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Abstract  
 

Changes in temperature have occurred throughout Earth’s history. However, current warming 

trends exacerbated by human activities impose severe and rapid loss of biodiversity. 

Although understanding the mechanisms orchestrating organismal response to climate change 

is important, remarkably few studies document their role in nature. This is because only few 

systems enable the combined analysis of genetic and plastic responses to environmental 

change over long time-spans. Here, we characterize genetic and plastic responses to 

temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate 

gene and an outlier analysis approach. We capitalize on the short generation time of our 

species, facilitating experimental evolution, and the production of dormant eggs enabling the 

analysis of long term response to environmental change through a resurrection ecology 

approach. We quantify plasticity in the expression of 35 candidate genes in D. magna 

populations resurrected from a lake that experienced changes in average temperature over the 

past century and from experimental populations differing in thermal tolerance isolated from a 

selection experiment. By measuring expression in multiple genotypes from each of these 

populations in control and heat treatments we assess plastic responses to extreme temperature 

events. By measuring evolutionary changes in gene expression between warm and cold 

adapted populations we assess evolutionary response to temperature changes. Evolutionary 

response to temperature increase is also assessed via an outlier analysis using EST-linked 

microsatellite loci. This study provides the first insights into the role of plasticity and genetic 

adaptation in orchestrating adaptive responses to environmental change in D. magna.  
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Introduction  

Natural populations currently face an increase in average temperature as well as an increase 

in frequency of extreme temperature events (Hoffmann et al. 2015). Projections predict an 

average temperature increase over the next 100 years in the order of 2 to 6°C (IPCC 2013). In 

addition, human-driven climate change increases the frequency of extreme events such as 

droughts, floods and heat waves, imposing further strain on natural populations (Moss 2012; 

Pachauri & Reisinger 2007). The speed of these changes and severity of extreme events 

represent a major threat to biodiversity (Urban 2015).  

Organisms can respond to changes in temperature by migrating to more suitable habitats, via 

plasticity or genetic adaptation (e.g. Geerts et al. 2015; Merila & Hendry 2014; Stoks et al. 

2016). However, because of the speed and severity of modern climate change, the ability of 

current populations to cope with the change is under debate (Cardinale 2012; Cardinale et al. 

2012; Smith et al. 2007). So far, a number of studies explored the limits of thermal tolerance 

in animals and plants to understand if they will persist beyond their current habitat 

distribution (Deutsch et al. 2008; Overgaard et al. 2011; Tewksbury et al. 2008). Most 

studies conclude that the main mechanism of population response to climate change is 

phenotypic plasticity (Merila & Hendry 2014), allowing for rapid adjustments to novel 

environmental conditions (Chevin & Lande 2010; Chevin et al. 2010; Kovach-Orr & 

Fussmann 2013). As opposed to studies on phenotypic plasticity, studies reporting genetic 

adaptation to climate change are scarce (but see Hoffmann & Sgro, 2011; Merilä & Hendry, 

2014). This is because it is challenging to link phenotypic to genetic variation either in nature 

or under controlled laboratory conditions (Merila 2012). Moreover, it is challenging to 

document transgenerational evolution, except for species with short generation time such as 

unicellular organisms (Bennett & Lenski 2007; Illingworth et al. 2012), in systems for which 

long time series data are available (e.g Darwin finches, Grant & Grant 2002) and algae, 
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(Lohbeck et al. 2012) or for species that produce dormant stages that can be resurrected and 

used in common garden experiments (e.g. Franks et al. 2014; Geerts et al. 2015).  

A direct approach that allows to measure evolutionary dynamics in natural populations and 

communities across multiple generations is in most cases impossible, as adaptive response to 

environmental change cannot be measured in individuals from different times experiencing 

different selection pressure (Merila & Hendry 2014). Exceptional are species that produce 

resting stages, such as aquatic invertebrates or plants (Franks et al. 2014; Geerts et al. 2015). 

These species offer the unique opportunity to compare genetic and plastic responses of 

historical populations to their modern (evolved) descendants in common garden experiments, 

enabling the reconstruction of evolutionary dynamics over time in response to environmental 

change (resurrection ecology: Kerfoot & Weider 2004).  

 

Here, we focus on the aquatic invertebrate Daphnia magna, a species that produces dormant 

eggs which remain viable in layered lake sediments for decades or even centuries (Frisch et 

al. 2014). Daphnia are keystone species central to the food-web of inland waters (Miner et al. 

2012), drivers of community dynamics (Pantel et al. 2015), and responsive to environmental 

changes either via genetic adaptation or phenotypic plasticity (e.g. (Decaestecker et al. 2007; 

Latta et al. 2012; Orsini et al. 2012; Yampolsky et al. 2014). Daphnia dormant eggs can be 

resurrected to resume development and maintained via clonal reproduction in the laboratory. 

The short generation time coupled with clonal reproduction provides the unique advantage of 

rearing populations of identical genotypes from a single individual and to enable common 

garden experiments in which historical and modern populations can be analysed. 

