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Abstract 

Introduction. Aquatic treadmills are used as a rehabilitation method for conditions such as spinal 

cord injury, osteoarthritis and stroke, and can facilitate an earlier return to exercise training for 

athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We 

tested the hypothesis that aquatic treadmill exercise would augment CBF and lower heart rate 

compared to land-based treadmill exercise.  

Methods: Eleven participants completed incremental exercise (crossover design) starting from 

walking pace [4 km/h, immersed to iliac crest (aquatic), 6 km/h (land)] and increasing 1 km/h every 

2 min up to 10 km/h for aquatic (maximum belt speed) or 12 km/h for land. Following this, 

participants completed two 2-min bouts of exercise immersed to mid-thigh and mid-chest at 

constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° 

every min). Middle cerebral flow velocity (MCAv) and heart rate (HR) were measured throughout, 

and the initial 10 min of each protocol and responses at each immersion level were compared.  

Results. Compared to land-based treadmill, MCAvmean increased more from baseline for aquatic 

exercise (21 vs. 12%; p<0.001), while being associated with lower overall HR (pooled difference: 

11 b/min; p<0.001). MCAvmean increased similarly during aquatic walking compared to land-based 

moderate intensity running (~10 cm/s; p=0.56). Greater water immersion lowered HR (139 vs. 178 

b/min
 
for mid-chest vs. mid-thigh), while MCAvmean remained constant (P=0.37).  

Conclusion. Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-

induced elevations in CBF, and thus optimise shear-stress mediated adaptation of the 

cerebrovasculature. 

 

Key words: Cerebral blood flow, Aquatic treadmill exercise, Deep-water running, 

neurorehabilitation, brain health 
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INTRODUCTION  1 

Aquatic treadmill (ATM) exercise allows for lower impact and increased resistance in 2 

comparison to land-based treadmill (LTM) exercise, therefore achieving decreased musculoskeletal 3 

loading of joints and providing potential for enhanced acute and chronic physiological adaptations 4 

(5). The increased hydrostatic pressure applied to the human body upon immersion in water leads to 5 

centralising blood distribution within the body, which enhances cardiac performance and therefore 6 

increases tissue perfusion (32). Furthermore, the mechanical unloading and support of bodyweight 7 

due to buoyancy means that ATMs are a useful tool in gait re-education. Indeed, ATM exercise is 8 

utilised in the rehabilitation of spinal cord injuries (36) and stroke (28) patients. Positive effects of 9 

ATM exercise have also been noted in populations with joint conditions such as osteoarthritis (7), 10 

and those with coronary heart disease (13). At the other end of the spectrum, athletes utilise ATM 11 

exercise to maintain cardiorespiratory fitness while reducing the mechanical load when recovering 12 

from injury (30). Therefore, ATM exercise represents an effective form of therapy and 13 

rehabilitation for a range of healthy and diseased populations. Studies to date comparing 14 

physiological responses between aquatic- and land-based treadmills have mostly focused on 15 

cardiorespiratory responses (e.g., (17, 35); while no study has examined the effect that ATM 16 

exercise has on cerebrovascular responses, and therefore explored the possibility of how this mode 17 

of therapy may optimise exercise-induced, stimulus-response adaptations leading to improved 18 

cerebrovascular function and ultimately brain health (11). 19 

Effective regulation of blood flow to and within the brain is vital for optimal brain function. 20 

Regular exercise and higher cardiorespiratory fitness has been positively linked with CBF and its 21 

regulation (e.g., (3, 6)), shown to offset the natural age-related decline in CBF (1), and reduce risk 22 

of neurodegenerative disease (e.g., dementia (21)). However, the mechanisms that underpin the 23 

neuroprotective benefits of exercise are yet to be established, meaning that the effectiveness of 24 

various exercise parameters such as mode, intensity and duration are not yet understood (22). One 25 
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suggested mechanism for exercise-induced improvements in vascular function is via shear-stress 26 

mediated increases in endothelium nitric oxide-dependent vasodilation of blood vessels (18, 39), as 27 

a consequence of the recurrent mechanical force of blood flow on the walls of the arteries (i.e. shear 28 

stress) (27). Numerous studies [e.g., (9, 15, 19)] have reported the functional adaptation and 29 

structural changes to the vasculature that occur as a result of long-term exercise (18), albeit 30 

primarily provided from animal-based and cell-culture studies [see (8)] or within the peripheral 31 

vasculature of humans. Researchers have begun to explore alternative methods [e.g. heat therapy 32 

