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ABSTRACT 

Metabolomics and lipidomics measure and discover metabolic and lipid profiles in biological samples. 

These technologies thereby enable the metabolism of specific biological phenotypes to be 

understood. Accurate biological interpretations require high analytical reproducibility and sensitivity, 

and standardised and transparent data processing. Here we describe a complete workflow for 

nanoelectrospray ionisation (nESI) direct infusion mass spectrometry (DIMS) metabolomics and 

lipidomics. After metabolite and lipid extraction from tissues and biofluids, samples are directly infused 

into a high-resolution mass spectrometer (e.g. Orbitrap) using a chip-based nESI sample delivery 

system. nESI functions to minimise ionisation suppression or enhancement effects compared to 

standard electrospray ionisation. Our analytical technique—named spectral-stitching—measures data 

as several overlapping mass-to-charge (m/z) windows that are subsequently ‘stitched’ together 

creating a complete mass spectrum. This considerably increases dynamic range and detection 

sensitivity—ca. 5-fold increase in peak detection—compared to the collection of DIMS data as a 

single wide m/z window. Data processing, statistical analysis and metabolite annotation are executed 

as a workflow within the user-friendly, transparent and freely available Galaxy platform 

(galaxyproject.org). Generated data have high mass accuracy that enables molecular formulae peak 

annotations. The workflow is compatible with any sample extraction method; in this protocol the 

examples are extracted using a biphasic method with methanol, chloroform and water as the solvents. 

The complete workflow is reproducible, rapid and automated, which enables cost-effective analysis of 

http://www.birmingham.ac.uk/schools/biosciences/staff/profile.aspx?ReferenceId=9910&Name=professor-mark-viant
http://www.birmingham.ac.uk/schools/biosciences/staff/profile.aspx?ReferenceId=9910&Name=professor-mark-viant
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>10,000 samples per year making it ideal for high-throughput metabolomics and lipidomics screening, 

e.g. for clinical phenotyping, drug screening and toxicity testing. 

 

INTRODUCTION 

Non-targeted metabolomics and lipidomics techniques comprise the measurement and analysis of the 

steady-state levels of the multiple metabolites or lipids (termed the metabolome or lipidome) within 

biological samples
1-4

. Comparison of the metabolome or lipidome across different phenotypes 

represents a powerful and unbiased approach to discover molecular perturbations that can in turn be 

used to generate biological hypotheses for more detailed investigation. This approach is applicable to 

diverse sample types, including biofluids
5,6

, mammalian cells
7
 and spent cell media

8
, tissues

9
 and 

whole organisms
10

, and to a wide range of biological questions such as the investigation of disease
9
, 

drug action
7
 and toxicology

11
. Metabolites and lipids have many diverse functions in biological 

systems. They are typically the end products of complex cellular regulation networks
1
 (at the genetic, 

epigenetic, transcriptional, translational and post-translational levels) and they can also influence and 

alter this regulation via feedback loops
12

, protein modifications
13

 and epigenetic changes
14

. They are 

both building blocks of complex cellular macromolecules and also sources and intermediates in 

energy metabolism. Thus, metabolomics and lipidomics analyses can give insightful knowledge of the 

functional molecular status of biological systems (e.g. energetic status and the balance of anabolic 

and catabolic processes) and can complement other ‘omic technologies as well as traditional 

molecular biological investigations.  

To accurately and reliably interpret data derived from metabolomics and lipidomics studies, the entire 

workflow including the experimental design, sample collection and extraction, as well as data 

acquisition, processing, metabolite identification and statistical analysis, should be robust and 

reproducible. High detection sensitivity of the chosen analytical approach is also desirable. The most 

common analytical techniques used in metabolomics include nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS)
15

. While NMR is highly quantitative and reproducible, MS 

methods are increasingly favoured for metabolomics and lipidomics due to their higher sensitivity
15,16

. 

MS approaches often include chromatographic separation that serves to resolve the complex mixture 

of metabolites or lipids prior to ion detection, thereby helping to distinguish between isobaric 

compounds and to minimise ionisation suppression (or enhancement) effects. It is because of these 

attributes that gas chromatography (GC) MS
17

 and liquid chromatography (LC) MS
18

, and to a lesser 

extent capillary electrophoresis (CE) MS
19

 and ion chromatography (IC) MS
20

, are popular and widely 

employed for metabolomics and lipidomics investigations. Direct infusion mass spectrometry (DIMS) 

is an alternative approach involving the direct introduction of biological extracts into MS systems 

without any prior chromatographic separation
21

. Nominal mass, flow injection electrospray ionisation 

(ESI) DIMS approaches have previously been developed and successfully applied to high throughput 

metabolomics
22

. However, significantly higher quality DIMS data can be acquired by employing 

automated nanoelectrospray ionisation (nESI) sample delivery platforms in combination with ultra-

high mass resolution and accuracy MS detectors (e.g. Fourier transform ion cyclotron resonance (FT-
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ICR) MS, Orbitrap MS)
10,23,24

. These platforms increase the number of detectable peaks by minimising 

ionisation suppression and enhancement effects (relative to ESI)
25

. They also maximise the 

discrimination of peaks with similar accurate masses, thereby facilitating more accurate molecular 

formula(e) peak annotations of the data
26

.  

The protocol described here is a complete workflow for conducting high-resolution nESI DIMS 

metabolomics and lipidomics investigations (Figure 1), guided by the Metabolomics Standards 

Initiative framework
27

. The optimised nESI DIMS method, termed ‘spectral-stitching nESI DIMS’, 

collects MS data as a series of overlapping mass-to-charge (m/z) windows that are subsequently 

stitched together into a complete spectrum (Figure 2, Table 1). This approach maximises both the 

quantity and mass accuracy of detectable peaks 
23,24

. The automated data processing and analysis 

steps are collated into an open source workflow within Galaxy
28

. This offers a standardised, 

transparent and user-friendly approach without the requirement for bioinformatics expertise and 

knowledge of multiple programming languages and/or environments. Galaxy is an open source 

workflow platforms that is used for Next Generation Sequencing (NGS) data analysis. It has many 

standard processing tools (accessible from its web-based user interface) that improve both the speed 

and reproducibility of data processing and analysis. Our recent development of Galaxy-M spectral-

stitching nESI DIMS workflow considerably increases the accessibility of the spectral-stitching nESI 

DIMS metabolomics approach
28

.  

 

Advantages and limitations of the spectral-stitching nESI DIMS workflow 

A major advantage of the spectral-stitching nESI DIMS workflow is the generation of high quality 

metabolomics or lipidomics data, with high spectral resolution, mass accuracy and dynamic range, in 

a short timeframe and cost-effective manner. The high resolution and mass accuracy allows for the 

accurate annotation of peaks with molecular formula(e) and for compounds with similar masses to be 

resolved
23,26

, which is particularly advantageous when analysing complex mixtures of chemicals. 

Spectral-stitching nESI DIMS increases detection sensitivity 5-fold compared to standard wide-scan 

DIMS (for a constant number of ions entering the detector each scan)
23

 and is highly reproducible: the 

median relative standard deviation (RSD) of peak intensities in 80 repeated injections of the same 

biological sample was 8.2%
29

. The intensity measurements are robust and correlate well with peak 

intensities measured using quantitative NMR methods for selected metabolites
11,30

, demonstrating the 

high relative-quantification capability of the method (see ANTICIPATED RESULTS, below). 

Additionally, DIMS has been suggested to have comparable metabolomic classification and prediction 

capabilities as LC-MS
31

. DIMS is more applicable for lipidomics than NMR due to the highly-

congested lipid region in 
1
H NMR spectra, and the higher sensitivity of DIMS compared to NMR is a 

clear advantage for both metabolomics and lipidomics. Compared to chromatography-based MS, 

DIMS approaches — including the spectral-stitching method — have considerably shorter acquisition 

times (enabling higher throughput); no chromatographic drift (as observed for LC-MS as the column 
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ages) enabling more robust alignment of multiple spectra; no carry-over between biological samples; 

and lower consumables costs.  

The spectral-stitching nESI DIMS workflow is a global profiling method and therefore cannot detect all 

metabolites or lipids in a single experiment. For the analysis of specific metabolites or lipids, 

extraction procedures designed to maximise these compound classes should be employed prior to 

DIMS data collection. A limitation of DIMS is ion suppression or ion enhancement, which is caused by 

multiple different compounds entering the ionisation source at the same time
32

. However, the low flow 

rate associated with nESI, as used here, minimises these artefacts
25,33

. Sample lipid concentration 

can vary between sample types. To prevent high abundant lipids dominating the DIMS analysis, a 

dilution study is required to find the optimal sample dilution (see Resuspension of biological sample 

extracts in DIMS solvents in the protocol below)—a sample lipid concentration of < 10 pmol/µL is 

recommended
34

. The limitations of DIMS compared to chromatography-based MS or NMR techniques 

include the inability to resolve isobaric compounds and the inability to provide any structural 

information on compounds unless further MS/MS analyses are conducted. However it is typically very 

difficult to isolate just the ion of interest for DIMS/MS given the complexity of the mass spectra
11

. A 

further limitation of DIMS is the relative-quantitative nature of the measurement, i.e. as for LC-MS 

metabolomics it measures relative fold-changes between biological samples. In comparison, NMR 

can be regarded as fully quantitative and LC-MS/MS using internal standards is also quantitative, 

albeit just for selected peaks of interest. If desired, these approaches can be used to fully quantify 

metabolites that are discovered to be important by the spectral-stitching nESI DIMS method workflow. 

Therefore DIMS, chromatography-based MS and NMR each possess different advantages and 

limitations and act as complementary approaches for metabolomics and lipidomics dependent upon 

the analysts requirements.  

