends of the edge AB, c the centre of the

circle. Use algorithm 3 to find the closest point to the
centre in the edge.

2: if ‖(closest − c)‖ < radius (There is an intersection)
then

3: displacement = (radius − ‖(closest − c)‖ + ε) ∗
(closest− c)
‖(closest− c)‖

4: a← a+ displacement
5: b← b+ displacement
6: end if

Fig. 9. Algorithm to push an edge out of a circular obstacle.

E. Additional Geometric Constraints

While the mass-spring model incorporates constraints based
on mesh geometry, these are soft constraints implemented
in the form of an energy function. Even with several of
these terms incorporated, such as a term for preservation
of angles, the mass-spring model can cause triangles of the
mesh to overlap one another and be reversed or flattened.
All of these situations are inadequate since this mesh is used
to model one face of a 3D object. It is thus necessary to
employ additional hard geometric constraints to make the
mesh internally consistent. We achieve this through geometric
checking subroutines. There are two geometric constraints that
the mesh is enforced to maintain:

1) For a reversed triangle, (one vertex crossed over an
edge): the vertex gets pushed more than half the distance
between the vertex and the edge in the direction of
the “reversed” height3, while both ends of the edge get
pushed the same amount in the opposite direction. This
is enough for most cases, but triangles in the border
of the mesh can still overlap each other which would
render a bad numerical approximation to the behaviour
of a surface.

33/4 of this distance was used in our implementation.
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2) If a triangle becomes flat: the longest edge and its
opposite vertex along the perpendicular to the edge are
pushed in opposite directions, to form a tiny triangle4.

F. Many Step Prediction

Given the initial shape of the object and a set of parameters,
the mass-spring system allows predictions of the deformation
of an object for various interactions. Given the procedures ex-
plained in previous sections, there are three ways to calculate
the subsequent deformations of the shape:

1) Collision detection only. Collision detection is used
to determine the compression of the springs around
the actuator. In this case, the neighbouring springs are
compressed and their preservation forces propagate the
deformation towards their neighbours, and so on. There
is no need to use the force sensor. It can be equated
with observing someone else pushing an object we have
touched before.

2) Forces on vertices. The forces to be applied on the
vertices around the actuator are approximated by the
measured reaction forces. Both the series of positions of
the actuator and the reaction forces are necessary. These
forces will be solely responsible for the deformation of
the mesh. If the deformation is insufficient, the actuator
may interpenetrate the border of the mesh. The quality of
the simulation is much more sensitive to the values of the
elasticity-plasticity constants. This corresponds to the
robot itself pushing the object and feeling the response,
while using vision solely to determine the position of
the actuator and for evaluation purposes.

3) Collisions and forces. The previous two approaches can
be combined. Visual constraints (collision detection) and
forces are used to determine the displacement of nodes
around the actuator. Again, the springs propagate the
deformation to the rest of the mesh.

The mesh as predicted one step ahead is then fed back as the
current shape for the next step and the cycle is repeated until
the simulation is stopped.

The next stage is the learning process which consists in
identifying sets of parameters that produce simulations similar
to the ground truth. This problem is addressed in the following
section.

VII. LEARNING TO PREDICT DEFORMATIONS

A. Evolutionary Algorithm

Since a mass-spring model is not a constitutive model,
its parameters are not directly derived from the physical
properties of the material, they instead depend on the geometry
of the mesh used to model the object. There can thus be several
sets of parameters in different regions of the parameter space
that produce adequate simulations [39]. We therefore chose to
use an evolutionary algorithm to both perform global search,
and local improvement.

The evolutionary algorithm described in Algorithm 5 was
used to search the parameter space of the mass-spring model

4An area of 2.0 units was good enough.

presented in the previous section. From the parameters that
must be chosen for the simulation to work, some were fixed
while others had to be searched for. They are:

• The mass per vertex. (For the moment we consider a
unitary mass for all vertices.)

• The elasticity constants: for the preservation of length kL,
area kA, angles kϕ and linear damping kd. (All springs
will have the same values to favour generalisation.)

• The plastic parameters: yield, creep and the maximum
amount of permanent deformation max α. (All springs
will have the same values to favour generalisation.)