(12, 38)] that target this mechanism to improve vascular function. Extrapolating this to the brain, 33 

conditioning strategies that increase blood flow, either in combination or independent of exercise, 34 

may enhance shear-stress mediated adaptation of the cerebrovasculature. This has the potential to 35 

directly improve CBF and its regulation and therefore be used in the prevention and treatment of 36 

neurovascular disease. 37 

Given the known physiological responses to water immersion, water-based activities may be 38 

one such strategy. Indeed, two studies have explored this possibility, examining CBF responses in 39 

water at rest (12) and during a box-stepping exercise protocol (31). Carter et al. (12) reported a 40 

positive correlation between middle and posterior CBF velocities during resting water immersion, 41 

linking the increase in CBF velocity during immersion to an increase in mean arterial pressure and 42 

arterial carbon dioxide content. From the same group, Pugh et al. (31) compared a 20-min bout of 43 

matched low-intensity stepping exercise (HR ≤ 100 b·min
-1

) in a water tank to that on land, finding 44 

CBF velocities to be augmented in water. These studies illustrate the potential for enhanced shear-45 

stress mediated vascular adaptation by exercising in water, although important questions remain 46 

unanswered relating to the CBF profile during different exercise intensities and at different depths 47 

of water immersion. Such questions can be addressed using an aquatic treadmill, which is already 48 

an established rehabilitation tool for a number of conditions (see above). Therefore, the primary 49 

purpose of this study was to compare changes in CBF (velocity) and heart rate responses during an 50 

incremental exercise test using an aquatic treadmill and a land-based treadmill, and to examine CBF 51 
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and heart rate responses at different levels of immersion (mid-thigh, iliac crest (hip) and xiphoid 52 

process (mid-chest)) during aquatic treadmill exercise. We hypothesised that: 1) aquatic treadmill 53 

exercise would augment the CBF response to an incremental intensity exercise test compared to 54 

land-based treadmill exercise, and 2) increased water immersion would maintain CBF while 55 

lowering heart rate. 56 

METHODS 57 

Participants 58 

Eleven healthy participants (7 females and 4 males; aged 27 ± 5 years) were recruited for 59 

this study, which was approved by the University of Birmingham Science, Technology, 60 

Engineering and Mathematics Ethical Review Committee, and performed in accordance with the 61 

Declaration of Helsinki. After providing their written informed consent, all participants completed a 62 

General Health Questionnaire during an initial visit to the laboratory and declared that they were 63 

free of any cardiovascular, cerebrovascular or respiratory disease, were not taking medication (not 64 

including contraceptive medications), or had injuries that would preclude treadmill-based exercise.  65 

Study Design and Protocol 66 

Following the initial screening visit, participants completed exercise sessions on both a land-67 

based (LTM) and an aquatic treadmill (ATM) in a randomised, counterbalanced order. Each session 68 

lasted approximately 1 hour, of which 15-25 minutes were exercise. First, participants completed 69 

incremental exercise starting from walking pace [4 km·h
-1

, immersed to iliac crest (aquatic), 6 70 

km·h
-1

 (land)] and increasing 1 km·h
-1

 every 2 min up to 10 km·h
-1

 for aquatic (maximum belt 71 

speed) or 12 km·h
-1 

for land. On land, participants were then ramped to exhaustion (increased 72 

gradient 2° every min), whereas for aquatic exercise participants completed two 2-min bouts of 73 

exercise immersed to mid-thigh and mid-chest at constant submaximal speed. During exercise at the 74 

different immersion depths on the ATM the speed was held constant; eight participants completed 75 