 

Applications of the spectral-stitching nESI DIMS workflow 

The spectral-stitching nESI DIMS workflow is ideal for large scale discovery studies
29

. It has 

successfully been applied to a diverse range of biological sample types, including tissues
11

, 

mammalian cells
7
, whole organism homogenates

10
 and haemolymph

35
, and is also applicable to 

urine
36

, serum
31

 and plasma analysis
37

. Furthermore it has been used to investigate a broad range of 

biological questions including studies into xenobiotic toxicity in whole organisms
10

 and in specific 

organs
11,38

; identification of metabolic changes associated with disease
39

; elucidation of the action of 

therapeutic drugs on the lipidome of human leukaemia cells
7
; and metabolic footprinting analysis to 

understand the interactions of algae with their environment
40

. The high resolution of the MS detector 

means that this workflow is also compatible with 
13

C-labelling ‘pulse-chase’ or ‘flux’ approaches, 

wherein the metabolism and fate of a 
13

C-labeled substrate such as 
13

C-glucose or 
13

C-glutamine is 

measured as a function of time, e.g., measurement of 
13

C-glucose incorporation into fatty acids and 

phospholipids in response to drug treatments
7
. A further example of the application of this DIMS 

workflow is for the classification of compounds as being of endogenous, exogenous or metabolised-



 

5 
 

exogenous origin, following exposure of an organism to an undefined chemical mixture, by analysing 

both the organism’s tissue and the exposome
41

. Given that metabolomics has now matured to a 

widely used, relatively stable analytical and computational approach, with a rapidly growing 

community supported by a wide range of training opportunities for researchers, the field is now poised 

to tackle very large scale challenges in the biomedical and regulatory sciences. As one example, 

regulatory toxicology is now opening the door to new testing strategies for determining the impacts of 

chemicals on human health. Given that there are approaching 100,000 chemicals used in industry 

and consumer products, the need for very high throughput screening approaches, incorporating 

‘omics data generation, are paramount. The protocol reported here is an important step towards 

translating metabolomics into regulatory toxicology
42,43

. 

 

Experimental design 

A well-designed experiment is essential to ensure a meaningful and robust outcome of a DIMS study. 

Biological sample collection, preparation and nESI DIMS data generation must be randomised across 

sample classes (typically different biological phenotypes) to prevent user induced bias. The amount of 

biological replication required to provide adequate statistical power to the study will be influenced by 

the type of experiment being conducted. Based upon a decade of expertise, our recommended levels 

of biological replication vary from n=6 (for well controlled laboratory based studies with relatively little 

inter-sample biological variance, such as nESI DIMS of mammalian cell culture extracts) to n=10 

(controlled laboratory studies but with greater biological variance, such as model organism studies) to 

larger n for cases where biological variance is not controlled (clinical and environmental biological 

samples). With pilot data this estimation can be improved by applying sample size and power 

analyses (MetaboAnalyst 3.0, http://www.metaboanalyst.ca). Technical replication should also be 

included in the nESI DIMS workflow as a method for distinguishing peaks of biological origin from 

background noise, increasing the accuracy of the intensity measurements and allowing for an 

estimation of the reproducibility of peak intensity measurements
44

 (see the Data processing section, 

below). To distinguish peaks of biological origin from genuine but non-biological peaks, such as may 

arise from the sample preparation method (i.e. from solvents and/or contaminants), an ‘extract blank’ 

(sample preparation procedure conducted in the absence of a biological sample) should also be 

prepared and analysed. Quality control (QC) samples are a critical component of both the nESI DIMS 

experimental design and data quality control (see Data Quality Control section, below). Internal QC 

samples should be derived by pooling a small volume of ideally all biological samples within one 

metabolomics study, and are then analysed at regular intervals throughout the analytical run, e.g. 

every fifth or sixth DIMS analysis is of a QC sample. Internal QC samples are used to monitor and 

correct for slight analytical variance between samples acquired through one or more analytical 

batches within that one study (see the signal correction algorithm, Data processing section). External 

QC samples (i.e. using a surrogate sample) can be used to monitor and correct for analytical variance 

between different metabolomics studies.  
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Biological sample collection, storage and preparation 

The time between biological sample collection and freezing should be as short as possible to rapidly 

halt enzymatic activity and cease changes to the metabolome or lipidome. For mammalian cell 

culture, a quenching approach is used where cells are sampled directly into a quenching solution 

(such as -40 ºC aqueous methanol)
7,45

. For the collection of small model organisms (e.g. Daphnia, 

Drosophila)
46

, tissue from larger organisms
47

 and biofluids (e.g. urine
48

, serum
49

 or plasma
49

) we refer 

the reader to the appropriate specialist literature. Biological samples must remain frozen at -80 ºC 

until extraction of the metabolites and/or lipids. 

Preparation of solid biological samples typically involves their physical disruption (by a 

homogenisation probe, e.g. Polytron; or a bead-based homogeniser, e.g. Precellys®24
50

) in the 

presence of solvents to simultaneously extract the polar metabolites and/or lipids into a liquid phase, 

while denaturing the metabolic enzymes to halt any further changes to the metabolome or 

lipidome
50,51

. For serum, plasma
49

 and mammalian cell suspensions
7
, vortex mixing in the presence of 

the extraction solvent is sufficient to denature enzymes and to extract the metabolites and/or lipids. 

Urine can be more simply prepared by centrifugation and dilution with water due to its very low protein 

(and therefore very low enzyme) content
48

. Extraction techniques should be reproducible, i.e. 

introduce minimal technical variation to the study, and should achieve as high a yield of metabolites 

and/or lipids as possible. Several solvent systems can be used
50,51

. Fine adjustments to the extraction 

conditions, e.g. pH and solvent polarity, can be used to extract specific classes of compounds 

according to their solubility characteristics
52

. Bi-phasic extraction methods employ immiscible solvents 

to simultaneously extract polar metabolites and lipids into separate phases
50,51,53,54

. This reduces 

biological sample complexity, which is advantageous for (non-chromatography based) nESI DIMS. 

Our optimised bi-phasic extraction—based on a procedure developed by Bligh and Dyer
53

—uses a 

methanol:chloroform:water ratio of 2:2:1.8 to maximise metabolite yield, metabolic sample stability 

and reproducibility
50

. Alternatively, the use of methyl tert-butyl ether (MTBE), methanol and water is 

an increasingly popular bi-phasic approach for lipidomics that improves the extraction of some lipid 

classes (e.g. ceramides) compared to the Bligh and Dyer method
54

. 

Following extraction, extracts should be dried to maintain stability and, subsequently, to enable 

resuspension in appropriate solvents for DIMS; note that lipids must be dried and stored under 

nitrogen to prevent oxidative lipid damage, while polar metabolites in an aqueous methanol solution 

are more typically dried using a vacuum centrifugation system, such as the SpeedVac concentrator. 

 

Direct infusion mass spectrometry 

Sample ionisation and analytical detection methods can strongly influence the quality of DIMS 

metabolomics and lipidomics data. Electrospray ionisation (ESI), a soft-ionisation technique, is 
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particularly appropriate for DIMS since it can predominantly ionise the metabolites and/or lipids as 

intact compounds
16

 aiding compound molecular formula(e) annotations. A very low flow rate through 

the electrospray ionisation source is essential for minimising both ionisation suppression and 

enhancement effects
25,33

; our nanoflow ESI methods typically use a flow rate of 200-300 nL/min 

compared to the several L/min employed for standard ESI sources. nESI also benefits from lower 

sample volume requirements and considerably higher sensitivity
55

. To aid nESI compound ionisation, 

a modifying agent is typically added to the solubilised biological sample (e.g. formic acid or 

ammonium acetate), which will also influence the types of ion forms that are created (see the Peak 

annotation section, below). High lipid concentration in samples can lead to aggregate formation (e.g. 

dimers) during DIMS analysis
34

. This can be prevented by keeping lipid concentrations < 10 pmol/µL 

when using 2:1 methanol:chloroform
34

. For high throughput metabolomics and lipidomics, an 

automated chip-based nESI source (e.g. Triversa Nanomate, Advion Biosciences) enables rapid, 

reproducible and automated acquisition of multiple biological samples without sample-to-sample cross 

contamination
25,55

.  

Ultra-high resolution, high mass accuracy detectors (e.g. Orbitrap series of mass spectrometers, FT-

ICR, both with a resolution capable of exceeding 100k at m/z 200) are ideal for DIMS as they resolve 

peaks with similar accurate masses and allow for the annotation of peaks with molecular formula(e). 

This increases the coverage of the metabolome or lipidome and enhances annotation confidence 

compared to lower resolution, lower mass accuracy instruments. For Thermo Scientific Orbitrap series 

and FT-ICR mass spectrometers, the number of ions entering the detector is controlled by the 

Automatic Gain Control (AGC). The number of ions within the detector is approximately proportional 

to detection sensitivity, however if the number of ions is too high then the mass accuracy decreases 

(due to space-charge effects
56

), ultimately making unique molecular formula(e) annotation impossible. 

This is particularly problematic when collecting DIMS data over a single large mass-to-charge range 

(e.g. 100-1000 m/z) for which a higher AGC setting is required to capture and then detect the lower 

abundance compounds. A proven solution to this is provided by the spectral-stitching nESI method 

where data is collected as a series of overlapping m/z windows — by selected ion monitoring (SIM) 

scan mode for the Thermo Scientific FT-ICR and Orbitrap series — and then ‘stitching’ these windows 

together to create a complete mass spectrum. The AGC target value does not need to be set as high 

for narrower m/z windows (with fewer detectable features) compared to a full scan spectrum to 

achieve similar peak detection sensitivity. Overall, this approach increases the dynamic range and 

detection sensitivity, while retaining high mass accuracy by minimising space-charge effects that 

would arise from high AGC settings (Figure 2, Table 1)
23,24

. 

The spectral-stitching method was optimised for the FT-ICR, Q Exactive
TM

 and Orbitrap Elite
TM

 DIMS 

by determining the highest AGC setting (i.e. highest sensitivity) that retains high mass accuracy; by 

establishing the m/z window width for maximal peak detection; and by calculating the minimum 

number of scans for reliable and reproducible peak detection. Detector sensitivity at each end of the 

individual narrow m/z windows was found to be lower than across the majority of each m/z range and 

thus was characterised to establish the usable high sensitivity region of each m/z window that was 
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retained (and hence determine the overlap of the m/z windows that was required in the method to 

prevent signal loss). Prior to the application of this method, optimisation of the biological sample 

concentration is highly advisable in order to prevent poor nESI stability, poor RSDs of the peak 

intensities from samples that are too concentrated, and poor detection sensitivity for those samples 

that are not sufficiently concentrated.  