• The integration time step ∆t. (It has been set to 0.1
seconds, even though values as small as 0.01 were tried
as well; however, since they didn’t improve stability or
accuracy in a visible way, but made the process much
slower, they were disregarded as impractical.)

• An upper limit for the magnitude of the total estimated
forces per vertex max Force.

• The minimum area before a triangle is considered flat. (It
has been set to 2.0 units.)

To evaluate the suitability of each set of parameters, the
simulation is compared with the ground truth tracked from
real objects.

B. Evaluation Function

To evaluate the quality of the predicted deformations, the
pixels inside the tracked contour are used as ground truth.
These are compared against those inside the mesh of the sim-
ulation. In machine learning terms, these pixels can be divided
into four classes: the true positives TP , where the material
is present, and the simulation predicted it would be present;
the true negatives TN , where the absence of material is in
accordance with the prediction; the false positives FP , where
the prediction said there would be material, but there is not;
and the false negatives FN , where there is material, but the
prediction said there wouldn’t be [Fig. 5(b)]. Given that main-
taining a record of the true negatives (the empty/background
space around the material) is mostly irrelevant and highly
inefficient, the score for a whole video was derived from the
following quantities:

Precision =
TP

TP + FP
, (16)

Recall =
TP

TP + FN
(17)

From which the harmonic average F is derived:

F =
2

1
Precision + 1

Recall

=
1

1 + FN+FP
2TP

(18)

This measurement is known as the F-score and is used
in the computer vision community to evaluate segmentation
algorithms. F = 1 means that there were no false predictions
(FN + FP = 0). F → 05, if there are no good predictions
(TP → 0) or if there are too many errors (FN +FP →∞).

5This is read: the value of F goes to zero or F tends to zero.
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Algorithm 5: Evolutionary Search
1: Let N be the number of sets of parameters to be evalu-

ated per generation and M the number of generations.
2: Let α + β + γ + ζ = N denote four portions of the N

elements, with:
α ← number of elements that survive for the next
generation as they are,
β ← mutated individuals,
γ ← crossed over, and
ζ ← new individuals.
which will be chosen as follows:

3: Let σmax > σmin both be standard deviations of a
Gaussian

4: Let ∆σ ← (σmax − σmin)/M .
5: for i = 1→M do
6: Run N simulations and compare prediction with

ground truth (real object), by comparing the area
occupied by the real object with the area occupied
by the simulated mesh [Fig. 5(b)].

7: Keep the best α from all simulations.
8: σ ← σ −∆σ
9: Generate β by adding random Gaussian noise, with

standard deviation σ, to the best candidates.
10: Generate γ by selecting values of the parameters from

two different sets at random, after eliminating the ε
worst.

11: for ζ elements do
12: Generate completely new sample with:
13: for every parameter do
14: n← randomNumber ∈ [0, 1)
15: min← log(minV alue)
16: max← log(maxV alue)
17: param← e(n(max−min)+min)

18: end for
19: end for
20: i← i+ 1
21: end for

Fig. 10. Evolutionary Search for Automatic Calibration

F is calculated for every frame and the score for the video at
frame i is the mean over all the frames so far, µ(F ):

µ(F ) =

t=i∑
t=0

F (frame = t) (19)

If the predictions for all the frames were perfect, µ(F ) would
be equal to 1; the closer to zero, the more errors there
were. The simulation stops sometimes, if a model has become
unstable; from that frame on, the value of F is zero. The model
with the highest final value of µ(F ) is considered the best.

VIII. EXPERIMENTAL RESULTS

A. Scenario

For the experimental scenario we used two materials:
sponge and plasticine. Each formed a rectangular block of
deformable material, of 8.5 cm long, 5 cm wide and 1.8 cm

depth. One of the objects is selected, and is placed on a table;
the robot pushes the object with a cylindrical finger, followed
by a retrieval movement. A colour firewire camera records
the action perpendicularly, while a force sensor registers the
reaction forces in synchrony with each photograph taken
[Fig. 5(a)]. This set up allowed us to study the effect of using
an automatically calibrated physics based model as model for
the material, while using 2D meshes, even though the same
principles can be used if we use a 3D point cloud and a 3D
mesh. To generate the initial mesh for the mass-spring model
a routine placed the nodes for the masses evenly spaced on a
rectangular grid, given the number of squares we wanted per
side. We made experiments with grids of 3 × 2, 10 × 5 and
20× 10 squares. To alleviate the bias produced by the springs
they were placed in a star pattern, thus compensating forces
on eight directions.