this protocol at 10 km·h
-1

, while for 3 participants, who reached near maximal heart rate during the 76 
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initial incremental intensity protocol, the treadmill speed was lowered (to 8 km·h
-1

 for 2 participants 77 

and 5 km·h
-1

 for 1 participant)
 
and remained at this speed during the exercise at different immersion 78 

depths. Figure 1 provides a schematic for the ATM and LTM protocols. 79 

There were at least 48 hours between sessions for each participant, with the majority of 80 

participants completing their second session within 2 weeks of the first. Due to the timing of access 81 

to the ATM facility, the phase of menstrual cycle for female participants was not controlled for 82 

between exercise sessions. Prior to each session participants were asked to refrain from eating a 83 

large meal for 4 hours before arrival, although a light meal was permitted up to 2 hours before 84 

arrival. In order to ensure adequate hydration status, participants were advised to drink 0.5 litres of 85 

water within 4 hours of beginning testing and 0.25 litres of water within 15 minutes of testing, in 86 

accordance with the American College of Sports Medicine Hydration Guidelines (2). Participants 87 

were also asked to refrain from caffeine for 6 hours prior to testing, and refrain from vigorous 88 

exercise and the consumption of alcohol for 24 hours prior to testing. 89 

Equipment and Measurements 90 

Exercise treadmills: A standard treadmill ergometer (Pulsar, H-P-Cosmos, Germany) was 91 

used for the land-based exercise protocol. The aquatic exercise session was completed on an aquatic 92 

treadmill (FOCUS, HYDRO PHYSIO
TM

, UK) at the Optispine Physiotherapy Clinic in 93 

Birmingham.  94 

Cerebral blood flow velocity (CBFv) and heart rate measures: Bilateral blood flow velocity 95 

in the left and right middle cerebral arteries (MCAv) was measured using a 2-MHz transcranial 96 

Doppler (TCD) ultrasound system (Dopplerbox, DWL, Compumedics LTD, Germany), in 97 

accordance with search techniques described elsewhere (40). The two ultrasound probes were 98 

placed above each zygomatic arch on the left and right side of the head and secured via an 99 

adjustable headband that maintained a constant insonation angle throughout the testing session. A 100 

small amount of ultrasound gel was placed between the probe and the skin to obtain the highest 101 

quality images. The reliability of measuring CBF using TCD is operator-dependant, thus all 102 
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measurements were taken by the same experienced sonographer (SJEL), with photographs of probe 103 

placement, and depth and filter settings recorded and kept constant between exercise sessions for 104 

each participant. Cerebrovascular data were acquired continuously via an analogue-to-digital 105 

converter (PowerLab 8/30, ML870, ADInstruments, Dunedin, New Zealand) at 1KHz. Data were 106 

displayed in real time and recorded for off-line analysis using commercially available LabChart Pro 107 

software (v7, ADInstruments). 108 

Heart rate (HR) was monitored using telemetry (Polar, Finland) via a belt fitted around the 109 

chest of the participant, as well as derived from the beat-by-beat MCAv waveform. Steady-state 110 

measures for HR were recorded at each stage of the incremental protocols and for the different 111 

immersion depths. 112 

Data analysis and statistical approach 113 

Mean values for MCAv and HR at each 2-min stage were determined using an average of 114 

the final 30 seconds of each stage, and used to calculate change from resting (seated) baseline for 115 

each measured time point. Since the aquatic treadmill had a maximum speed of 10 km·h
-1

, we 116 

intended to use the initial 14 minutes of each protocol to compare the responses between the aquatic 117 

and land treadmill exercise. We also independently compared two exercise intensities; specifically, 118 

walking and the recommended public health guideline of moderate exercise intensity (65% 119 

V̇O2max), which was from estimated from heart rate measures. Walking pace in the aquatic 120 

treadmill was 4 km·h
-1

, whereas on the land treadmill it was 6 km·h
-1

, but both represented the only 121 

speed for which all participants were walking; i.e., participants started jogging in the ATM at 5 122 

km·h
-1

. The 65% V̇O2max intensity was estimated at 79% HRmax (37), and treadmill speeds that 123 

induced a heart rate response closet to this target were selected (range for land: 7 - 11 km·h
-1