Data processing 

Prior to data processing, DIMS spectra should be viewed using the vendor’s software to identify any 

analyses for which the electrospray failed during acquisition, and such analyses are removed. DIMS 

data on both FT-ICR and Orbitrap platforms are recorded as transient (time domain) files as triplicate 

technical analyses
23,24

 (Figure 1); for some mass spectrometers time domain data is only available to 

the analyst as a single pre-processed vendor-encoded file (.RAW file in the case of Thermo 

Scientific), while for other spectrometers the data is available in its rawest form as multiple transient 

data files. For this latter case (for Bruker and Thermo Scientific FT-ICR MS), data processing includes 

averaging of the transient data, Hanning apodisation and zero-filling, followed by Fourier 

transformation to convert time into the frequency domain using custom written Matlab code
23,24,57

. 

From this point, data processing is consistent across all DIMS approaches described in this protocol 

(Figure 1). To remove obvious noise features from the data, any peaks with a signal-to-noise ratio 

(SNR) threshold of less than typically 3:1 are removed. Data are then mass calibrated to convert from 

the frequency domain into m/z values, utilising a calibration equation [for the FT-ICR, Thermo 

Scientific use m/z = (A/f) + (B/f
2
)
23,56

; for the Orbitrap instrument, m/z = (B/f
2
) + (C/f

4
)
58,59

; in both cases 

f is the frequency and A, B and C are calibration parameters from the instrument]. External calibration 

utilises the calibration parameters derived from the periodic calibration of the mass spectrometer 

using a defined sample of known standards. Post-acquisition internal calibration is used to increase 

the mass accuracy in each window by using the accurate masses of metabolites known to be present 

in the mass spectra of the biological samples. Finally the multiple narrow m/z windows are stitched 

together into one continuous m/z spectrum using custom written Matlab code. 

To identify genuine peaks and remove noise features within the mass spectrum of each biological 

sample, only peaks present in at least two-out-of-three of the technical replicate analyses of the 

sample are retained (termed ‘replicate filtering’). Contaminate peaks arising from the extraction 

method are flagged by comparing the biological sample spectra to the extract blank, and are then 

removed if their intensity in the sample is <3-times that of the extract blank (termed ‘blank filtering’). 

The m/z data from multiple biological samples are combined into a single data matrix with samples as 

rows and m/z features as columns. Peaks are retained if they are present in a given percentage of 

samples defined by the user (termed ‘sample filtering’), e.g. 100% for the calculation of normalisation 

quotients (see below); >80% as a default setting to achieve robust sample filtering
57

; and lower 

percentage filtering where multiple classes exist in the dataset and peaks within a single class need to 

be retained. Note that the lower the sample filter target percentage the greater the number of missing 

values will be created in the dataset. At this point, the number of peaks within each biological sample 
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is assessed, and those with abnormally high numbers of missing values are deemed technically poor 

and removed using ‘missing-value filtering’ (see Data Quality Control section, below). 

Prior to statistical analysis several data pre-processing steps are required. As a first step data 

matrices are normalised by the probabilistic quotient normalisation (PQN) approach to remove the 

variation caused by unequal amounts of detectable metabolites in each of the biological samples
60

. 

For studies in which the analytical measurements are made across several batches, the intensity 

measurements of QC peaks in different batches are normalised to correct the technical variation 

arising from inter-batch measurements using a signal correction method
61

. This approach can also be 

used to correct signal-intensity technical variation that arises within a single batch. The signal 

correction method requires QC samples to be acquired at regular intervals throughout the analytical 

run. Next, the relative standard deviations (RSDs) of the intensities of each spectral peak are 

assessed within the QC samples
44

, and any peaks with unacceptably high RSDs are deemed 

unreliable measurements and removed using the ‘peak quality filter’ (see Data Quality Control 

section, below). Missing values are now imputed into the normalised DIMS data matrices. Missing 

values generally occur because: (i) the metabolite is not present or (ii) the instrument fails to detect a 

metabolite that was present. As missing values can be problematic for statistical analyses, they are 

typically imputed using the K-nearest neighbour method (KNN), which has been demonstrated to be 

the most suitable for DIMS data
62

. However, in cases where the user deems missing values to arise 

from genuinely missing metabolites they may choose to omit this step. Prior to multivariate statistics, a 

generalised log transformation is optimised (for each specific dataset using the QC sample data) and 

applied to stabilise the technical variance and reduce the dominance of the highly intense and 

variable peaks in the multivariate statistics
63,64

. 

 

Data Quality Control 

In summary, seven filtering steps are applied in the pipeline to ensure high data quality:  

1) if the nESI spray current fails during data collection on the mass spectrometer, the affected 

analyses are manually discarded; 

2) for peaks to be considered as actual detected features, they must be observed in at least two 

DIMS measurements of the biological sample (termed 'replicate filtering', see above and Step 

20); 

3) only peaks occurring at more than 3-times higher intensity in the biological samples relative to 

the blank samples are retained in the dataset (termed ‘blank filtering’, see above and Step 

23);  

4) all peaks retained in the dataset occur in the majority of biological samples measured in the 

study (termed 'sample filtering', see above and Step 24); 
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5) all biological samples have a relatively consistent number of peaks (termed 'missing-value 

filtering', see above and Step 25); 

6) any batch effects or temporal drifts in peak intensity, assessed on a peak-by-peak basis using 

the QC samples, are corrected for (termed ‘signal correction’, see above and Step 28); 

7) the reproducibility of peak intensities are calculated within the QC samples across the dataset 

on a peak-by-peak basis. Non-reproducibly measured peaks are excluded (termed ‘peak 

quality filter’, see Step 28)  

 

Univariate and multivariate statistical analysis 

Non-targeted nESI DIMS metabolomics and lipidomics studies aim to measure the variation and co-

variation of metabolite or lipid abundances between or across biological sample groups in order to 

generate new hypotheses for subsequent targeted investigation. Explorative analysis using 

unsupervised multivariate statistical methods (e.g. principal components analysis, PCA) is carried out 

first to assess the data reproducibility, detect possible outliers, and visualise possible groupings in the 

dataset. Subsequently, a univariate statistical test is applied to each peak in the nESI DIMS data to 

identify specific peaks whose intensities significantly change across different biological sample 

groups. These tests can be parametric (assuming a normal distribution, e.g. t-test or ANOVA) or non-

parametric (e.g. Wilcoxon signed-rank or Kruskal-Wallis).  Due to the large number of peaks that are 

often analysed (and statistically tested), a multiple testing procedure is carried out to reduce the 

occurrence of peaks incorrectly being identified as significant (i.e. reduce false positives). The optimal 

approach for DIMS data is to apply the Benjamini-Hochberg false discovery rate (FDR) procedure
65

. A 

disadvantage of univariate tests is that possible correlations between peaks are not taken into 

account. Therefore, supervised multivariate approaches (e.g. partial least squares discriminant 

analysis, PLS-DA) are used as a complementary approach to discover individual metabolites or 

groups of metabolites that discriminate between different biological sample groups. Note that these 

models can be used to predict the class (i.e. healthy or disease) of any subsequent biological 

samples. The prediction accuracy, based on internal cross-validation of the data or an independent 

test set, is used as a measure of the group separation. Statistical significance of the observed group 

separation is evaluated with permutation testing. In a permutation test the labels of the biological 

samples are randomly permuted and a new PLS-DA model is constructed. This process is repeated 

1000 (or more) times. Statistical significance of the original PLS-DA model is then assessed by 

relating the values of the group separation of the permutated data to that of the non-permuted data. 

Although the permutation test is a powerful statistical procedure, its results should be approached 

cautiously for very small sample sizes (see experimental design section)
66,67

. Peaks that contribute to 

the group separation are identified based on PLS-DA variable importance measures such as the 

Variable Importance in the Projection (VIP) or the selectivity ratio (SR). To reduce the influence of 

irrelevant peaks on the model, forward (variable) selection that is based on the VIP or SR can be 
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carried out before permutation testing.  

 

Metabolite annotation 

Automated and robust annotation and identification of hundreds to thousands of peaks in MS-based 

metabolomics is currently a difficult, complex process and is widely regarded as a bottleneck of data 

interpretation
68

. Analytical and computational developments are, however, continuing to improve this 

procedure. Metabolite annotation in spectral stitching DIMS studies starts by assigning elemental 

compositions to all (or as many as possible) m/z measurements, followed by mapping each elemental 

composition to a single or multiple chemical name(s). This is done using in-house developed MI-Pack 

software situated within Galaxy that interacts with public databases (e.g. Human Metabolome 

Database (HMDB), Kyoto Encyclopedia of Genes and Genomes (KEGG), LIPID MAPS and 

PubChem)
69

. Due to the finite mass accuracy of mass spectrometers and the complexity of chemical 

space, this process often results in multiple annotations per peak, however the ultra-high mass 

accuracy used here minimises the numbers of annotations. To further reduce the number of false 

positive assignments, we employ several approaches
69,70

: a single metabolite is often detected as 

multiple metabolic features, including adducts (e.g. [M+H]
+
 and [M+Na]

+
) and naturally occurring 

isotopes. The latter is often used to reduce the number of incorrect elemental compositions using 

relative isotopic abundance measurements to calculate the number of atoms (e.g. carbon, sulphur, 

nitrogen) within the metabolite
24

. To categorise the confidence of metabolite identification and to make 

metabolite assignments within a study or across multiple studies comparable, different levels of 

metabolite annotation and identification have been reported and described by the Metabolomics 

Standards Initiative (MSI)
27

. Metabolite assignments in nESI DIMS experiments are based upon m/z 

values and therefore are reported as putatively annotated (defined as level 2 by the MSI), however 

the ultra-high mass accuracy and additional steps used in our DIMS workflow (e.g. the use of adduct 

and isotope patterns) result in a high degree of confidence in the molecular formula(e) annotations. 

Additional targeted experiments, such as MS
n
 fragmentation and spectral library matching against an 

authentic standard, are required to definitively identify the compound(s) of interest (defined as level 1 

by MSI). 