The force sensor was a DAQ-FT-Gamma, that can measure
forces up to 200 Newtons in the z direction (up to 65N in
the others) and torques up to 5 Newton-metre. The size of
the photographs is 800 × 600 pixels. The scale between the
real world measurements and the pixels in the image were:
4600 pixels

m
6 for the sponge and 4350 pixels

m for the plasticine
(they are different because the camera was placed at slightly
different positions).

For both sets of experiments, each of the blocks was pushed
in different positions:

1) In the middle of its longest side.
2) Close to the corner of its longest side.
3) In the middle of its shortest side.

The first set of data was used to train the model for the
respective material. The set of parameters that allowed the
model to behave most like the real object, according to the
criterion explained in Section VII-B, was selected. The other
two videos were used to test the quality of the predictions
made by the model for the new interactions.

To take into account the cylindrical shape of the actuator,
the radial component of the registered force is applied at any
vertex that happens to be located within the radius of the
robotic finger. For collision detection routines the finger is
considered a circular obstacle.

B. Integration Scheme

Sets of 24 training sessions were run, using different combi-
nations of elasticity and plasticity terms. For example, we used
damped preservation of length only, preservation of area and
angle only, or all of them together. Cases were tried including
plastic deformation, and removing the collision resolution
routines and the aid of geometric constraints. For this first
round of experiments three different integration schemes were
used: Euler, Verlet and our customised version. The resulting
marks are summarised in Table II.

The traditional equations of movement, estimated with
Euler or Verlet show big oscillations and frequently become
unstable. Verlet seems to be badly affected by the collision
resolution routines and geometric aids, that drastically affect

6 m = metre
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Fig. 11. Detail of the simulation system with shape and force prediction.
The position of the actuator is extracted from the image, while the force is
predicted by the piece-wise regression model (FP). This information is used
by the calibrated mass-spring system (SP) to predict the shape of the object
for several frames.

TABLE II
SCORES OF SETS OF PARAMETERS OBTAINED WITH DIFFERENT

INTEGRATION SCHEMES

Scheme Best Worst Average

Euler 0.88 ± 0.04 0.44 ± 0.13 0.75 ± 0.08
Verlet 0.76 ± 0.19 0.53 ± 0.18 0.68 ± 0.19

Customised 0.921 ± 0.008 0.60 ± 0.13 0.86 ± 0.02

Where the mark is µ(F ) as explained in Section VII-B. Mean µ(F )
and standard deviation across 24 training sesions are reported for the best
performing models of every training session, worst model and average model.

the values of velocity and acceleration. On the other hand, the
customised first degree equations suggested in Section VI-C
produce smooth movements that more closely resemble the
ground truth, thus obtaining better marks. From this group of
experiments it was also found that evolutionary learning is
as efficient when considering all elastic and plastic terms, as
when using only a few of them7.

C. Results of Automatic Parameter Calibration

1) Performance for the Learned Shape Prediction Model:
The performance of the genetic learning algorithm was eval-
uated using the customised integration scheme and the mass-
spring elastic-plastic model. At this point no prediction of the
force was included, rather, the reaction forces measured with
the force sensor were used. The F-score was used as fitness
function. The values used for the parameters of Algorithm 5
are summarised in Table III, also the minimum and maximum
limits for the values of parameters for the mass-spring model.

Fig. 12 shows how the quality of the simulation throughout
the whole video improved with each generation. Both graphs
show that even though the enforcing of geometric constraints
with additional routines may produce simulations with lower
scores at the begining of the training, they perform just as
well after enough generations. These scores reflect the degree
to which areas covered by the ground truth and the mesh of
the simulation match; however, when looking at the videos
produced, it becomes evident that simulations with additional
geometric constraints succeed more in keeping the mesh flat.

7The full list of terms is summarised at the end of Section VII-A.