, range 124 

for aquatic: 5 - 10 km·h
-1

).  125 

Two-way repeated measures ANOVA were used to compare changes in MCAvmean and HR 126 

across the incremental protocol (time * treadmill) and at walking and 65% V̇O2max intensity 127 
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(intensity * treadmill), while a one-way ANOVA compared changes in MCAvmean and HR across 128 

the three different immersion levels while running at the same speed in the aquatic treadmill.  Post-129 

hoc comparisons were done using pairwise comparisons (Bonferroni corrected) to show where 130 

effects occurred. Paired t-tests were used to determine whether significant differences existed 131 

between comparable data sets of interest (e.g., resting and peak HR/MCAv, MCAv during walking 132 

vs. 65% V̇O2max). All statistical analysis was carried out using SPSS statistical software (v22, 133 

Chicago, USA), with a priori statistical significance set at P ≤ 0.05. Data are presented as mean ± 134 

SD. 135 

 136 

RESULTS 137 

All 11 participants who began the exercise sessions completed both protocols. All eleven 138 

participants reached the maximum belt speed in the aquatic treadmill (10 km·h
-1

), therefore 139 

completing all 14 min of incremental aquatic exercise. For the land-based treadmill protocol, one 140 

participant stopped at the completion of the 10 km·h
-1

 stage (at 10 min) and two participants 141 

stopped after the 11 km·h
-1

 stage (at 12 min) due to reaching voluntary exhaustion. Consequentially, 142 

the two-way ANOVA for the comparison of incremental exercise protocols used the first 5 stages of 143 

exercise for which all 11 participants had paired data sets for (as indicated in Figure 1). 144 

There was no significant difference (P=0.79) between left and right MCAvmean in 145 

participants that had a TCD signal on both sides throughout testing in both sessions (n=6), therefore 146 

data were pooled and presented as a combined mean value. In 4 aquatic sessions and one land-based 147 

session, the TCD signal on one side was either lost during exercise or not found initially; for these 148 

trials the remaining side was used as the mean value.  149 

There was a small, but significant, difference for baseline resting (seated) MCAvmean 150 

between land and aquatic testing sessions (70 ± 9 cm·s
-1

 vs. 66 ± 9 cm·s
-1

, respectively; p=0.023), 151 

while resting HR was similar (70 ± 13 b·min
-1

 vs. 69 ± 14 b·min
-1

; p=0.738).   152 
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Effects of increased exercise intensity on cerebrovascular and heart rate responses 153 

As illustrated in Figure 2A, there was a significant main effect of time (p=0.004) and 154 

treadmill type (p=0.003) on the change in MCAvmean from baseline over the initial 10 minutes of 155 

each protocol. The pooled difference across the 10 minutes for MCAvmean between the treadmill 156 

protocols was ~6 cm·s
-1

, with the largest difference occurring at the 4-min stage (~11 cm·s
-1

). The 157 

4-min stage also represented the peak change in MCAvmean from baseline in the water (~16 cm·s
-1

), 158 

which was maintained to within 3 cm·s
-1

 for the remainder of the protocol. On land, however, the 159 

peak change in MCAvmean (~12 cm·s
-1

) did not occur until the 10
th

 minute. Nevertheless, this 160 

difference in the pattern of increase did not reach statistical significance (interaction effect: 161 

p=0.073). 162 

For HR, there was an interaction effect for the change in HR across time (p=0.020). Post-163 

hoc analysis revealed that HR increased for each incremental stage except for the transition between 164 

5 and 6 km·h
-1

 (mins 4 and 6) on the ATM, and HR was significantly higher on the LTM than the 165 

ATM except for at 4 minutes (7 and 5 km·h
-1

, respectively, see Figure 2B). Overall, and in contrast 166 

to the MCAvmean observations, HR was higher with land-based exercise compared to aquatic 167 

exercise (pooled difference: ~11 b·min
-1

 greater for land; main effect: p=0.028). Further, the peak 168 

MCAvmean during the aquatic incremental protocol tended to be at a lower percentage of HRmax 169 