In a recent study, D. magna has been shown to adapt to temperature changes via the evolution 

of the critical thermal maximum, documented experimentally in populations exposed to 

controlled thermal conditions (mesocosms) and in (sub)populations from a lake sediment 
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core resurrected from the coldest (1960s) and the warmest (2005s) period of the last century 

(Geerts et al. 2015). The critical thermal maximum was measured by exposing animals from 

the mesocosms and the sediment core to increasing temperature until they lost motor function 

(critical temperature maximum CTmax: Geerts et al. 2015; Kristensen et al. 2007). In the 

present study, we follow up this earlier work and use the same populations to assess plastic 

and genetic responses orchestrating adaptation to extreme temperature events and warming. 

We measure gene expression changes in candidate genes associated with thermotolerance in 

other species to test whether the expression of these genes is altered in our populations. 

Changes in gene expression between warm and cold-adapted populations are discussed in the 

context of evolutionary differences between populations adapted to different temperature 

regimes, whereas changes in gene expression following the CTmax treatment are discussed in 

the context of adaptive response to extreme temperature events. Additionally, we use an 

outlier analysis (Luikart et al. 2003) to identify loci potentially under selection and 

underlying genetic responses to temperature increase. This combined approach allowed us to 

gain insights into the mechanisms of adaptation to warming trends combined with extreme 

temperature events. We discuss our findings in light of other confounding factors, such as 

additional environmental stressors, that may have influenced the response observed in the 

natural populations. 

 

Materials and methods 

 

Study populations 

The populations of this study (Fig. 1) have been used in an earlier study on thermal tolerance 

testing for the evolution of the critical thermal maximum (CTmax) (Geerts et al. 2015). The 

first set of populations consisted of animals resurrected from D. magna dormant eggs 

obtained from an artificial selection experiment (Feuchtmayr et al. 2007; Feuchtmayr et al. 
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2009). In this selection experiment, forty-eight tanks were used to create 3,000 L  mesocosms 

of shallow lake communities, in which the effect of multiple stressors was studied, including 

warming (+4°C), nutrient loading, and predation. This experiment was designed in a full 

factorial manner so that all combinations of the three stressors were analysed (Feuchtmayr et 

al. 2007). Here, we sample four of these mesocosms, of which two were exposed to a 

warming treatment (ambient +4°C) and two were maintained under control conditions 

(ambient temperature). To accomplish the heating treatment in the selection experiment, hot 

water (60 °C) was pumped through submerged pipes in the mesocosms. Temperature was 

measured electronically every 15 minutes by sensors submerged in each mesocosm, and a 

computer-controlled system ensured a 4 °C higher water temperature in the heated as 

compared to the non-heated mesocosms. In both the ambient and the heated mesocosms  

natural fluctuations of the ambient temperature were allowed to reflect natural conditions 

(Feuchtmayr et al. 2007; Feuchtmayr et al. 2009). The choice of imposing a 4°C increase in 

temperature was inspired by climate change predictions under the A2 scenario 

(Intergovernmental Panel on Climate Change, (IPCC 2007).  

In the original experiment, the mesocosms were filled in October 2005 with ground water 

pumped from a borehole and a 20cm deep sediment layer containing (by volume) 50% 

garden loam and 50% organic material (47.5% chopped organic oat straw and 2.5% rotted 

organic cow manure to simulate a sediment of a eutrophic lake or pond) (Feuchtmayr et al. 

2007; Feuchtmayr et al. 2009). This sediment did not contain dormant embryos of D. magna. 

Active zooplankton communities from several ponds in Ness Botanic Garden and a nearby 

shallow lake (Rostherne Mere: 53.354°N 2.387°W) were collected and mixed in equal 

proportion to create an artificial community sample. All mesocosms were inoculated with this 

zooplankton community sample. D. magna dormant eggs were collected from a natural pond 

(Brown Moss pond: 52.570°N 2.390°W) and added to the mesocosm in October 2005. Two 
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and three weeks after the initial inoculation (October 2005), the invertebrates community 

inclusive of Daphnia from all mesocosms was thoroughly cross-mixed using sweep net 

samples; all communities  were pooled and redistributed in the mesocosms to ensure 

comparable starting community conditions. The whole set-up and procedure resulted in 

mesocosms providing semi-natural conditions, mimicking the ecology of highly eutrophic 

small ponds. In March 2006, an additional set of 150 D. magna genotypes hatched from the 

same natural pond used for the initial inoculation (Brown Moss) was added to each 

mesocosm to ensure high abundance of a standardized and genetically diverse sample of D. 

magna. The experiment tested for the capacity of a single D. magna population to respond to 

experimentally controlled warming.  

All mesocosms were exposed to controlled experimental conditions for two years (October 

2005 – September 2007), which corresponds to approximately 30 D. magna parthenogenetic 

and two sexual generations (typically D. magna has one round of sexual reproduction at the 

end of the growing season). For the current study as well as for the earlier study on thermal 

tolerance (Geerts et al. 2015), D. magna dormant eggs were isolated from the top 2 cm 

sediment layer of two ambient and two ambient +4°C mesocosms and hatched by exposure to 

fresh medium, long-day photoperiod (14h light: 10h dark) and 20°C (Fig. 1).  