TABLE III
PARAMETERS FOR THE GENETIC ALGORITHM

Parameter Value/Range
Genetic Algorithm

M 30
α = β = γ = ζ 5

σmax 1000.0
σmin 10.0
P (s) 0.05

Elastic Parameters

kd [0.00001, 2]

KL [0.00001, 10000]

KA [0.00001, 10000]

Kϕ [0.00001, 100]

max(F ) [5, 100000]

Plastic Parameters

α [0.00001, 0.9]

yield [0.00001, 1.0]

creep [0.00001, 1.0]

* Where P (s) is the probability of using a special value, like 0.0, for the
spring constants.

2) Performance for the Learned Force Prediction Model:
Using the readings of the force sensor, and associating the
deformation of the material with the displacement of the
robotic finger, a regression curve was fitted to the stress-
strain graph for the pushing and retrieving movements. See
Fig. 13. As was expected from typical stress-strain diagrams
of elastic and plastic phases of materials, a linear regression
is characteristic of an elastic material, while the logarithmic
regression better fits a plastic material. For the retrieving
movement only a linear model was considered, since the shape
deformation of the plastic material makes it harder to measure
the strain from the visual information. The curves obtained are
used to approximately predict the reaction force for unknown
interactions. These forces are used for the mass-spring model
as in Fig. 11.

D. Prediction

One hundred photographs and force readings were taken
every 0.17± 0.007s in average. The mass spring model runs
with an integration step h = 0.1s, where forces that were not
measured directly are interpolated. The push down movement
lasts approximately 50 frames and the retrieval movement the
other 50. The continuous lines in Fig. 13 show the predicted
forces, given the amount of compression of the material
(strain), while the point-lines show the actual readings. Fig. 14
and Fig. 15 show the actual shapes predicted by the combined
FP and SP model.

We also compared the generalisation capabilities of our
model against the system proposed in [11]. This system
uses a Growing Neural Gas (GNG) Network to calibrate a
colour segmentation algorithm. We couldn’t use the HSV
space, as suggested by Cretu, because our videos have lots
of shadows which produce holes inside the material regions
which cause problems in further stages. We obtained better
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Fig. 12. Final marks of the videos after each generation of the genetic search.
The filled areas correspond to the standard deviation σ(µ̄(F )), across 15
runs of the learning algorithm. Using the customised integration scheme, the
elastic-plastic model with all preservation terms, with and without the aid of
geometric recovery routines. The block of material was represented by a mesh
of 20 × 10 elements.

results for GNGN with the Luv color space. Note that, even
though we used the HSV space in our tracking algorithm,
this didn’t have the same problems because the nodes of our
linear snake search for nearby edges and are not affected by
shadows in the middle of the object or temporary failures in
detecting an edge. Another GNG network is used to select
the control points adequate for approximating the contour in
the first frame. Later, Cretu et al. used a Neural Gas (NG)
algorithm to adjust that fixed number of control points to the

Fig. 13. The response force during the interaction can be characterised in three
phases: pushing, transition and retrieval of the finger. A different regression
curve can be used to approximate the force during the pushing and retrieving
phases. Linear and logarithmic regressions were suggested for the pushing
movement and the best was chosen autonomously. Only linear regression was
used while retrieving.

contour of the material at every frame. Using the coordinates
of the finger, the sensed force and the coordinates of those
control points through time, they train a Feedforward Neural
Network (FFNN) to predict the contour of the material given
the position of the finger and sensed force. We reproduced
those steps and their training method on our training video.
However, when we tried to test the generalisation capabilities
of their method to new pushing actions, the weakness of the
FFNN method became evident: it became tied to the specific
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Fig. 14. Simulation of the sponge obtained with parameters kL = 3034.48, kd = 0.000237, kA = 103.568kφ = 66.774,max Force = 1218.81, yield =
0.000434973, creep = 0.00890343,max α = 0.45204. Using the customised integration scheme, the elastic-plastic model with all preservation terms,
with the aid of geometric recovery routines and collision detection with the finger. The block of material was represented by a mesh of 20 × 10 elements.
Top: Training. Middle: Test 1. Bottom: Test 2

Fig. 15. Simulation of the plasticine obtained with parameters kL = 642.328, kd = 0.562201, kA = 29.2776kφ = 72.6202,max Force =
765.912, yield = 0.0790105, creep = 0.664469,max α = 0.48842. Using the customised integration scheme, the elastic-plastic model with all
preservation terms, with the aid of geometric recovery routines and collision detection with the finger. The block of material was represented by a mesh of
20 × 10 elements. Top: Training. Middle: Test 1. Bottom: Test 2

location and type of interaction it was trained with, while our
physics based model had no problem making predictions for
new pushing actions. The results with the GNGN method can
be seen in Fig. 17 and Fig. 18.