 

Data storage and sharing  

Metabolomic studies continue to increase in size and produce ever-increasing amounts of 

experimental data. Open access to research data and knowledge, in a standardised and reproducible 

way, is important for maximising the value of metabolomics (or any other) datasets. As the 

requirements of journal publishers (including data journals such as Scientific Data and Gigascience) 

and funding bodies to share data and results continue to grow, it is likely and indeed highly preferable 

that open access to data will become standard practice in metabolomics. This is supported by the 

increasing number of publicly available repositories for experimental data (e.g. MetaboLights and 
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Metabolomics Workbench
71,72

) as well as the number of metabolomics datasets within these public 

repositories. Recently, a data descriptor for a spectral-stitching nESI DIMS metabolomics study — 

where the efficacy of a signal-correction algorithm and the reproducibility of a multi-batch study were 

evaluated — was published in such a data journal and the data is openly available via the 

MetaboLights repository (MTBLS79)
71

. This dataset serves as a benchmark for the metabolomics 

community, and complements the current publication
29

. 

 

  



 

13 
 

MATERIALS 

REAGENTS 

 Pre-collected and frozen (at -80 °C) biological samples: urine, serum, plasma, tissue. 

!CAUTION ethical regulations must be followed and patient consent obtained when working 

with human samples. A licence to undertake animal work should be obtained from the UK 

Home Office. !CAUTION appropriate ethical approval, licensing and training must be sought 

before working with animals. !CAUTION biological samples pose an infection risk and should 

be handled with adequate personal protective equipment. 

 Laboratory collected biological samples: Adherent or suspension mammalian cell cultures, 

spent media, small whole organisms (e.g. Daphnia magna and Drosophila).  

!CAUTION biological samples pose an infection risk and should be handled with adequate 

personal protective equipment. 

!CAUTION Cell lines should be regularly checked to ensure they are authentic and are not 

infected with mycoplasma. 

 Crushed wet ice. 

 Dry ice. !CAUTION causes burns and poses an asphyxiation risk. This should be handled 

with adequate personal protective equipment in a well-ventilated space. 

 Liquid nitrogen. !CAUTION causes burns and poses an asphyxiation risk. This should be 

handled with adequate personal protective equipment in a well-ventilated space. 

 Nitrogen gas (oxygen free, 30 psi). !CAUTION poses an asphyxiation risk. This should be 

handled in a well-ventilated space. 

 HPLC grade chloroform (J.T. Baker, SciChem, 9174). !CAUTION chloroform is flammable 

and toxic and should be handled in a fume hood 

 HPLC grade methanol (J.T. Baker, SciChem, 9822) !CAUTION methanol is flammable and 

toxic and should be handled in a fume hood 

 HPLC grade water (J.T. Baker, SciChem, 9823) 

 Ammonium acetate (99.999%, Sigma-Aldrich, 372331) 

 Formic acid (LC-MS Ultra, Sigma-Aldrich, 14265). !CAUTION flammable and corrosive; 

should be handled in a fume hood. 

 LTQ Velos ESI Positive Ion Calibration Solution (Thermo Scientific Pierce, 88323). LTQ Velos 

ESI Negative ion Calibration Solution (Thermo Scientific Pierce, 88324) !CAUTION 

flammable and toxic; should be handled in a fume hood. 

 

 

EQUIPMENT 

 High resolution, high mass accuracy Fourier transform mass spectrometer (Thermo Scientific 

LTQ FT Ultra
TM

 Fourier transform ion cyclotron resonance mass spectrometer; or Thermo 
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Scientific Q Exactive
TM

 Hybrid Quadrupole Orbitrap
TM

 mass spectrometer; or Thermo 

Scientific Orbitrap Elite
TM

 Hybrid Ion Trap-Orbitrap mass spectrometer). All instruments 

controlled by a dedicated PC running Xcalibur software (Version 2.0 or greater, Thermo 

Scientific) 

 Automated multisample chip-based nESI sample ionisation platform (Advion Biosciences 

Triversa Nanomate) coupled to the mass spectrometer. This is controlled by ChipSoft 

software (Version 8) 

 nESI 400-nozzle electrospray chip (Advion Biosciences, 1003446) 

 nESI electrospray 400 tip rack (Advion Biosciences, 1004763) 

 Glass Duran bottles (50 mL and 100 mL, Fisher Scientific) 

 Two Hamilton syringes (750SNR 500 µL [Thermo Fisher, 80865]) 

 High-quality solvent resistant pipette tips (Fisherbrand, Thermo Fisher. 200 µL: 11587442, 

1000 µL: 10787524)  

 High-quality solvent resistant plastic microfuge tubes (Eppendorf. 1.5mL: 10509691, 2 mL: 

10038760) 

 1.75 mL tall form glass vials with aluminium-lined screw caps (Wheaton, 151061) 

 Glass Pasteur pipettes (Volac, D810, 150 mm) 

 Precellys®24 bead-based homogeniser (Bertin Technologies) 

 2mL tubes for Precellys®24 homogeniser (2mL tubes with 1.4 mm diameter ceramic beads 

[Stretton Scientific, 03961-1-003]) 

 Vortexer mixer  

 Refrigerated Centrifuge (Microcentrifuge Biofuge Primo R [Thermo Scientific, 75005440]; 

Bucket rotor [Thermo Scientific, 75007591]; Fixed angle rotor [Thermo Scientific, 75007593]) 

 Fume hood 

 Nitrogen blow down drier (Techne, Fisher Scientific. Sample concentrator [11593859], 

Heating block [11563799], 2x Dry blocks [11523809], Needles [11426578]) 

 SpeedVac concentrator (Vapour trap [Thermo Scientific, RVT5105230]; SpeedVac [Thermo 

Scientific, SPD111V230]; Pump [Knf, LABOPORT N820(.3) FT.18]) 

 Carbon tips for loading non-polar (lipid) samples into well plates (Advion Biosciences, 

1004763) 

 Plastic well plates (Fisher Scientific: 96-well [AB-0800]; 384-well [TF-0384]) 

 Self-adhesive aluminium sealing tape (Corning, 6570) 

 Heat sealing plate covers (Fisher Scientific, AB-1720) 

 Well plate heat sealer (Thermo Scientific, ALPS 50 V) 

 Refrigerator (4 °C) 

 Freezers (-20 °C and -80 °C) 

 Xcalibur software (Thermo Fisher, version ≥ 2.0) 

 An instance of Galaxy and Galaxy-M tools, workflows and associated software (see 

https://github.com/Viant-Metabolomics/Galaxy-M for a detailed installation guide) 
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 A PC (Microsoft Windows 7, Intel Core i7, 2.8 GHz, 4.00 GB Ram) with internet access  

 

REAGENT SETUP 

Biological sample collection and handling To halt enzymatic activity and ensure that the 

biological sample is a true representation of the phenotype being tested, samples (including tissue or 

biofluid, e.g. plasma, serum, urine) should be frozen as soon as possible after sampling. Small whole 

organisms, e.g. Daphnia, Drosophila, should be placed in a microfuge tube and flash-frozen in liquid 

nitrogen. Adherent or non-adherent cultured mammalian cells should be quenched using -40 °C 60% 

v/v HPLC grade methanol (on dry ice) as the quenching solution following existing protocols
45,73

. To 

enable the calculation of cell biomass, the quenching tube is weighed at the start (prior to addition of 

any quenching solvents) and at the end (when only frozen cells are present). CRITICAL All biological 

samples must remain frozen at -80 °C until analysis. The minimum recommended sample sizes for 

this high sensitivity method are 1 mg biomass of tissue, mammalian cells or whole organism, or 5 µL 

of biofluid.  

!CAUTION Ethical approval must be sought and ethical protocols followed when working with human 

samples. 

Solvent Preparations Only use high quality plasticware (tips and tubes as recommended above) to 

minimise the leeching of plasticisers into the extraction solutions. Ensure that each set of 

consumables (tips and tubes) and solvents are from the same lot number. Extraction solvents for 

tissue and mammalian cells (methanol, chloroform and water, each on their own) and biofluids 

(methanol:chloroform in a 1:1 solution and water on its own) should be prepared and decanted into 

solvent-rinsed and dried 50 or 100 mL Duran bottles. Methanol:chloroform 1:1 should be pre-cooled 

to -20 °C for >2 hr. All other solvents should be pre-chilled on wet ice for at least 30 min. Separate 

vials of chloroform and methanol should be prepared to wash the Hamilton syringe that is used to 

remove metabolic or lipid extracts (see Steps 1A xi – xii and 1B v). DIMS analysis solvents should be 

prepared as follows: (i) positive ion polar solvent – 4:1 (v/v) methanol:water with a total of 0.25% (v/v) 

formic acid; (ii) negative ion polar solvent – 4:1 (v/v) methanol:100 mM aqueous ammonium acetate; 

(iii) non-polar solvent (suitable for positive and negative ionisation analyses) – 2:1 (v/v) 7.5 mM 

methanolic ammonium acetate:chloroform (dissolve the ammonium acetate in the methanol prior to 

chloroform addition). All solvent mixtures are stable at room temperature for at least one week.  

 

EQUIPMENT SETUP 

Equipment used during extraction Pre-cool both the swinging bucket and fixed-angle microtube 

centrifuges to 4 °C. Turn on Precellys®24 homogeniser to allow it to initiate. Turn on the cold trap that 

is connected to the SpeedVac concentrator before starting the extraction procedure (requires 

approximately 2 hr to achieve operating temperature).  
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BOX 1: Triversa and mass spectrometer setup. Timing 1 h  

(A) Initial system set-up 

1. If the mass spectrometer has been in standby mode, allow at least 2 hr to equilibrate once fully 

switched on.  

2. Open the MS acquisition viewer on the PC (MS Tune for Thermo systems). Calibrate the MS 

according to the manufacturer’s instructions using the calibration mixture. 

3. Attach the Triversa onto the bracket on the front of the MS.  

4. Load the 400-nozzle nESI chip, 400 tip set and a 96-well plate containing a test biological sample 

(e.g. biological extract in MS solvent, Table 2).  

5. Ensure that the nitrogen cylinder (or generator) supplying the Triversa has sufficient gas remaining 

(recommended to have >1000 psi for a 24 hr run) and has sufficient backpressure.  

6. Position the Triversa so that it is central to the MS source and 3-5 mm away from the source by 

adjusting the positional settings in the ChipSoft software (Method Manager / Spray Optimisation).  