The second set of populations used in this study and in Geerts et al. (2015), termed core 

populations, was hatched from dormant eggs obtained from the sediment of Felbrigg Hall 

Lake (North Norfolk, UK, 52°54.10’N, 1°15.19’E), a shallow lake (0.9 m average depth) 

with a documented continuous presence of D. magna since ±1940 (Sayer et al. 2010). The 

dormant eggs were isolated at this location from two cores (FELB5 and FELB7) sampled in 

2005 using a wide-bore (diameter: 140 mm) Livingston-type core sampler (Patmore et al. 

2014). The sediment was kept in a dark cold room (+4 °C) until hatching. Core FELB5 was 

dated by radiometric analysis and core FELB7 by cross-matching its loss-of-ignition 
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stratigraphic profile with FELB1, a ‘master core’ dated by radiometric and spheroidal 

carbonaceous particle analysis (Sayer et al. 2010). D. magna dormant eggs were hatched from 

the sediment layers of two time periods: 1955-1965 (cold) and 1995-2005 (warm), 

corresponding to the lowest and highest temperatures of the last century (Fig. 1) (IPCC, 

2013).  

All genotypes obtained from the mesocosms and the sediment core were kept in monoclonal 

cultures for several generations (up to a year) under standard laboratory conditions (20 °C, 

long day photoperiod 14:10 L: D and fed Acutodesmus obliquus). These genotypes were then 

used for the outlier and the gene expression analysis described below. For the outlier analysis 

the genotypes were harvested for DNA extraction to obtain sufficient tissue. For the qPCR 

assays the strains were synchronized for two generations under standardized laboratory 

conditions prior to RNA extraction to reduce interference from maternal effect. The 

laboratory conditions for the control samples were as follows: 20 °C, 14h light:10h dark, and 

fed daily Acutodesmus obliquus at a concentration of 1x105 cells ml-1; the medium was 

refreshed every two days. For the CTmax treatment we followed Geerts et al. (2015). Briefly, 

after two generations in standardized laboratory conditions, the animals were individually 

subjected to a heating treatment. This consists of heating the medium in which the animals 

swim at incremental intervals of 1°C each 20 seconds until the animals lose locomotion. This 

is not a permanent status as the animals recover when placed at room temperature. CTmax 

thus quantifies the highest temperature at which animals still retain motor function (Geerts et 

al. 2015; Kristensen et al. 2007) and measures tolerance of a given individual to extreme 

temperatures. We collected animals immediately after they lost locomotion and flash froze 

them in liquid nitrogen. The Ctmax values reported by (Geerts et al. 2015) for the two 

population sets are in Table S1.  
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Identification of candidate genes from literature 

Our goal was to test whether the expression of genes previously associated with 

thermotolerance in other species was altered in our populations. We screened the literature for 

studies on thermotolerance in Drosophila, the closest arthropod to Daphnia with genetic 

resources. We identified a list of candidate genes associated with temperature stress in 

arthropods (Telonis-Scott et al. 2009; Telonis-Scott et al. 2011). For completeness we also 

identified genes previously associated with stress response in Daphnia (Heckmann et al. 

2006; Labbe & Little 2009; Schwarzenberger et al. 2010). The 138 candidate gene sequences 

obtained from this search were blasted for homology to the genome sequence of D. magna 

including the sequence of some house-keeping genes. The community resources used for 

homology searches was the genome assembly of D. magna v2.4 (NCBI accession: 

LRGB00000000 and 

http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genome/dmagna-

v2.4-20100422-assembly.fna.gz; genome-modelled gene 

catalogue:http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genes/mod

elled_on_genome/daphmagna_201104m8.gff.gz). 

Of the total genes screened for homology (N=138), 35 were retained (Table S2). For 17 of 

these 35 genes the primer regions were not conserved between our species and Drosophila. 

Hence, we designed specific primers using primer 3 (v4.0.0) (Untergasser et al. 2012) (genes 

highlighted in grey in Table S2).  

 

qPCR 

Differential expression between control and CTmax treatment was measured on the total set 

of 35 candidate genes in the mesocosm populations (Table S2). This first analysis showed 

that only a subset of 15 candidate genes was differentially expressed. Based on this evidence 
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we decided to perform qPCR only on this subset of genes in the core populations, in addition 

to two reference house-keeping genes (Atb, Xbp1) and a few candidate genes that were 

unresponsive in the mesocosm populations (CT802, itpr, NOS2, spag, T152). This design 

resulted in a total of 22 genes analyzed in the core populations. Gene expression was assessed 

via qPCR assays on nine to ten genotypes per population and using two technical replicates 

per genotype (Table S3). Total RNA was extracted from a pool of six individuals per 

genotype to ensure sufficient yield using the Trizol® extraction method (Invitrogen, 

Belgium) and following the manufacturer’s instructions. Total RNA was quantified using 

Nanodrop® Technologies (USA) and denaturing formaldehyde-agarose gel-electrophoresis. 

cDNA synthesis was performed using the Perfect real-time kit (1x prime Script RT reagent - 

clontech) for samples from the mesocosm populations (all genes except the Heat Shock 