E. Classification

The mass-spring models calibrated for the prediction task
were used to classify materials through recognition of their

behaviour, even when the objects where pushed and deformed
at novel locations. The models make predictions as if the ma-
terial of the object was known. The model that makes the best
predictions indicates which type of object is being observed.
There are two criteria for selecting an object/material for the
video being shown to the system:

1) Per frame: a material is selected for each frame of the
interaction according to whichever model made the best
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Fig. 16. Simulation of the plasticine obtained with parameters kL = 0, kd = 0, kA = 28202.1kφ = 34.5491,max Force = 780.825, yield =
0.772727, creep = 0.67466,max α = 0.656572. Using the customised integration scheme, the elastic-plastic model with some preservation terms,
furtherly tuned by hand, with the aid of geometric recovery routines with the finger. The block of material was represented by a mesh of 20 × 10 elements.

Fig. 17. Neural network approach fits quite well the training data set, but can
not generalise to new pushing actions. The red line shows the border used as
ground truth in the training set, while yellow lines show prediction from the
FFNN.

Fig. 18. GNG segmentation didn’t work with a shadowed material (video
of plasticine). This image shows the segmentation results previous to the
application the median filter, which was applied to perform tracking. Results
also do not generalise to unseen pushing actions. The red line shows the border
used as ground truth in the training set, while yellow lines show prediction
from the FFNN.

prediction for that particular frame, according to the F-
score. This test was performed for every frame of the
six videos, where the robot finger pushes the block of
material.

2) Global: The system makes a vote about which material
the object was made of, for the whole duration of the
video, by making use of a weighted score. The difference
in the F-score is added for all frames. Frames where
the distinction is more noticeable will receive a greater
weight.

IX. DISCUSSION

We note the following points about the results and the
method in general.

A. The Learning Method

Even though the evolutionary algorithm allowed for a uni-
form exploration of the logarithmic space of parameters, it
failed to find the optimal solution. Better simulations have
been obtained by hand tuning some of the best sets of

parameters obtained by the genetic algorithn. This is not due
to an error of the search algorithm, but due to a difference
between what humans visually qualify as a good solution and
what the evaluation function does. For example: humans would
prefer the solution shown in Fig. 16, because this model of the
plasticine does not tend to recover its shape, as the one selected
by the computer does. However, the f-score of the solution
chosen by the computer is better. The similarity between the
sensed force and the forces that the mass-particles produce on
the finger could be added as a second criteria to evaluate the
models. Even though we found that the automatic calibration
procedure sometimes produces models were this difference is
small, we have left for future work the addition of this criterion
to the evaluation function.

B. Using Additional Geometric Constraints

Adding extra routines to enforce the planarity of the mesh
had good aesthetic results, however that did not reflect much
on the mark for the best videos of each generation during
training. Also, when attempting to model the plastic material,
the geometric constraints provoked a much larger effect caused
by the plasticity term, even if its corresponding constant was
small. As a consequence the plastic material also recovered
its original shape after some extra frames. It has been seen
that, if the constant for linear preservation is set to zero, the
problem disappears. Even if the automatic calibration selects
these extreme values with probability ε > 0, in an attempt to
reproduce this finding, their derivatives obtained after applying
gaussian noise to their parameters obtain better marks, even
though they eventually recover their shapes, and get selected
in a better position for the next generation. We hypothesise
that humans give greater weight to specific aspects of the
simulation, for example: to the beginning, to the instant of
greatest deformation and to the final shape. Meanwhile, the
evaluation function gives the same weight to all frames in the
sequence. It is possible to use the force learning algorithm
and the commands given to the robot (push/retrieve) to detect
these points, since they are correlated with discontinuities in
these other modalities. Future work will evaluate the impact
of these modifications on the evaluation function.