(determined during the land-based protocol) compared to land-based incremental exercise (75 ± 170 

12% vs. 84 ± 15% of HRmax for aquatic and land, respectively; p=0.069).   171 

Figure 3 shows the comparison between walking and moderate intensity running (at 65% 172 

V̇O2max) on each treadmill for MCAvmean and HR responses. Both walking and running at 65% 173 

V̇O2max elicited a greater increase in MCAvmean during ATM as compared to LTM (main effect: 174 

p=0.003). Interestingly, while there was a main effect of intensity (p=0.022) for MCAvmean, 175 

subsequent analysis revealed that while MCAvmean increased similarly within each treadmill 176 

modality (interaction effect: p=0.628), there was no difference between MCAvmean for ATM 177 

walking and LTM running at 65% V̇O2max (paired ttest: p=0.563).  178 
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Collectively, these data indicate that water-based exercise across a range of intensities 179 

stimulates greater increases in MCAv for a relatively lower heart rate response compared to land-180 

based exercise, and that water-based walking elicits a similar increase in blood flow (velocity) as 181 

running on land at 65% V̇O2max. 182 

 183 

Effect of immersion level on cerebrovascular and heart rate responses 184 

Figure 4 illustrates that HR decreased with greater levels of water immersion on the aquatic 185 

treadmill while the treadmill belt speed remained constant.  Post-hoc analysis showed that the mean 186 

decrease in HR from the water level at mid-thigh to iliac crest was ~18 b·min
-1

 (p=0.001), and from 187 

iliac crest to xiphoid process was ~21 b·min
-1

 (p=0.002). This was in contrast to MCAvmean, with 188 

the change from resting baseline not different between immersion levels (p=0.371). Finally, the 2-189 

min exercise bout at mid-thigh water depth elicited near maximal heart rates (95 ± 5% of HRmax; see 190 

figure 4). 191 

 192 

DISCUSSION 193 

The aim of this study was to examine CBF responses during incremental exercise on an 194 

aquatic treadmill as compared to a land-based treadmill, and while exercising at different levels of 195 

water immersion on the aquatic treadmill. Our main novel findings were that: 1) MCAvmean was 196 

augmented during aquatic treadmill exercise compared to land-based treadmill exercise across the 197 

range of exercise intensities tested, and this augmented MCAvmean was associated with a relatively 198 

lower heart rate response; 2) walking on an aquatic treadmill elicited a similar increase in 199 

MCAvmean to that of running at moderate intensity (65% V̇O2max) on land, and 3) immersion depth 200 

altered heart rate while maintaining MCAvmean during exercise at a constant aquatic treadmill speed. 201 

Collectively, these data indicate that aquatic treadmill exercise augments CBF. Further, although we 202 
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have not quantified differences in shear stress per se, the elevated flow velocity demonstrates the 203 

potential for aquatic treadmill exercise to enhance shear-stress mediated cerebrovascular adaptation 204 

and thus optimise exercise-induced adaptations linked with improved brain health. 205 

The findings of the current study are consistent with previous research reporting elevated 206 

MCAv during exercise (e.g., (10, 23), and an augmented MCAv response when in water [observed 207 

at rest and during light intensity exercise (12, 31)]. Here, we show for the first time that this 208 

augmented MCAv response occurs across a range of exercise intensities and that MCAv can be 209 

maintained while exercising at lower intensities with greater depths of water immersion. One 210 

notable observation was that walking on an aquatic treadmill elicited a similar increase in MCAv 211 