(B) Triversa method creation, electrospray optimisation and mass spectrometry tuning to 

enhance detection sensitivity 

1. Create a method file with the recommended settings:  

(a) Sample volume 7 µL (polar), 10 µL (non-polar) 

(b) Vent Headspace ON 

(c) Aspirate air after sample ON 

(d) Volume of air to aspirate after sample 0.2 µL (polar), 2.0 µL (non-polar) 

(e) Trigger acquisition when Input Signal received ON 

(f) Spray sensing OFF 

(g) Gas pressure 0.3 psi 

(h) Voltage to apply 1.5kV 

(i) Positive ion or Negative ion as desired 

2. To optimise the nanoelectrospray and DIMS detection for each specific biological sample type 

inject a test sample by using the ‘Spray Optimization’ tool (within the ‘Method Manager’ tab). The 

Triversa electrospray current should be stable and between 100-300 nA (for problems see 
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?TROUBLSHOOTING Table 3). CRITICAL A stable electrospray current is required to generate 

reproducible data. Electrospray stability is partially dependent on the voltage and gas pressure 

settings on the Triversa (recommended settings above). These settings are sample type dependent 

and therefore may require optimisation to improve electrospray stability.  

3. Optimise the Triversa voltage: set the gas pressure to 0.3 psi and the voltage to 1.5 kV, then—

while monitoring the spray stability on the mass spectrometer—decrease the voltage in steps of 0.1 

kV until the spray is lost. Switch the polarity mode on the Triversa then switch back to the polarity that 

was originally being used. If the spray does not return add 0.2 kV to the current voltage setting and 

this is now the optimal voltage setting that should be used.  

4. Optimise the Triversa pressure: set the voltage to its optimised setting and the pressure to 0.3 psi. 

Then alter the pressure in steps of 0.05 psi and observe any improvement or deterioration of the 

electrospray current.  

5. Optimise the position of the Triversa in relation to the MS source: observe the ion intensity and 

reproducibility in the mass spectrometer using the mass spectrometer detector program (MS Tune). 

Move the Triversa closer or further away from the mass spectrometry source (by changing settings in 

Method Manager / Spray Optimisation). To increase the sensitivity move the Triversa closer to the 

MS, to increase reproducibility move it further away (the optimal distance should be in the range 3-5 

mm). For problems with DIMS detection see ?TROUBLSHOOTING Table 3.  

6. Where available, it is recommended to optimise peak detection sensitivity by using the automated 

tuning function (within the mass spectrometer detector program, MS Tune) on ions within the mass 

ranges of interest, e.g. ions around 75 m/z (‘low tune’), 150 m/z (‘medium tune’) and 400 m/z (‘high 

tune’) for polar extracts. Each m/z range optimisation is carried out independently by repeating the 

tuning at that m/z until no further increase to signal intensity is achieved, then saving the optimal tune 

parameters as separate tune files (i.e. ‘low tune’, ‘medium tune’, ‘high tune’). 

(C) Creation of the spectral-stitching method  

1. Using the Instrument Setup tab in Xcalibur software, create a method with multiple segments (for 

the case where transient scans are collected — LTQ FT
TM

 and LTQ FT Ultra
TM

) or multiple scan 

events (for case where transient scans are not available — Q Exactive
TM

 and Orbitrap Elite
TM

) that 

represent the m/z windows for the spectral-stitching method (widths, acquisition length, resolution and 

AGC detailed in Figure 2 and Table 1; see Supplementary Methods for Q Exactive
TM 

and Orbitrap 

Elite
TM

 instrument method files). When using scan events, set the number of acquired microscans to 

10 — this averages 10 transient scans. 

2. If available, assign a tune file to each window: ‘low tune’ for windows with a centre <100 m/z; 

‘medium tune’ for windows with a centre 100-250 m/z; ‘high tune’ for windows with a centre >250 m/z. 

Otherwise assign an appropriate tune file for the entire mass range (e.g. optimise at the mid-m/z 

range being detected or within the specific m/z range of interest). 
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3. At the beginning of the method apply a 30 s delay before MS data is collected in order to allow 

stabilisation of the nESI spray current. 

[BOX END]  
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Establishing Galaxy-M-workflows Data processing and analysis steps described here are 

collated into Galaxy specific tools and workflows, referred to as Galaxy-M
28

. An extensive guide on 

how to install Galaxy-M is available from GitHub (https://github.com/Viant-Metabolomics/Galaxy-M). 

Here, tools and workflows within Galaxy-M are well documented, including default parameters, and 

have self-explanatory names to guide the user through the data processing and analysis steps. 

Additional reading and tutorials on how to use a Galaxy instance are available online 

(https://wiki.galaxyproject.org/Learn).  

Most DIMS studies include a large number of files and a considerable amount of data. Galaxy-M 

assumes that the user will store the data (e.g. .RAW files with or without transient data) on a file 

system that is directly accessible by the Galaxy instance (i.e. no Galaxy-upload required). 

 

PROCEDURE 

Metabolite and lipid extraction from biological samples TIMING 2-4 hr per batch 

CRITICAL To minimise inconsistencies across the handling of biological samples and therefore to 

reduce sample-to-sample variation, extract no more than 20 samples in a single batch. Repeat this 

section until all samples are extracted. CRITICAL Randomise the extraction order to ensure that 

biological sample classes are randomised within and across extraction batches. CRITICAL An extract 

blank sample must be prepared. Here, the extraction procedure is carried out in the absence of 

biological sample, and the resulting extract blank is used to identify compounds that arise solely from 

sample preparation procedures. 

1| Perform the steps in Option A if you are extracting from tissue whole organisms or 

mammalian cells. Perform the steps in Option B if you are extracting from biological fluids. 

 

A Extraction from tissue, whole organisms or mammalian cells 

i. Weigh the biological samples ensuring that they do not thaw by keeping them on dry ice. 

Mammalian cell biomass should be estimated during the quenching step (see REAGENT 

SETUP - Biological sample collection and handling, above). 

ii. For tissues or whole organisms place the biological material into a labelled Precellys®24 tube 

and set on dry ice.. For mammalian cells place the biological material into a labelled high-

quality 2 mL microfuge tube and set on dry ice.  

iii. Add 8 µL of ice-cold methanol for every mg of frozen biological sample mass (8 µL / mg) 

(using high-quality solvent resistant plastic pipette tips). 

iv. For tissues or whole organisms, homogenise the samples using a Precellys®24 system (2 × 

10 s bursts of 6400 rpm separated by a 5 s gap) before returning the tubes to dry ice. 

For mammalian cells, vortex samples (30 s) before returning the tubes to dry ice. 

https://github.com/Viant-Metabolomics/Galaxy-M
https://wiki.galaxyproject.org/Learn
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v. Label a 1.75 mL glass vial per sample and add 8 µL / mg ice cold chloroform (using a clean 

glass Hamilton syringe) to each vial and set on wet ice. 

vi. Using a glass Pasteur pipette, transfer the homogenate from either the Precellys®24 tube 

(tissue or whole organism samples) or microfuge tube (cultured cells samples) into the 1.75 

mL glass vial containing chloroform. Vortex each vial (15 s) and then return to the wet ice. 

vii. Add 7.2 µL / mg HPLC-grade water to each vial, vortex (30 s) then return to the ice (samples 

should be cloudy in appearance). 

viii. Leave samples on wet ice for 10 min to allow metabolites and lipids to partition between the 

polar and non-polar solvents. 

ix. Centrifuge samples (2500-g, 4 °C, 10 min) using a swinging bucket centrifuge to induce 

phase separation. CRITICAL STEP remove from centrifuge bucket extremely carefully to 

avoid disturbing the protein interface and biphasic separation of solvents. 

x. Set the samples on the bench at room temperature for 5 min to allow completion of the phase 

separation. Sample is now bi-phasic, with the polar (upper) and non-polar (lower) layers 

separated by an interface of denatured proteins and cell debris. 

xi. Remove a fixed volume of the polar phase into a microfuge tube using a clean Hamilton 

syringe (typically 300 µL, with the option to collect multiple aliquots). Rinse the syringe twice 

with methanol wash solvent (2 × 500 µL) between each biological sample. 

xii. Remove a fixed volume of the non-polar phase into a new 1.75 mL glass vial tube using a 

clean Hamilton syringe (typically 150 µL, with the option to collect multiple aliquots). Rinse the 

syringe twice with chloroform wash solvent (2 × 500 µL) between each biological sample. To 

obtain the non-polar phase slide the Hamilton syringe down the side of the glass vial and 

gently move the protein interface out of the way with the syringe. CRITICAL STEP removing 

the non-polar layer requires care so as to avoid debris attaching to the Hamilton syringe. 

xiii. Dry the polar extracts in a SpeedVac concentrator using no heat (1-2 hr). !CAUTION Ensure 

the associated cold trap has reached operating temperature (< -100 °C) to prevent solvents 

being vented to the atmosphere. 

xiv. Dry non-polar biological samples under a stream of nitrogen (15 min) and cap the vials 

quickly to ensure a nitrogen-rich atmosphere remains inside..  <CRITICAL STEP> This 

removes oxygen from the sample to prevent lipid oxidation and peroxidation. !CAUTION This 

must be done in a fume hood to prevent the escape of chloroform into the laboratory.  

xv. Store dried extracts frozen at -80 °C or proceed to step 2. PAUSE POINT extracted biological 

samples can be stored at -80 °C for up to a few months. 

B Extraction from biofluids (serum, plasma, urine) 

i. Thaw biofluid on wet ice for 30-60 min, then vortex (15 s) and remove a fixed volume (e.g. 

200 µL) into a 2 mL high-quality solvent resistant plastic microfuge tube. Keep samples on 

wet ice. 

ii. Add 600 µL methanol:chloroform (1:1, -20 °C), vortex (15 s) and return sample to the ice. 

iii. Add 300 µL water, vortex (15 s) and return samples to the ice. 
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iv. Centrifuge samples (20,000-g, 4 °C, 5 min) to induce phase separation. 

v. Follow steps 1A x-xiv (above) except take a 350 µL aliquot from the polar phase and a 100 µL 

aliquot from the non-polar phase. 

vi. Store dried extracts frozen at -80 °C or proceed to Step 2. PAUSE POINT extracted biological 

samples can be stored at -80 °C for up to a few months. 