C. Training With Collision Resolution with the Finger vs.
Without

It was found that the overall score of the best simulations
was similar in both cases, since only geometric similarities are
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TABLE IV
CLASSIFICATION PER FRAME

Sponge Plasticine
Data Set TP FN Precision TP FN Precision

Trained with forces on vertices and no collision resolution.

training 167 132 0.56 186 113 0.62
test1 167 132 0.56 271 28 0.91
test2 242 57 0.81 289 10 0.97

* TP and FN are measured in terms of numbers of frames. TP + FN
= 299. The final class assigned according to the performance of the
models’ predictions across the whole video. See text for details.

under consideration. However, there was a noticeable differ-
ence in the rate of success for the classification problem. If no
collision detection with the finger is used during training, the
springs react only to the forces and, if the spring coefficients
are not adequate, the shape of the mesh will be very different
from the shape of the ground truth.

On the other hand, if collision detection is used, the geomet-
ric constraints strongly favour a correct configuration of the
mesh in the vicinity of the actuator, even though the springs
did not react properly. For subsequent frames, it is more
likely, when using collision detection, that the neighbours
will succeed in propagating the deformation to the rest of
the material, thus producing better simulations than without
it. However, this lessens the effectiveness of the mass-spring
model in distinguishing the materials.

D. Classification

Table IV shows the results for the classification task, frame
by frame for each video. When the sponge model performed
better for a frame of the sponge video it is marked as a true
positive (TP), when plasticine does better it is marked as a
false negative (FN) —since it didn’t recognize it as a sponge.
The analogous process is used for the plasticine. The total
TP+FN=299 which is the total frames per movie. The overall
classification for a movie can be determined by whether TP ¿
FN or vice versa. Using this rule gives a perfect classification
of the six movies.

It should be noted that, in some of the experiments, the
performance of classification for the sponge on the training
and test1 sets are the same. We interpret that the mass-
spring physics based model generalizes naturally when the
force/deformation conditions are similar, even if the place
for pushing is different. Between pushing in the middle and
pushing closer to the border the qualitative behaviour of the
elastic material was no so different for these models; unlike
the data from the third set, where the distribution of mass
and maximum force/deformation is more different from the
ones seen on the training set of the model. It is interesting to
confirm that the difference in predictions between the models
is bigger here, resulting in better classification.

It is also notable that, when modeling the sponge, the
parameters for the plasticine were close in performance to
the parameters for sponge (thus causing more problems to
establish a good classification), the opposite does not happen.
That is, the parameters for the sponge are not good at modeling

the plasticine on the test sets, thus yielding better results at
the classification task. This could happen because the plastic
behaviour (that is, the permanent deformation of a spring) gets
activated with stronger forces after the yield limit is reached,
which only appear when pushing the plasticine. With the small
forces fed back by the sponge, the model for the plasticine
does not reach its range of plastic behaviour and thus the big
differences in behaviour are not manifest.

The best results for classification with the mass-spring
model are obtained when the training of the models uses only
forces to displace the nodes in the mass-spring model8, but the
combination of force readings and collision resolution is used
during classification9. This finding agrees with the fact that the
objects are more distinguishable from the data obtained from
the force sensor, than from the visual data. The fact that the
spring constants must respond to the applied forces during the
training and not only to the visual appearance is reflected in a
better differentiation of the behaviour of the models. When the
calibration is more sensitive to the constants of the springs, it
is more robust for novel interactions, therefore the difference
in quality of the predictions is a better indicator of which
material is being used.

E. Conclusions

In summary, we have presented a framework and specific
algorithms for off-line learning of the sensorimotor contin-
gencies for the deformable behaviour of objects under robot
pushing. We have developed an approach that learns/calibrates
the parameters of two contingencies that are sequenced, one
for kinematic motion to force (FP) and the other for force to
deformation (SP). By sequencing these we obtained a com-
pound contingency that predicts deformation given motion.
The main properties of the model are as follows. First, the
parameters for the model components were learned from data
from real objects under robotic manipulation. Second, we
have attempted the automatic calibration of a simulation of
plasticity. If a new material were added, provided it were
elastic or plastic, it would be possible to calibrate a model for
that material, independent of the existing calibrated models.
Third, we use regression to predict the reaction forces in the
force prediction model. Fourth, we include a new energy term
for the preservation of angles in a mass-spring model of shape
deformation. Fifth, we employ a regularization algorithm for
a linear snake, that increases or decreases the number of its
control points, according to the level of detail required to
represent the deformed object. Sixth, we provide a detailed
evaluation of the dynamic simulation, instead of only during
its stable states as in previous work. Finally we showed the
application of the learned prediction models to the problem of
classifying deformable materials.