Proteins, HSP) or the ‘RevertAid H Minus First Strand cDNA Synthesis kit’ (Fermentas) for 

samples from the core populations and the HSP genes of the mesocosm populations, 

following the manufacturer’s guidelines. We changed the cDNA synthesis kit in the course of 

the experiment because we experienced low repeatability of results with a batch of the Perfect 

real-time kit that could not be resolved. The batch of Perfect real-time kit used for cDNA 

synthesis in the mesocosm populations produced repeatable results. qPCR was performed on 

cDNA on an Abi Prism 7000 system (Applied BioSystems, Belgium) following the SYBR® 

Premix Ex Taq (Tli, RNaseH Plus, Takara) protocol in 20µl final volume. The amplification 

program was as follows: initial denaturation for 30s at 95°C, followed by 40 PCR cycles 

consisting of 5s at 95°C and 31s at 60°C followed by a dissociation step of 15s at 95°C, 20sat 

60°C, and 15” at 95°C. A sequence detection software v1.2.3 (7000 System Software, 

Applied Biosystems) was used to collect amplification and melting curves. We calculated the 

mean CT value (cycle threshold) per sample averaging between replicates before rescaling 

the value. CT values per samples and per primer-pair were rescaled using an interplate 
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calibrator consisting of a pool of RNA extracted from different genotypes at different 

developmental stages and including multiple genotypes from the population sets studied here. 

We refer to this rescaled value in the remaining of the manuscript when reporting CT values.  

 

Statistical analysis of differential gene expression  

We tested whether change in gene expression was explained by heat treatment (CTmax 

versus control), evolutionary adaptation to a temperature regime (evolution, increased versus 

ambient temperature in the selection experiment populations; recent versus historic 

population in the core), and their interaction term by using linear mixed models (LMMs). As 

our experimental setup included the analysis of up to ten genotypes per population (Table 

S2), we included a random error structure in each model to account for genotype-specific 

differences in gene expression within each population. We fitted one model per gene 

independently in the mesocosm and core populations. 

The term ‘CTmax’ assesses whether the gene of interest displays a significant change in its 

expression level after CTmax treatment compared to the control condition. This term 

measures the short-term plastic response of gene expression when the animal is exposed to 

sudden and severe temperature increase. The term ‘evolution’ represents the constitutive 

difference in gene expression between warm and cold-adapted populations (warm and cold 

mesocosm populations; young and old core populations). This term measures evolutionary 

differences in gene expression due to adaptation in the field or under experimental conditions. 

The interaction term ‘CTmax’ x ‘evolution’ quantifies the difference in gene expression due 

to the CTmax treatment between cold and warm-adapted populations. As such, it reflects the 

evolution of plasticity in gene expression of the candidate genes.  

We measured changes in gene expression between heat treatment (CTmax) and control 

(20°C) in all populations and genotypes. Based on our initial literature search, the 
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housekeeping genes Atb and Xbp1 were expected to be unresponsive. However, our analysis 

of the mesocosm populations (see qPCR above) confirmed only Xbp as invariant after heat 

treatment, whereas Atb was differentially expressed between control and heat treatment. 

Given this variation and the limited information on Daphnia gene expression under thermal 

stress, we adopted a within-gene normalization procedure that uses individual mean 

expression levels across the whole data as a reference point (intercept) and measures 

deviations from this mean in each gene. This approach enabled an unbiased identification of 

variation in gene expression.  

We use model-averaged effect sizes to quantify the impact of each term (CTmax, evolution 

and their interaction) on gene expression. The use of effect size provides several advantages 

over model selection, whether based on p-values or Akaike Information Criterion (AIC) 

(Burnham & Anderson 2002). Moreover, the use of average-model effect size allowed us to 

minimize errors on parameter estimates even when it was uncertain which model was the 

most parsimonious (Forstmeier & Schielzeth 2011; Lukacs et al. 2010). Effect size estimates 

in best models have been shown to perform poorly on parameters with small effects, either 

failing to find them significant (type II error) or overestimating their effect (Forstmeier & 

Schielzeth 2011; Lukacs et al. 2010). Conversely, model-averaged effect sizes avoid the 

issues of best model selection by averaging information across all models considered in a set, 

weighted by their relative ability to explain the data (measured via AIC). To obtain model-

averaged effect sizes for each term on our candidate genes, we fitted the main LMM 

including all factors to each gene separately in the mesocosm and the core populations (Table 

S4). For each of those main LMM we generated a complete model-set by fitting all models 

represented by subsets of the terms and ranked them via AICc (Akaike Information Criterion, 

adjusted for sample size). Finally, for each model set we obtained model averaged estimates 
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of each term by calculating the mean of each term effect size across models. The effect size 

of each term is weighted by its relative AICc score as compared to the total model set. 