 

Resuspension of biological sample extracts in DIMS solvent TIMING 1-2 hr 

CRITICAL STEP Prior to biological sample resuspension, it is advisable to create and analyse a 

serial dilution of resuspended extracts to establish the optimal concentration that maximises peak 

counts (of biological origin) and stability of the nESI current for the specific biological samples being 

analysed. Recommended starting points for the resuspension solvents (which include sample 

modifiers, formic acid and ammonium acetate, to enhance electrospray efficiency) and volumes are 

detailed in Table 2. This is carried out using a spare biological extract which will be used up and not 

form part of the subsequent metabolomics analyses. 

2 | Add the appropriate type and volume of DIMS solvent to the extracts as described in Table 2 

(or the volume determined in the method optimisation experiment) and vortex (30 s) to 

dissolve. CRITICAL STEP lipid concentrations should not exceed 10 pmol/µL to prevent the 

formation of lipid aggregates
34

. 

3 | Create a QC sample by taking a fixed volume from each biological sample and pooling, to a 

minimum total volume of 180 µL (enough for 6 × QC analyses). As the number of biological 

samples analysed increases, so too should the minimum QC volume, such that a QC sample 

can be analysed every 4-6 biological samples throughout an analytical run. CRITICAL STEP 

If data will be collected in several batches, an identical QC sample must be used across all 

batches. This will allow successful application of the signal correction algorithm (Step 28). 

4 | Centrifuge samples (polar extracts in microfuge tubes: fixed angle rotor, 20,000-g, 4 °C, 10 

min; non-polar extracts in glass vials: bucket rotor, 2,500-g, 4 °C, 10 min) to remove 

particulates that can adversely affect nESI stability. <CRITICAL STEP> Particulates in the 

sample can fully or partially block the nESI nozzle leading to loss or instability of electrospray. 

5 | When loading samples, place a 96-well or 384-well plate on wet ice (to prevent sample 

evaporation) and pipette 3 × 10 µL of each sample into triplicate (consecutive) wells along a 

row using either Fisherbrand tips (polar) or carbon tips (non-polar). On completion of each 

well plate row, cover with self-adhesive aluminium sealing tape to prevent solvent evaporation 

CRITICAL STEP To avoid particulates in the sample wells, keep the samples at the same 

fixed angle as they were in the centrifuge and avoid disrupting the pellet (likely invisible to 

human eye) when pipetting. CRITICAL STEP Ensure that the biological sample phenotypes 

are randomised in the well plate (facilitating a randomisation of the analytical run order). 

Ideally, the sample order should start with a series of trial samples, typically MS diluent (×3 

technical replicates) and QC samples (×3 technical replicates), which allow the user to assess 
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the quality of the electrospray and DIMS detection. This is followed by the extract blank 

sample (×3 technical replicates) and by a QC sample (×3), and then the biological samples 

(each ×3) with a QC sample (×3) every 4-6 samples, and finally end with a QC sample (×3) 

(see Figure 3 for an example). The analysis of QC samples at regular intervals throughout the 

sample sequence run is essential to enable signal correction data processing (Step 28). 

6 | Once completed, remove the self-adhesive aluminium sealing tape and heat-seal the entire 

well plate with the appropriate foil (170 °C for 2 seconds). 

7 | Open ChipSoft software (controlling the Triversa) and in Interface Settings set the plate cooler 

to 10 °C. Put the well plate on to the Triversa and allow at least 30 min for the samples to 

equilibrate to 10 °C. CRITICAL STEP variations in sample temperature can alter the 

electrospray process leading to poor technical reproducibility 

 

DIMS analysis TIMING ~9 min per polar biological sample (comprising of triplicate technical 

replicate analysis on the Q Exactive
TM

, Orbitrap Elite
TM

 or LTQ FT Ultra
TM

; including sample 

loading and equilibration) 

8 | Ensure the well plate is located on the Triversa and cooled to 10 °C. Load a new electrospray 

chip and 384-tip tray into the Triversa and empty the tip waste tray. Align the Triversa with the 

MS source (Box 1). Within the ChipSoft software (in Sequence View) create a sample 

sequence using the optimal Triversa method (Box 1). CRITICAL STEP Ensure that the 

Triversa contact closure is set to ‘Trigger acquisition when Input Signal received’, which 

enables the Triversa to initiate MS data collection when the nESI begins.  

9 | Within the MS vendor software (Xcalibur for Thermo instruments) create a sample run order 

using the method created in Box 1. CRITICAL STEP For FT-ICR instruments, ensure that the 

collection of time domain (transient) data is enabled (Within the Tune program: Diagnostics → 

Toggles → Include FT transient). 

10 | Initiate the Triversa sample run and when the ChipSoft Virtual Device window states that it is 

awaiting input from the MS system, initiate the MS sample run in Xcalibur. . PAUSE POINT 

DIMS data can be stored for unlimited duration until data processing is initiated. 

 

Data processing: spectral-stitching and signal filtering TIMING 6-12 hr dependent on the 

number of biological samples 

CRITICAL STEP At any point in the data analysis process, the Galaxy history can be downloaded, 

archived and shared with others. 

11 | Create a text file (as comma separated value [.csv] format, e.g. samples.csv) to function as a 

sample identifier for the samples being processed. This contains four columns separated with 

a comma: first column – spectral file names, second column – class identification (e.g. 

control, QC, etc.), third column – batch number and fourth column – run order. 
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12 | Open an internet browser and go to the Galaxy-M homepage (e.g. http://localhost:8080 for a 

local Galaxy instance, see Establishing Galaxy-M-workflows in EQUIPMENT SETUP, above). 

13 | Select Tools → Get Data → Upload Data from the left panel. This brings up the upload data 

form. Upload the .csv file created in Step 11 (ensure “.csv” is selected as the file type).  

14 | Use Tools → Get Data → File List Manager (left panel) to create a file list which specifies 

the location of the files on the user’s PC and the type of MS instrument used to collect the 

data. 

15 | If the DIMS data includes transient files, proceed to Step 16. If no transient data is available 

then proceed to Step 18. <CRITICAL STEP> Transient data is the free induction decay mass 

spectrometry data, which requires processing as in Steps 16-17. For data in the processed 

vendor format (*.RAW), these processing steps have already been completed by the vendor 

instrument software. 

16 | Run Tools → SIM-stitching → Sum Transients. This sums the transient data for the mass 

spectral SIM windows within each technical replicate. To avoid the inclusion of low quality 

transients (caused by poor or unstable nESI), a total ion current (TIC) threshold can be set 

(optional). Transients are removed according this threshold.  

17 | Run Tools → SIM-stitching → Process Transients. This applies Hanning apodisation, zero-

filling, Fast Fourier Transform and baseline correction to the summed transients.  

18 | [Optional] Create a tab-separated text file (.txt format) that will enable internal mass 

calibration of the spectra. This file contains the names (in the first column) and the exact 

mass (in column 2) of compounds known to be present in the sample (e.g. calibrants.txt). If 

this information is not known, this step can be omitted and data will be externally calibrated 

(almost certainly resulting in lower mass accuracy). CRITICAL STEP To create a true 

calibrant list additional MS experiments (e.g. fragmentation) are often needed to annotate (i.e. 

elemental composition) and/or identify (i.e. structure) the m/z values. Compounds detected in 

the extract blank sample can be used for calibration across different MS studies when 

identical extraction protocols and instruments have been used.  

19 | Run Tools → SIM-stitching → Mass Calibration and SIM-stitching. This stitches the 

multiple m/z windows together (removing any m/z overlap in the process) and internally 

calibrates the mass-to-charge axis of the spectra (optional). The required noise threshold, as 

a signal-to-noise ratio (SNR), must be stipulated (typically 3:1; data with intensities below this 

threshold will be discarded). If internal calibration is required, provide calibrants.txt (Step 18) 

and specify the minimum intensity (typically >50 SNR) and the maximum mass tolerance 

(typically 2.0 ppm) of peaks to be used for internal calibration.  

20 | Run Tools → SIM-stitching → Replicate Filter. This step retains peaks present within at 

least 2 of the triplicate measurements of each biological sample (and averages their 

intensities) and thus functions to remove noise features. The maximum m/z ppm range a 

peak must fall within (across the triplicate measurements) for it to be counted as the same 

peak must be stipulated (typically 1.5 ppm; CRITICAL STEP If the mass accuracy of the data 
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is less than optimal this m/z tolerance can be increased to ensure that real peaks are 

retained). 

21 | Run Tools → SIM-stitching → Align Samples. This aligns the peaks across all of the 

Replicate Filtered biological samples. The maximum m/z ppm range a peak must fall within 

(across the biological samples) for it to be counted as the same peak must be stipulated 

(typically 2.5 ppm; CRITICAL STEP If the mass accuracy of the data is less than optimal this 

m/z tolerance can be increased to ensure that sample-related peaks are retained. 

22 | Run Tools → SIM-stitching → Create DSO. This converts the DIMS data into a DataSet 

Object (DSO – a construct of Eigenvector Research to facilitate data set handling and sharing 

[http://www.eigenvector.com/software/dataset.htm]) .xml file, which includes a peak intensity 

data matrix, row labels (sample classes), column labels (m/z values) and information provided 

in the text file in Step 11. The data within the DSO is updated with each additional processing 

step.   

23 | Run Tools → SIM-stitching → Blank filter. This compares biological sample peaks to those 

appearing in the extract blank sample. Peaks that appear in both are discarded according to 

the defined biological:blank peak intensity ratio (typically peaks are retained if this ratio is >3). 

24 | Run Tools → SIM-stitching → Sample Filter. This retains biological peaks that are present 

within a defined minimum percentage of all biological samples (80% for initial biological 

interpretation; lower if the experimental design suggests this; see data procession section in 

the INTRODUCTION, above).  

25 | Run Tools → SIM-stitching → Missing Value Sample Filter. This calculates the number of 

missing values contained in each sample within the DSO data matrix. Samples with 

unacceptably high numbers of missing values can be automatically excluded. 

 

Normalisation, signal correction, data quality assessment, missing value imputation and 

generalised log (G-log) transformation TIMING 30 min – 1 hr 

26 | Run Tools → Matrix Processing → PQN Normalisation. This normalises the data matrix 

(DSO) from Step 25. The normalisation quotients for this are calculated from the DSO in Step 

22 using peaks that are present in all samples. 