There is considerable future work to be done. The first
extension is due to the fact that we restricted the deformation
model to 2D, and this can easily revert to the 3D meshes
as used in Teschner’s original work. The second issue is
to explore new methods for the learning phase. The current

8Case 2 in Section VI-F
9Case 3 in Section VI-F
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search procedure doesn’t always find good solutions for the
plastic deformation model. A third extension is to extend the
fairly trivial visual system to initialise mass-spring models
for objects of abitrary shape. We propose using a Voronoi
triangulation rather than a grid. But a more basic problem
is that mass-spring models restrict the range of deformations
that can be modelled. While the framework presented here is
promising, we regard the actual deformation model represen-
tation as an open research problem. Finally, all the work here
is for off-line learning, from a carefully chosen viewpoint. The
issue of online learning of these representations, including how
to explore so as to learn, is an open issue.

APPENDIX
FORCES DERIVED FROM PRESERVATION CONSTRAINTS

1) Preservation of Length: Substituting (10) in (9), after
some manipulation we get:

~F i
D(pi, pj , vi, vj) =

kL
D2

0

(|~pj − ~pi| −D0)
~pj − ~pi
|~pj − ~pi|

+

kd
D2

0

(
~pj − ~pi
|~pj − ~pi|

· (~vj − ~vi)
)

~pj − ~pi
|~pj − ~pi|

(20)

where kL is the linear spring constant and kd the damping
constant.

2) Preservation of Area: The force ~F i
A is derived as fol-

lows:

C =
1
2 |(~pj − ~pi)× (~pk − ~pi)| −A0

A0
(21)

A =
1

2
|(~pj − ~pi)× (~pk − ~pi)|, (22)

~F i
A(pi, pj , pk) = − kA

2A2
0

(A−A0)

(~pj − ~pi)× (~pk − ~pi)
|(~pj − ~pi)× (~pk − ~pi)|

[~1× (~pj − ~pk)] (23)

where A0 is the initial area of the triangle and kA the
proportionality constant.

It is possible to rewrite (23) in a more geometrically intuitive
manner by rewriting the direction of the gradient according
to Morris’ geometric derivation [39], but keeping the area
normalisation constant10. It becomes evident that the forces
pull along the heights of the triangles [Fig. 6(b)]. Then the
magnitude of the force is given by:

‖~F‖A(~pi) =
1
2 |(~pj − ~pi)× (~pk − ~pi)| −A0

A2
0

(24)

While the rest becomes:

~FA(~pi) = kA · ‖~F‖A(~pi) · forcedirA(~pi)

forcedirA(~pi) =
~FA(~pi)

|~FA(~pi)|
=
∇A(~pi)

|∇A(~pi)|
∇A(~pi) = (~pi − ~pj)−(

(~pk − ~pj) ·
(~pk − ~pj) · (~pi − ~pj)
(~pk − ~pj) · (~pk − ~pj)

)
(25)

10This substitution is valid because both are expressions for the gradients
of the area of the triangle formed by the three verticies.

3) Preservation of Angles: The force is derived from:

Fϕ(pi) = kϕ(ϕ− ϕ0)
∂ϕ

∂pi
(26)

∂ϕ

∂pi
=

∂

∂pi
arccos

(
(~pj − ~pi) · (~pk − ~pi)
‖~pj − ~pi‖ ‖~pk − ~pi‖

)
(27)

(28)

where kϕ is the corresponding stiffness constant.
The force is:

Fϕ(pi) = kϕ(ϕ− ϕ0)
∂ϕ

∂pi
(29)

∂ϕ

∂pi
(pi) =

1

djidki

√
1−

[
pp

(dji)(dki)

]2
{[

1− pp

d2ki

]
(pk − pi) +

[
1− pp

d2ji

]
(pj − pi)

}
pp(pi) = (pj − pi) · (pk − pi)
dji(pi) = ‖pj − pi‖
dki(pi) = ‖pk − pi‖ (30)
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