(~10 cm·s
-1

) to that of running on land at the exercise intensity promoted by current public health 212 

guidelines (i.e., 65% of aerobic capacity for 150 min / week). Furthermore, the profile of exercise-213 

induced changes in MCAv was different between the protocols, with ATM exercise producing 214 

maximal gains in MCAv within 4 minutes of starting the protocol, a time point that also represented 215 

the greatest difference between treadmill protocols, while MCAv during LTM exercise increased 216 

linearly across the incremental protocol yet remained lower (see Figure 2).  217 

It is widely reported that the greatest exercise-induced elevation in CBF is achieved at 218 

moderate exercise intensity (~65% V̇O2max), as above this threshold CBF will decrease back 219 

towards resting values as a result of hyperventilation-induced cerebral vasoconstriction due to lower 220 

PaCO2 (24). Our data indicate that aquatic treadmill exercise may have a different exercise-induced 221 

CBF profile to this commonly reported profile, most of which come from cycling-based exercise 222 

protocols. The findings of the current study indicate that optimal CBF gains may be achieved at 223 

lower exercise intensities in water than on land (see Figure 2A), and even at higher exercise 224 

intensities (induced via less water immersion) MCAv is consistently elevated above resting 225 

measures (see Figure 4). Based on these findings it could be suggested that changes in arterial 226 

carbon dioxide above anaerobic threshold during aquatic treadmill exercise has less influence on 227 

CBF relative to other factors involved in CBF regulation (e.g., blood pressure, cardiac output). 228 
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Unfortunately, we were unable to measure end-tidal PCO2 during our study due to equipment 229 

unavailability, thus we can only speculate about the relation between PCO2 and CBF during aquatic 230 

treadmill exercise. Further research is needed in order to determine the influence of this key 231 

regulator of CBF during aquatic treadmill exercise of increasing exercise intensity.  232 

The regulation of CBF during exercise is multifactorial and complex (25), with an 233 

integrative combination of exercise-induced changes in brain metabolic and neuronal activity, blood 234 

pressure, cardiac output and arterial PCO2 all likely to contribute to changes in cerebral perfusion 235 

during any exercise paradigm. Based on previous water immersion studies (12, 31), an elevated 236 

PCO2 likely explains some of the difference in MCAvmean with aquatic exercise as compared to 237 

land-based exercise. Further, given the linear relation between cardiac output and CBF (26), another 238 

likely contributor to the augmented blood flow velocity is related to the well-documented increases 239 

in cardiac output during water immersion (29), due to the effects of increased hydrostatic pressure 240 

centralising blood within the trunk and increasing stroke volume (5). Interestingly, an elevated 241 

stroke volume would appear to be the key mediator of this increased cardiac output, since a 242 

reduction in HR (as we observed) during water immersion is also well documented (4, 16, 20). In 243 

contrast, Pugh et al. (31) reported no significant difference in HR between water and land during 244 

their low-intensity exercise. However, it is worth noting that the box-stepping exercises in their 245 

study were matched for HR between land and water protocols in order to compare similar 246 

intensities. Importantly, regardless of the mechanisms regulating CBF during this modality of 247 

exercise, our observed differences in exercising MCAv between our treadmill protocols 248 

demonstrates that aquatic treadmill exercise produces higher blood flow velocity across a range of 249 

intensities, and particularly so at lower exercise intensities (i.e., walking / light jogging); thus 250 

illustrating the potential for an enhanced shear-stress mediated pathway for cerebrovascular 251 

adaptation following repeated exposure (i.e., training).  252 

The decrease in HR associated with increasing immersion levels noted in this study is 253 

supported by previous studies that have reported a continuous decrease in HR from hip level up to 254 
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head-out immersion in water at rest (4, 20). Our findings illustrate that a similar elevation in 255 

MCAvmean can be achieved with greater water immersion for a comparatively lower heart rate. As 256 

such, aquatic treadmill exercise training at higher levels of water immersion could optimise shear-257 

stress mediated vasculature adaptations, while lowering the risk of a cardiac event in populations 258 

with elevated risk. 259 

The water temperature used in this study (32
0
C) is representative of conditions regularly 260 

used in rehabilitative therapy, and is within 3
0
C of the temperatures used in previous studies. While 261 

changes in water temperature have been reported to translate into changes in the cardiac response 262 

(5), the relatively small variation (<2
0
C) in temperature between this study and recent research (12, 263 