27 | [Optional] Run Tools → Matrix Processing → Peak Outlier Detection. This tool detects 

outliers detrimental to the effectiveness of the signal intensity correction in step 28. For each 

peak, it fits a 2
nd

 or 3
rd

 order polynomial regression curve to the non-QC peaks. Only non-QC 

data points are used in this curve fitting to avoid statistical bias. A confidence interval for each 

curve is calculated (typically 95 or 99%) and any (QC) data point lying outside the confidence 

interval is considered an outlier, and can be removed
61

. 
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28 | [Optional] For single or multiple batch studies, the signal intensity correction tool can be 

applied. Run Tools → Matrix Processing → Signal correction and Peak Quality Filtering. 

For each peak, the tool applies robust cubic smoothing splines to the QC data points ordered 

by injection. The resulting fitting curves are then used to  correct for the technical variation 

arising from inter-batch measurements
61

. This approach can also be used to correct signal-

intensity technical variation that arises within a single batch. Additionally, peaks that are 

highly variable (e.g. RSD >20%) across batches can be filtered based on different criteria 

(e.g. RSD). 

29 | Run Tools → Matrix Processing → Missing Value Imputation. This imputes any missing 

values that are present in the normalised data matrix using the K-nearest neighbour method. 

K can be set by the user (default is 5). 

30 | [This step is only required prior to multivariate statistics] Run Tools → Matrix Processing → 

G-log Transformation. This optimises the lambda parameter from the QC data matrix (i.e. 

QC samples within the data matrix are automatically selected), then applies the generalised 

log transformation to the normalised data matrix. 

 

Statistics Analyses TIMING 1 – 2 hr 

31 | Univariate statistical analysis can be applied to the normalised data matrix immediately before 

missing value imputation (from Step 28) or after missing value imputation (from Step 29). Run 

Tools → Statistics → Univariate Analysis, or export the data for further analysis using 

external statistical packages (Tools → DataSet Object). 

32 | Multivariate statistical analysis can be applied to the generalised log transformed normalised 

data matrix (from Step 30). Run Tools → Statistics → PCA and Scores Test, or export the 

data for further analysis using external statistical packages (Tools → DataSet Object). 

 

Metabolite Annotation TIMING 1 hr, and significantly longer (>8 hrs) when Molecular formulae 

Search is used 

33 | Run Tools → DataSet Object → Get Peak List to create a peak list from the biological 

sample data matrix (Step 25). 

34 | [Optional step; time-consuming] Run Tools → MI-Pack → Molecular formulae Search. This 

matches each peak m/z value to one or more elemental compositions (CcHhNnOoPpSs, 

including adducts, such as [M+H]+, [M+Na]+, [M+K]+) within a mass error tolerance stipulated 

by the user (e.g. typically within ± 1 ppm for polar or ± 2 ppm for non-polar FT-ICR MS 

analysis). 

35 | Run Tools → MI-Pack → Single-Peak Search. This assigns a putative biological compound 

identification to each m/z value (or elemental composition) within a mass error tolerance 
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stipulated by the user (typically within ± 1 ppm for FT-ICR MS) using database(s) specified by 

the user (e.g. KEGG, HMDB, LIPID MAPS). 

36 | Run Tools → MI-Pack → Peak-Pattern Search. This identifies adduct/isotope patterns (e.g. 

12
C-

13
C and [M+

39
K]

+
 – [M+

41
K]

+
) and relative isotopic abundance measurements within the 

data.  

37 | Run Tools → MI Pack → Combine Outputs. This produces a summary file of the outputs 

produced by Steps 33-36.  

 

 

Public repositories for metabolomics studies 

38 | We recommend that all the DIMS data, including .RAW files and data matrices, should be 

deposited into a public repository (i.e. MetaboLights
71

 [http://www.ebi.ac.uk/metabolights] 

and/or Metabolomics Workbench
72

 [www.metabolomicsworkbench.org]).  To do this, follow 

the instruction on the data repository’s websites. A stable identifier will be assigned to the 

dataset, which can then be used to cite the dataset in a publication. 

 

TROUBLESHOOTING 

See Table 3 for troubleshooting guidelines. 

 

TIMING 

Step 1A-1B, Metabolite and lipid extraction from biological sample: 2-4 hr per batch 

Step 2-7, Resuspension of biological sample extracts in DIMS solvent: 1-2 hr 

Step 8-10, DIMS analysis: ~9 min per polar biological sample (comprising of triplicate technical 

replicate analysis on the LTQ FT Ultra
TM

; Q Exactive
TM

 or Orbitrap Elite
TM

 including sample loading 

and equilibration) 

Step 11-25, Data processing: spectral-stitching and signal filtering: 6-12 hr dependent on the number 

of biological samples 

Step 26-30, Normalisation, batch correction, data quality assessment, missing value imputation and 

generalised log (G-log) transformation: 30 min – 1 hr 

Step 31-32, Statistics Analyses: 1 – 2 hr 

Step 33-37, Metabolite Annotation: 1 hr, and significantly longer (>8 hrs) when Molecular formulae 

Search is used  
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ANTICIPATED RESULTS 

The spectral-stitching nESI metabolomics / lipidomics method — in which data is collected as a series 

of overlapping m/z windows that are ‘stitched’ together (Figure 2) — generates high quality data in 

less than 10 min per biological sample (including sample loading and equilibration, and triplicate 

sample acquisition; Table 1). This approach significantly increases the dynamic range of the spectrum 

(Figure 4)
23,24

 without increasing the number of ions entering the detector, which could lead to space-

charge effects and poor mass accuracy
56

. The number of detected peaks increased >5-fold compared 

to a single wide-scan m/z collection (Figure 4)
23,24

. The use of nESI is critical because it lowers 

ionisation suppression compared to standard ESI, which also enhances peak detection
25

. Detection 

sensitivity is further increased by applying the method on an instrument with a physically larger 

detector that allows more ions to enter without increasing space-charge effects: a 3-fold increase in 

peak detection was observed on the LTQ FT Ultra
TM

, with larger detector, compared to the LTQ FT
24

. 

For each type and size of MS detector, the spectral-stitching method including m/z window width 

should be optimised to maximise the number of peaks detected (Table 1).  

The mass accuracy of data generated by the spectral-stitching nESI method is ±1 ppm for peaks 

>600 m/z
23,24

. Collecting the data as multiple m/z windows aids the internal mass calibration because 

each window can be m/z shifted independently of the others. The ultra-high mass accuracy achieved 

by this method enables molecular formula(e) annotation of peaks and allows the assignment of 

putative metabolite and lipid names. Expected numbers of detected and annotated metabolite and/or 

lipid features vary dependent on sample type. Negative ion spectral-stitching nESI metabolomics of 

ca. 1 mg of Daphnia pulex-pulicaria detected and putatively annotated 1973 and 369 peaks (+/- 1.5 

ppm mass tolerance), respectively, while negative ion lipidomics of ca. 10
7 
(ca 10 mg) human 

leukaemia cells detected and putatively annotated 2934 and 898 peaks (+/- 2 ppm tolerance), 

respectively. A lipid spectrum in which selected peaks have been annotated is shown in Figure 5.  

The spectral-stitching nESI DIMS method demonstrated high analytical reproducibility: median peak 

intensity RSD measurements across the QC samples were about 8% for both the LTQ FT
TM

 and LTQ 

FT Ultra
TM

, about 13.5% for the (LTQ) Orbitrap Elite
TM

 and about 16% for the Q Exactive
TM

 (Table 4). 

Based upon these results, it suggests that nESI DIMS utilising a hybrid instrument with a linear ion 

trap (i.e. LTQ) yields more reproducible peak intensities. These levels of reproducibility have been 

shown to be maintained in large-scale studies in which data was collected over several days. For 

example, PCA of a large Daphnia pulex-pulicaria metabolomics study had highly reproducible QC 

samples that were tightly clustered on the PCA scores plot (Figure 6)
74

. Such low technical variance 

enabled biological variance to be visualised, with a clear distinction of the metabolomes of F0 and F1 

Daphnia pulex-pulicaria generations (Figure 6)
74

. When the spectral-stitching nESI DIMS method was 

used for lipidomics, reliable and meaningful biological information to identify drug-induced lipid 

changes in leukaemia cells was generated
7
. Metabolite intensity measurements were shown to be 

robust and comparable to those made by NMR spectroscopy, i.e. tyrosine, creatine and 

phosphocreatine intensity measurements derived from the same sample by the two analytical 

methods were strongly correlated (Figure 7)
11

. A more extensive comparison of the spectral-stitching 
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nESI DIMS and NMR approaches recently showed that the DIMS approach is capable of relative 

quantification comparable to NMR for several metabolites
30

. NMR spectroscopy is a quantitative 

technique that is well-established in the field of metabolomics, which in turn demonstrates the 

robustness of the spectral-stitching method.  

To conclude, the spectral-stitching nESI DIMS method is reproducible, sensitive and high-throughput 

with ultra-high mass accuracy. These attributes make it an ideal tool for rapid and large-scale 

metabolomics or lipidomics analyses to identify phenotype-induced perturbations to the metabolome 

or lipidome. 
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Tables 

Table 1: The optimised parameters for the spectral-stitching nESI DIMS metabolomics and lipidomics methods. Selected ion monitoring (SIM) 

mode is used throughout. For a schematic of the spectral-stitching nESI DIMS method see Figure 2. 

 LTQ FT LTQ FT Ultra
TM

 Q Exactive
TM

 
a
 Orbitrap Elite

TM a
 

Extract type POLAR POLAR NON-POLAR POLAR NON-POLAR POLAR NON-POLAR 

m/z range 

covered 
70–500 m/z 70–590 m/z  70–1010 m/z  50–620 m/z  50–1020 m/z  50-620 m/z 190-1200 m/z 

Total number 

of m/z 

windows 

21 

 
7 13 14 24 10 18 

SIM window 

width 
30 m/z 100 m/z 50 m/z 75 m/z 

m/z window 

acquisition 

time  

15 s (~10 

transients) 
15 s (~10 transients) ~5.5 s (minimum of 10 micro scans) ~7.8 s (minimum of 10 micro scans) 

Overlap 

between m/z 

windows 

10 m/z 30 m/z 10 m/z 20 m/z 

AGC target 1 × 105 1 × 106 5 × 105 5 × 105 

Peak 

resolution 

100k for ion at 

400 m/z 
100k for ion at 400 m/z 140k for ion at 200 m/z 240k for ion at 400 m/z 

Acquisition 5 min 45 s
b 

2 min 15 s
b 

3 min 45 s
b 

2 min 30 s
b 

3 min 30 s
b 

1 min 50 s
b
 2 min 50 s

b
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time per 

injection 

 

a
See Supplementary Method for Q Exactive

TM
 and Orbitrap Elite

TM
 instrument method files

 

b
Including an initial 30 s start delay of blank or dummy scans to allow nESI to stabilise. 
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Table 2: Directions for the resuspension of polar and non-polar extracts for nESI DIMS 

analysis. Formic acid and ammonium acetate are sample modifiers that enhance electrospray 

efficiency. 