This procedure generated 95% confidence intervals for the effect sizes of each term on each 

gene; terms whose 95% effect size estimates did not cross the intercept were considered 

significant. A False Coverage Ratio correction (FCR, (Benjamini & Yekutieli 2005) was 

applied to correct for multiple testing before assessing the significance of each term (P ≤ 

0.05). Throughout the paper we refer to the FCR penalized confidence intervals of effect 

sizes when discussing the results. The LMM analysis was performed using R version 3.0.3 

(Team 2013); more specifically the package plyr was used for data handling (Wickham 

2011), lme4 for model fitting (Bates et al. 2013) and MuMIn for model-set generation and 

averaging (Barton 2011).  

 

We investigated whether each term (CTmax, evolution and their combination) affected the 

expression of multiple candidate genes by performing a single value decomposition principal 

component analysis (SVD PCA) on all genes across mesocosm and core populations. 

Previous to PCA, all gene expression data were averaged across replicates (genotypes within 

population) by using centered and scaled medians. The PCA analyses were performed using 

the prcomp function in the R package stats and plotted using the ggbiplot package. 

 

Outlier analysis and neutral genetic stability 

An outlier analysis was performed to identify loci putatively under selection for temperature 

adaptation. Capitalizing on a microsatellite panel previously developed for D. magna (Jansen  

et al. 2011; Orsini et al. 2012), we genotyped the populations from the sediment core and the 

mesocosm experiment using 84 microsatellites, fifty of which are EST-linked loci (Orsini et 

al. 2012). To identify outlier loci departing from neutral expectations we contrasted warm-
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adapted and cold-adapted populations in the two population sets (mesocosm and sediment 

core) independently, using Lositan (Antao et al. 2008) and retained as outliers only loci 

conserved between these two population sets. This conservative approach which reduces false 

positives has been reliably used in previous D. magna population genomics studies (Orsini et 

al., 2011, 2012).  

In parallel to the outlier analysis and to exclude drift as cause of allele frequency changes in 

the two population sets, we studied the neutral genetic stability of the mesocosm and core 

populations following (Orsini et al. 2016). We studied changes in genetic diversity between 

old and young core populations and warm and cold mesocosm populations, by quantifying 

observed and expected heterozygosity (Ho and He), allelic richness (AR) and Fst using MSA 

analyser (Dieringer & Schlötterer 2003). Furthermore, we reconstructed the genetic structure 

of the two population sets to detect major shifts in genotypic composition over time using 

individual-based STRUCTURE analysis (Falush et al. 2003; Pritchard et al. 2000). The 

following parameters were used based on the stability of the MCMC parameters: 1,000,000 

burn-in period, 100,000 MCMC iterations, uncorrelated loci and admixture model. Different 

values of K were tested. Clusters of individuals with the highest likelihood were identified 

using the Evanno method (Evanno et al. 2005) implemented in HARVESTER (Earl & 

vonHoldt 2012). 

 

Results 

Candidate genes 

The CTmax treatment had a significant effect on the expression of a large proportion of the 

candidate genes analysed even though in some cases this effect differed in sign between the 

population sets (e.g atb Fig 2 and Table S5,). More precisely, 20 of the 35 (57%) tested 

genes, including some heat shock proteins, showed a significant downregulation in 

expression in the mesocosm populations (Fig. 2. Table S5), whereas only 5 of the 22 (23%) 
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tested genes showed a significant change in expression in the core populations in response to 

the heat treatment (Table S5). Three of these genes (atb, T152 primer1, and T152 primer2) 

were significantly upregulated, whereas two were downregulated (DamVTG1 and AnxB11, 

Fig. 2). Differential expression at AnxB11 and vitellogenin (DamVTG1) was observed in 

both population sets (Fig. 2 and Table S5). 

We find three genes (Cyp, Lip, Sema-1a) whose constitutive expression was significantly 

different between warm and cold adapted populations in the mesocosm experiment, whereas 

two genes (DamVTG1 and GPX) showed different constitutive expression between young 

and old populations in the sediment core. The former three genes show non-significant plastic 

response to heat treatment, whereas the latter two show a significant plasticity in addition to 

significant evolutionary difference in constitutive expression. Finally, our analyses did not 

identify a significant interaction between the terms ‘CTmax’ and ’evolution’ in any of the 

genes analysed. The lack of significant interaction between the terms ‘CTmax’ and 

’evolution’ suggests lack of evolution of plasticity. However, we cannot exclude that this 

result may be due to lack of power, as the identification of significant interaction between 

terms requires more replications than first-order terms.   

 

Co-expression of candidate genes 

We performed a single value decomposition principal component analysis (SVD PCA) to 

investigate co-variation of the expressed genes in respect to both the short term plastic 

response (CTmax) and the evolutionary differences between warm and cold-adapted 

populations (Fig. 3). We find that a large proportion of the observed variance (84%) is 

explained by PC1 which, however, captures very little of the differences between population 

sets or experimental treatments (Fig. 3A). PC 2 explains only 9.7% of the total variance but 

clearly separates the core and mesocosm populations (Fig. 3A). PC3 (3.3% var explained, Fig 
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3B) and PC4 (1.3% var explained, Fig 3C) both separate CTmax treatment from control, but 

whereas PC3 separates CTmax treatment from control in both population sets, PC4 only 

separates CTmax treatment from control in the mecososm populations. This suggests that 

PC3 represents the small-scale correlated response to CTmax treatment shared between 

populations. As expected, this correlated response was not observed in single-gene 

expression analysis within population sets. A closer examination of PC4 reveals a nested 

ordering of mesocosm populations, which are sorted first by CTmax treatment and then by 

evolutionary response (Fig. 3C). This suggests that genes expressed under CTmax treatment 

also increase their expression in the warm-adapted mesocosm population. That is changes in 

expression identified along PC4 are a mixture of plasticity and evolution in the mesocosm 

populations (e.g. GPX and DamVTG1 in Fig. 3C). Conversely, PC4 depicts only 

evolutionary responses in gene expression in the core populations, with a minor plastic 

component only in the old population.  