31) is unlikely to impact on the relative changes in MCAvmean and HR observed here. Another 264 

consideration is the different heat conduction capacities of water versus air, which may 265 

differentially alter exercise-induced changes in body core temperature. As such, measures of body 266 

core temperature would be of value in future studies to assess differences between modalities and 267 

potential effects of thermal stress related adaptations during the aquatic treadmill exercise. Indeed, 268 

one further possibility for this form of exercise therapy is to alter the water temperature to 269 

investigate the potential additive therapeutic impact of thermal stress, which may further optimise 270 

the stimulus-response interaction and promote greater neuroprotection against neurodegenerative 271 

diseases (11). 272 

Limitations  273 

Speed limitations of the aquatic treadmill prevented a full comparison between treadmill 274 

modalities for an incremental test to exhaustion. Nevertheless, both protocols started at a walking 275 

pace and increased at the same rate (1 km·h
-1

 every 2 minutes), which resulted in a similar rate of 276 

increase in HR and therefore allowed for a meaningful comparison between the aquatic- and land-277 

based treadmill exercise across a range of exercise intensities. This study design meant we were 278 

unable to compare matched HR responses across all intensities. We acknowledge that the 279 

differences in cardiorespiratory responses may influence the absolute values we show here, but 280 
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ultimately will not affect the pattern of MCAv that we observed across the range of exercise 281 

intensities we tested. Measurements of V̇O2 were originally planned in addition to HR to further 282 

quantify the cardiorespiratory strain and energy expenditure during both protocols, but this was not 283 

possible due to equipment unavailability. However, similar decreases in HR and V̇O2 between land 284 

running and deep and shallow water running have previously been noted (16), indicating that heart 285 

rate alone can adequately reflect measures of exercise intensity on land as compared to in water. It 286 

is also acknowledged that the reduction in heart rate alone does not necessarily reflect a reduction in 287 

cardiac work (as reflected by myocardial V̇O2). Given the linear relationship that V̇O2 and cardiac 288 

output share (14), cardiac work can be indexed via the combined measures of heart rate, stroke 289 

volume and blood pressure (i.e., HR x SV x systolic BP (or MAP); (33)) . However, we chose not to 290 

fit a blood pressure measuring device (e.g., finometer) so that participants could perform the 291 

exercise in the water as naturally as possible (i.e., fitting this device would have required them to 292 

hold their arm up out of the water). In addition to providing a measure of stroke volume (e.g., via 293 

Beatscope software) to determine cardiac work, measures of BP would have also provided 294 

insightful data regarding the influence of blood pressure on CBF for these different exercise 295 

modalities. Nevertheless, our primary question was to examine the CBF (velocity) differences 296 

between these modalities across a range of exercise intensities and at different immersion depths. 297 

The mechanism(s) that underpin these differences were not the primary focus of our study, but 298 

based on previous studies (12, 32), differences in BP (and PETCO2) would likely be involved.  299 

As mentioned above, we were also unable to measure end-tidal gas content and therefore 300 

assess the influence of PETCO2 on MCAv during our exercise protocols. Nevertheless, given the 301 

earlier peak in MCAvmean during the initial incremental protocol on the aquatic treadmill and the 302 

consistently elevated MCAvmean during near maximal exercise in water (see Figures 2 and 4), the 303 

typical influence of changes in PaCO2 on CBF during exercise would appear to be different for 304 

aquatic treadmill exercise. Future studies that include measures of both V̇O2 and PETCO2 are needed 305 
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to confirm the hypothesis that there may be an altered relation between CBF and PCO2 during 306 

aquatic treadmill exercise.  307 

We measured blood flow velocity using transcranial Doppler as an index of CBF. The 308 

validity of this approach and the likelihood of vessel diameter changes affecting interpretations of 309 

these measures should be considered, especially given the likely changes in blood pressure and 310 