 

  

Sample Ion mode Resuspension solvent 
Recommended 

resuspension concentration 

Tissue, whole 

organism or 

mammalian cell 

polar extract 

Positive ion 
4:1 v/v methanol:H2O. 0.25% 

(v/v) formic acid added. 

Half of the original extract 

volume 

Negative ion 
4:1 v/v methanol:100 mM 

aqueous ammonium acetate  

Half of the original extract 

volume 

Tissue, whole 

organism or 

mammalian cell 

non-polar extract 

Positive or 

negative ion 

2:1 v/v 7.5 mM methanolic  

ammonium acetate:chloroform 

Double the original extract 

volume 

Biofluid polar 

extract 

Positive ion 
4:1 v/v methanol:H2O. 0.25% 

(v/v) formic acid added. 

5-10× the original extract 

volume 

Negative ion 
4:1 v/v methanol:100 mM 

aqueous ammonium acetate  

5-10× the original extract 

volume 

Biofluid non-

polar extract 

Positive or 

negative ion 

2:1 v/v 7.5 mM methanolic  

ammonium acetate:chloroform 

5-10× the original extract 

volume 
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Table 3: Troubleshooting associated with nanoelectrospray ionisation and DIMS detection of 

samples.  

Problem Potential cause Solution 

Step where 

the problem 

originates 

Step where 

the problem 

becomes 

evident 

The nESI 

spray fails to 

initiate, is 

unstable or 

stops 

Particulates in 

the sample 

Centrifuge the resuspended sample 

at 4 °C prior to analysis. Take care 

not to disrupt the pellet during 

sample loading. Do not set the 

Triversa well plate temperature lower 

than 10 °C, which may encourage a 

precipitate to form.  

4-5 10 

Sample too 

concentrated or 

too salty 

Create (and analyse) a serial dilution 

of the resuspended sample to 

establish the most concentrated 

sample that gives a stable spray. 

2 10 

Low sample 

viscosity 

causing sample 

to drip from the 

tip prior to 

analysis 

In ChipSoft Method Manager, 

increase the ‘Volume of air to 

aspirate after sample’ in 0.5 µL 

steps. 

8 10 

Triversa nESI 

chip too close to 

MS source 

In the Spray Optimisation window 

within ChipSoft Method Manager 

move the Triversa away from the MS 

source.  

8 10 

Low nitrogen 

gas pressure in 

the supply to the 

Triversa 

Check gas cylinder pressure 
8 10 

nESI chip not 

loaded correctly 
Remove and replace the chip 

8 10 

Non-optimal 

Triversa 

pressure and 

voltage settings 

Optimise the Triversa voltage and 

pressure settings as described in Box 

1 

8 10 

Abnormally 

high nESI 

Sample too 

concentrated or 

Create (and analyse) a serial dilution 

of the resuspended sample to 

2 10 
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spray current 

(>400nA) 

too salty establish the most concentrated 

sample that gives a stable spray. 

Abnormally 

low nESI 

spray current 

(<50nA) 

Sample too 

dilute or 

insufficient 

modifier (formic 

acid or 

ammonium 

acetate) added 

Create (and analyse) a serial dilution 

of the resuspended sample to 

establish the most concentrated 

sample that gives a stable spray. 

Check modifier addition (see Table 

2). 

2 10 

nESI stable 

but poor 

stability of 

ions entering 

the MS 

Triversa nESI 

chip too close to 

mass 

spectrometer 

source 

In the Spray Optimisation window 

within ChipSoft Method Manager 

move the Triversa away from the MS 

source. 

8 10 

Good nESI 

current (100-

300nA) but 

low ion 

intensity in 

MS 

Triversa nESI 

chip too far 

away from mass 

spectrometer 

source 

In the Spray Optimisation window 

within ChipSoft Method Manager 

move the Triversa closer to the MS 

source. 

8 10 

Triversa fails 

to pick up 

tips 

Glue deposited 

on the mandrel 

from self-

adhesive foil 

Clean mandrel with xylene. Only use 

heat sealed foil to cover well plates. 6 10 

Triversa 

running but 

MS failing to 

initiate  

Contact closure 

failure 

Check the contact closure cable 

connection between Triversa and 

mass spectrometer 

8 10 
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Table 4: Average of the relative standard deviation (RSD) values of peak intensity 

measurements, from n repeated acquisitions of the same QC sample, using the spectral-

stitching nESI DIMS method. 

Instrument RSD values of 
intensity 
measurements 

Sample type Number of peaks 
assessed 

Number of 
repeated QC 
acquisitions (n) 

LTQ FT
TM

 8.1% (mean)  Polar liver 
extract

23
 

17 endogenous 
compounds 

3 

LTQ FT Ultra
TM

 8.2% (median)
a 

Polar liver 
extract

29
 

All peaks in the 
dataset 

80
b 

Orbitrap Elite
TM

 13.5% (median) 
Polar serum 

extract 

All peaks in the 

dataset 
10 

Q Exactive
TM

 16.0% (median) 

Polar human 
bronchial 
epithelial cell 
line extract 

All peaks in the 
dataset 

9 

a
Including batch correction

29
. 

b
Data acquired as 8 batches of 10 samples over a 7 day period. 

 

Figure Legends 

Figure 1 | Flow chart showing the full nESI DIMS spectral-stitching workflow. Definitions: Blank = 

extraction preparation done in the absence of sample; QC = quality control sample used to measure 

analytical reproducibility; PQN = probabilistic quotient normalisation; DIMS = direct infusion mass 

spectrometry.  

 

Figure 2 | Schematic of the spectral-stitching nESI DIMS method for application on the Q Exactive
TM

 

Hybrid Quadrupole Orbitrap mass spectrometer. Data is collected as a series of 50 m/z wide SIM 

windows that overlap by 10 m/z. Windows are ‘stitched’ together to create a full mass spectrum. The 

optimised parameters for application of this method on the LTQ FT
TM

, LTQ FT Ultra
TM

, Q Exactive
TM

 

and Orbitrap Elite
TM

 mass spectrometers are shown in Table 1.  

 

Figure 3 | Recommended arrangement of samples in a 96-well plate for a spectral-stitching nESI 

DIMS experiment. Samples are each loaded as triplicates and are analysed in the order they appear 

in the plate (e.g. position A01, A02, A03, …. , H12). The plate begins with 6 ‘trial’ samples (A01-A06, 

typically 3x DIMS solvent (DST) and 3x QC samples (QCT) that are used to check the 

nanoelectrospray stability of the DIMS system and the QC samples. This is followed by 3x extract 

blank (EB) samples. QC samples are injected after the EB, then after every 4 to 6 biological samples, 

and at the end of the plate. Biological samples (BS) across different sample classes (typically different 

biological phenotypes; shaded green and blue) are placed in a random order across the plate to 

minimise possible biases resulting from analysis order.  
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Figure 4 | Detection sensitivity of the spectral-stitching nESI DIMS method (blue) is superior to 

standard full scan analysis (dark orange). Data show the polar metabolites in a serum extract 

analysed on a Q Exactive
TM

 Hybrid Quadrupole Orbitrap mass spectrometer. Four QCs were each 

collected in triplicate and only peaks occurring in at least two-out-of-three technical replicates were 

retained. A shows the complete 50-620 m/z range; C is a zoomed in version of A covering the 355-

360 m/z range; B and C show the average number of peaks detected over the 50-620 m/z and 355-

360 m/z ranges, respectively. Error bars represent the standard deviation of four QC samples and 

circles represent the peak counts from each individual spectrum. 

 

Figure 5 | Analysis of a human leukaemia cell line (HL60) lipid extract by the spectral-stitching nESI 

DIMS method in positive ion mode (A) and negative ion mode (B). Selected annotations and ppm m/z 

errors are shown. LPE – lysophosphatidylethanolamine; LPC – lysophosphatidylcholine; SM – 

sphingomyelin; Cer – ceramide; PE – phosphatidylethanolamine; PC – phosphatidylcholine; PS – 

phosphatidylserine; PI – phosphatidylinositol; TG – triacylglycerol; DG – diacylglycerol; Ac – acetate 

ion.  

 

Figure 6| PCA scores plot of polar extracts of Daphnia pulex-pulicaria collected by the spectral-

stitching nESI DIMS method, in negative ion mode, on the LTQ FT Ultra
TM 74

. F0 generation animals 

(light orange triangles) are separated from F1 generation animals (light blue squares) along PC2. 

Within the F0 and F1 generations there are clusters along the PC1 and PC2 axes. These are caused 

by biological differences of unknown origin. Most importantly the twenty eight QC samples (green 

circles) are tightly clustered indicating the high analytical reproducibility of the spectral-stitching 

method.  

 

Figure 7| Intensity measurements by spectral-stitch nESI DIMS method are consistent with NMR 

spectroscopic measurements. Comparison of LTQ FT
TM

 spectral-stitching nESI DIMS data and NMR 

spectroscopic data measured on the same polar liver extract
11

. Probabilistic quotient normalised 

(PQN
60

) intensity measurements showing the NMR peak areas on the x-axis against DIMS peak 

intensity on the y-axis (the normalisation process makes the intensity values small [10
-4

]). A tyrosine 

versus [tyrosine-H]
-
, B tyrosine versus [tyrosine+Cl]

-
, C creatine versus [creatine-H]

-
 and D 

phosphocreatine versus [phosphocreatine-H]
-
. Spearman's rank correlation coefficients (rho) and 

associated p-values are shown.  
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Supplementary Information 

Supplementary Methods: Q Exactive
TM

  and Orbitrap Elite
TM 

instrument method files (SI-

1__Q_Exactive_ Instrument_Method_Files.zip; SI-2__Orbitrap_Elite_Instrument_Method_Files.zip) 
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