PC4 also separates old and young core populations (Fig 3C). A separation between CTmax 

treatment and control is only observed in the old core population, whereas the young 

population shows identical levels of expression along this PC (Fig. 3C). PC5 shows a nested 

ordering of the mesocosm populations sorting them first by selection regime (cold/warm and 

young/old populations) and then by CTmax (Fig 3D). Conversely, this PC has no explanatory 

power on the core populations (Fig. 3D). It is noteworthy that this PC, as PC4 (Fig. 3C), 

shows collinearity in gene expression between plastic and evolutionary response in the 

mesocosm populations (Fig. 3D).  

 

Outlier analysis and neutral genetic stability  

The microsatellite locus B088 was identified as an outlier in both population sets (Table 1). 

The major allele at this locus (allele with the highest frequency) is the same in both sets and 
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between populations within core and mesocosm (Fig. S1). This finding suggests that the 

locus itself or a gene tightly linked to it is under selection in both populations. Regretfully, a 

blast search of the sequence of this locus using the gene models built for D. magna (Orsini et 

al. 2016) did not identify a gene with known function in other species. 

Neutral genetic stability was observed in both population sets (Fig. 4). More specifically, the 

two population sets were in Hardy-Weinberg equilibrium at neutral loci (data not shown), 

heterozygosity and allelic richness were comparable between warm and cold adapted 

mesocosm populations as well as between old and young core populations (Fig. 4 A-B). 

Genetic differentiation between old and young core populations was in the range previously 

observed for D. magna (Orsini et al. 2013; Orsini et al. 2012) (Fst = 0.01; P = 0.09). Genetic 

differentiation was higher between the mesocosm populations (Fst = 0.04; P = 0.001) as 

expected for a more diverse genetic pool.Population genetic structure was comparable before 

and after selection in the mesocosm populations (Fig. 4 C), and over time in the sediment 

core (Fig. 4D). In both population sets the most likely number of cluster identified by the 

STRUCTURE analysis corresponded to the expected number of groups of individuals (two, 

Table S6). Furthermore, we observe a stable genotypic composition over time in the core and 

between mecosoms.  

 

Discussion 

Understanding the interplay between short-term plastic and long-term evolutionary response 

to climate change is critical to assess the ability of natural populations to respond to extreme 

events such as heat waves combined with global warming. A consensus on the relative 

importance of phenotypic plasticity and genetic responses to climate change has not yet been 

reached, mostly because systems in which both processes can be observed in concert are rare. 

The large majority of studies on climate change identified phenotypic plasticity as a common 
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mechanism of response (Chevin & Lande, 2010; Chevin et al., 2010; Kovach-Orr & 

Fussmann, 2013). However, an increasing number of case studies reports evolutionary 

changes in response to climate change (reviewed in Hoffmann & Sgro 2011; Merila & 

Hendry 2014).  

Our study provides evidence of plasticity in the expression of several candidate genes for 

thermotolerance in other species in response to sudden and drastic temperature increase 

(CTmax) in D. magna. Although CTmax assays may be expected to induce a shut-down of 

the regulatory machinery because of the rapid and extreme increase in temperature 

maintained until the animals lose locomotion (Kristensen et al. 2007), we observe both a 

downregulation of some genes, and an upregulation of some other genes after the heat 

treatment. The number of co-responsive genes to CTmax treatment, including some heat 

shock proteins, was higher in the mesocosm than in the core populations. However, 

responsive genes in the core populations showed a more pronounced change in expression in 

repose to the CTmax treatment. This pattern may indicate a stronger and more selective 

regulation of response genes in the natural as compared to the mesocosm population. This 

may be expected considering that the mesocosm population consists of a more diverse 

genetic pool as compared to the natural population. Interestingly, a different suite of genes 

responds to the CTmax treatment in the population sets analysed. This difference may be 

explained by the different genetic background of the populations as we discuss below. 