PCO2 associated with exercise. Nevertheless, given the differential pattern of MCAv changes 311 

between the ATM and LTM protocols while changes in PETCO2 and BP were likely similar [albeit 312 

elevated in water (12, 31)], it seems unlikely that changes in MCA diameter would affect the 313 

interpretation of the findings here. Further, TCD is the ideal brain imaging tool to use in this setting, 314 

while other approaches are not feasible or realistic (e.g., MRI or Duplex Doppler).  315 

Finally, the relatively small and demographically limited sample population (mostly young 316 

university students) should be taken into account. As such, whether similar responses occur in older 317 

and clinical populations remain to be determined.  318 

Implications 319 

Based on the findings of the current study, aquatic-based treadmill exercise could provide an 320 

ideal exercise modality to maximise the stimulus-response for shear-stress mediated adaptation of 321 

the cerebrovasculature in clinical and non-clinical populations. Research is now needed to establish 322 

whether this augmented acute response translates into permanent adaptation of the 323 

cerebrovasculature, and how such training may improve other aspects of brain structure and 324 

function.  325 

Exercise training is recommended in clinical populations with elevated risk of 326 

neurodegenerative disease to aid rehabilitation (e.g., stroke (34)), however physical disability may 327 

impact on the effectiveness of traditional exercise programmes to improve vascular health via 328 

shear-stress mediated adaptation. Our findings demonstrate the potential for aquatic treadmill 329 

exercise to optimise this stimulus for vascular adaptation at exercise intensities (e.g., walking) that 330 
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are feasible for clinical populations with impaired physical function (e.g., stroke survivors). As 331 

such, the utility of aquatic treadmills for brain-targeted exercise training may be another important 332 

reason to promote such a rehabilitation approach. 333 

Conclusion 334 

Aquatic treadmill exercise augments cerebral blood flow velocity across a range of 335 

intensities, and particularly so at lower exercise intensities (i.e., walking / light jogging). This 336 

elevated blood flow has the potential to enhance shear-stress mediated cerebrovascular adaptation 337 

and thus optimise exercise-induced adaptations linked with improved brain health. Research is now 338 

needed to establish whether this augmented acute response translates into permanent adaptation of 339 

the cerebrovasculature, and how such training may improve other aspects of brain structure and 340 

function.  341 
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Figure 1: Schematic outlining treadmill belt speed, land treadmill gradient and aquatic treadmill 458 

water depth for the aquatic- and land-based treadmill exercise protocols. Participants completed 459 

seven 2-min stages of incremental exercise intensity, induced via 1 km·h
-1 

increases in treadmill belt 460 

speed. Participants were then ramped to exhaustion (2° every minute) for the land-based protocol or 461 

completed two 2-min stages of exercise at two alterative water depths on the aquatic treadmill. 462 

Numbers of participants completing each stage of the land-based protocol through to exhaustion are 463 

shown, along with the numbers of participants at each submaximal aquatic belt speed for the 2-min 464 

stages of different immersion depths. Room temperature was maintained at ~21
0
C for both, while 465 

water temperature was 32
0
C. Abbreviations: ATM, aquatic treadmill; LTM, land-based treadmill. 466 

 467 

Figure 2: Changes in middle cerebral artery blood flow velocity (MCAvmean, A) and heart rate (B) 468 

from resting (seated) baseline values over the initial 10 minutes of aquatic- and land-based exercise 469 

protocols. Data are means ± SD. Symbols: * significant difference between treadmills; # significant 470 

difference between preceding stage. 471 

 472 

Figure 3: Mean change in MCAvmean (left panel) and HR (right panel) from resting baseline for 473 

walking and moderate intensity (65% VO2max) running exercise using land- and aquatic-based 474 

treadmills. Data are means ±SD. N=11. * significant difference between treadmills; # significant 475 

difference between preceding stage. 476 

 477 

Figure 4: Changes in middle cerebral blood flow velocity (MCAvmean) and heart rate from resting 478 

(seated) baseline values during constant speed aquatic treadmill exercise immersed to mid-thigh, 479 

iliac crest and xiphoid process. Data are means ±SD for 11 participants. * different from mid-thigh 480 

(p<0.05); † different from iliac crest (p<0.05). 481 