 

We identify different genes whose constitutive expression changes between warm and cold 

adapted mesocosm populations and young and old core populations (evolutionary differential 

expression). Additionally, some of the genes showing plastic response to heat treatment 

(DamVTG1 and GPX) in the core populations also show evolutionary differential expression 

between young and old populations, whereas plastic genes in the mesocosm do not show an 
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evolutionary difference in expression between the warm and cold-adapted populations. These 

findings are consistent with the results of inspecting PC4 in the PCA plot, which represents 

both evolutionary responses in natural populations and plastic differential gene expression in 

the mesocosms. A positive correlation between plastic and evolutionary responses in gene 

expression has been shown to facilitate adaptation during the early phases of colonization to 

thermal environments (Makinen et al. 2016). Conversely, selection for increased or decreased 

gene expression leads to loss of plastic responses , a process known as genetic assimilation 

(Scoville & Pfrender 2010). The analysis of individual genes in our study suggests that 

plasticity enhanced adaptation in the core population, whereas it was lost in the selection 

experiment populations. However, investigating patterns of co-expression among the 

candidate genes (PCA plots) provided further insights. PC4 clearly separates CTmax and 

control animals in the old but not in the young core population. This result combined with the 

individual gene analysis suggests that whereas some key genes showing evolutionary 

differences tend to maintain plasticity, the large majority of genes tend to lose plasticity 

under evolutionary constraints. The patterns of co-expression in the experimental populations 

reveal a different scenario; that is the majority of genes showing plasticity also show some 

degree of evolutionary difference between warm and cold-adapted populations.  

The differences in the number and type of genes co-expressed in the two population sets, as 

well as the different mechanisms of response may be expected because of the different 

genetic background and the selection regimes the populations experienced. The natural 

population (core population) evolved over 40 years from the same initial genetic pool which 

became locally adapted to the specific environmental conditions of the lake, whereas the 

mesocosm populations evolved from an artificial more diverse genetic pool obtained from the 

mixing of sediment collected from several lakes. Concerning the selection regime of the two 

populations, the mesocosm populations experienced a strong selection regime with an 
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increase in temperature of 4°C in a relatively shorter time frame (2 years) as compared to the 

natural population which experienced an average increase in temperature of 1.2°C over a time 

period of 40 years. It has been shown that the strength of selection and the speed of 

environmental change may strongly impact evolutionary trajectories (Grant & Grant 2002). 

An alternative explanation to the differences observed is that the two population sets do not 

respond to the same selection pressure. Whereas the genes identified in the mesocosm 

experiment can be directly linked to temperature adaptation, this signal may be confounded 

by other environmental stressors in the natural population. Although evolution to temperature 

increase in the natural populations has been previously associated with increased CTmax 

(Geerts et al. 2015), we do not have sufficient evidence to directly link the genes analysed 

here to temperature adaptation. It is striking, however, that a common gene polymorphism 

(B088 in the genome scan analysis) was shared between the two population sets, in absence 

of drift and gene flow from immigrant genotypes. This findings suggest that evolutionary 

responses in the populations studied are mediated by standing genetic variation, supporting 

previous results (Orsini et al. 2016; Orsini et al. 2013; Orsini et al. 2012) and that we have 

potentially captured adaptive response to warming trends in the two populations. However, to 

firmly conclude that the patterns observed are due to temperature adaptation in the natural 

population will require a more comprehensive analysis of genome-wide gene expression.    

 

The two populations studied here respond to environmental change regulating different sets 

of genes. Although it is not surprising that populations of the same species with different 

genetic backgrounds respond to the same stressors using a different suite of genes, it is 

possible that this difference is due to the response to different selection pressures, as 

discussed previously. It noteworthy, however, that the genes differentially expressed in the 

two population sets belong to the same functional categories, including central metabolic 
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functions, immunoregulation and oxidative stress response. More specifically, genes showing 

evolutionary differential expression between warm and cold-adapted mesocosm populations 

include genes associated with immunosuppression (Cyp), metabolism (Lip) and signal 

transduction (Sema-1a) (Heckmann et al. 2006; Heckmann et al. 2008). Genes showing 

evolutionary differential expression in the core populations are associated with egg formation 

(DamVTG1) and oxidative stress response (GPX). Finally, DamVTG1 and AnxB11are 

shared among population sets. AnxB11 is involved in lipid transport, whereas DamVTG1 

encodes the egg yolk precursor protein vitellogenin, which has been shown to be upregulated 

in asexual females of Daphnia pulex as compared to sexual, resting-egg bearing females 

(Raborn et al. 2016). The downregulation of vitellogenin documented in this study might thus 

be indicative of a switch from asexual to sexual reproduction and in the induction of dormant 

eggs under heat stress. As these eggs are resistant to environmental hardship, it is reasonable 

to assume that temperature stress triggers dormant egg formation to enable survival to 

temperature stress. The responsiveness of many central metabolic genes in our study is not 

unexpected. The correlation between temperature and metabolism is well-known in studies 

on climate change (Tewksbury et al., 2008), suggesting an important indirect role of 

metabolic genes in temperature adaptation. Moreover, this finding is in agreement with the 

previously recorded differentiation in growth between warm and cold-adapted populations 

from the core and the mesocosm: smaller animals showed a higher CTmax than larger 

animals, suggesting a link between growth and thermal tolerance (Geerts et al. 2015). As we 

gained more insights on the similarities between population sets by studying co-expression 

patterns among the candidate genes, a higher-level analysis, such as pathway or network-

based analysis on a larger suite of genes is likely to reveal stronger homologies between the 

populations studied. 
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Conclusions  

Our study identified five candidate genes (DamVTG1, GPX, Cyp, Lip and Sema-1a) 

potentially linked to temperature adaptation in Daphnia. This list is not exhaustive and the 

genes are likely only indirectly linked to temperature adaptation or underlie response to more 

stressors than just temperature. However, they represent good candidates for future functional 

studies. Our results reveal plasticity in the expression of several genes in response to extreme 

temperature events. In addition, we document evolutionary changes in gene expression and 

divergence in gene polymorphism occurring both over short (two years, mesocosm 

populations) and long (40 years, core populations) time spans. While we were able to link 

these evolutionary changes to temperature adaptation in the experimental (mesocosm) 

population, the co-occurrence of other environmental stressors with temperature prevents us 

to establish a direct link between temperature and candidate genes in the natural (core) 

population. Studying the relative contribution of plastic and genetic response to temperature 

changes at candidate genes provided us with the first insights into the architecture of 

adaptation to environmental stressors in D. magna. An exploratory analysis of co-expression 

patterns revealed that higher-level homologies in response to the same environmental stressor 

may be uncovered by studying patterns of co-variation in a larger number of genes.  
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Table 1. Outlier analysis.  

The selection detection workbench Lositan (Antao et al. 2008) was used to identify outlier 

loci in the Fellbrigg Hall Lake (core) and the mesocosm populations by contrasting warm and 

cold-adapted populations within each data set. Each comparison was performed in triplicates 

and the outlier loci identified using a FDR=0.1. The locus B088 was identified as outlier in 

both pairwise comparisons. Other outliers identified within one population set are also 

reported. The loci names are as in (Jansen  et al. 2011; Orsini et al. 2012). 

Felbrigg Hall Lake    Mesocosm    

Run 1 Run 2 Run3  Run 1 Run 2 Run3  

B088 B088 B088 B008 B008 B008 

  B065  A009 A009 

  B031  WFes0006310  

B150 B150 B150 WFes0001245 WFes0001245 WFes0001245 

B133 B133 B133 WFes0003187 WFes0003187   
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B180 B180 B180 WFes00011411  WFes00011411

B179  B179 WFes00011982 WFes00011982 WFes00011982

WFes0006310 WFes0006310 WFes0006310 WFes00011318 WFes00012318   

 WFes0009489 WFes0004129   WFes0001770 

WFes0001770 WFes0001770 WFes0001770   B030 

WFes00011039 WFes00011039 WFes00011039 B150   

B050 B050     S6-199 

 B021 B021    

 A001     

B96      

 WFes0004129     

 WFes00011345     

 

Figure legends 

Figure 1. Sampling and experimental work-flow 

(A) Felbrigg Hall Lake, Norfolk, UK, was sampled with a piston corer. The sampled 

sediment was dated and dormant eggs of Daphnia magna were hatched and cultured as 

isoclonal lines from two time periods: a colder time period (1955-1965) and a more recent, 

warmer period (1995-2005). The average temperature difference between these two time 

periods is about 1.2°C. (B) The upper 2cm of the sediment from four mesocosms exposed to 

either ambient or ambient +4 °C temperature treatment were sampled for D. magna resting 

eggs. Hatched D. magna from the two population sets were used in an outlier analysis and a 

candidate gene analysis.  
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Figure 2. Candidate genes analysis  

Reaction norms of the differential expression measured at the candidate genes between heat 

treatment (CTmax) and control (20°C). In the heat treatment animals were exposed to 

temperature increase until they lost locomotor function. Thirty-five candidate genes were 

studied in the populations from the artificial selection experiment (mesocosm) whereas a 

subset of 22 genes was analyzed in the populations resurrected from Felbrigg Hall Lake 

(core). Triangles represent the core population and circles represent the mesocosm 

population. Blue symbols represent cold (mesocosm) or old (core) populations, whereas red 

symbols represent warm (mesocosm) or young (core) populations. Solid lines indicate a 

significant change in gene expression between the heat treatment and control (CTmax term), 

whereas large symbols indicate significant changes in gene expression between warm- and 

cold-adapted mesocosm populations or old and young core populations (evolution term in 

Table S5). 

 

Figure 3. Factor analysis 

Single value decomposition principal component analysis (SVD PCA) on all genes in the 

mesocosm and the core populations. The decomposition of variance is represented in the 

following panels: (A) PC1 - PC2; (B) PC2 - PC3; (C) PC2 - PC4; and (D) PC2- PC5. The 

gene names are as in Figure 2. The terms ‘old’ and ‘young’ refer to the core population 

whereas the terms ‘warm’ and ‘cold’ refer to the mesocosm populations. Control and CTmax 

refer to the heat treatment. Care was taken to avoid overlapping gene names; this may have 

slightly altered the position of some genes in the plots.   
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Figure 4. Neutral genetic stability. 

(A,B) Genetic diversity indices and (C, D) population genetic structure in the core and 

mesocosm populations. Observed heterozygosity (Ho), expected heterozygosity (He), and 

allelic richness (AR) are shown. The color code for the alleles in the STRUCTURE analysis 

is randomly generated, hence identical colors may represent different alleles in the two 

population sets. The population names are as in Figure 2. 
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