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Abstract 17 

The aggregation of simulated gridded crop yields to national or regional scale requires information 18 

on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the 19 

uncertainty of simulated gridded yield time series related to the aggregation with four different 20 

harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop 21 

Model Intercomparison project for four crop types from 14 models at global, national, and regional 22 

scale to determine aggregation-driven differences in mean yields and temporal patterns as measures 23 

of uncertainty.  24 

The quantity and spatial patterns of harvested areas differ for individual crops among the four data 25 

sets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models.  26 

These differences in harvested areas and simulated yield patterns lead to differences in aggregated 27 

productivity estimates, both in mean yield and in the temporal dynamics.  28 

Among the four investigated crops, wheat yield (17% relative difference) is most affected by the 29 

uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of 30 

global aggregated yield time series can be as low as for soybean (r=0.28).  31 

For the majority of countries, mean relative differences of nationally aggregated yields account for 32 

10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of 33 

the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can 34 

be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, 35 

Bolivia). Correlations of differently aggregated yield time series can be as low as r=0.56 (maize, India), 36 

r=0.05 (wheat, Russia), r=0.13 (rice, Vietnam), and r=-0.01 (soybean, Uruguay). The aggregation to 37 

sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in 38 

countries with large harvested areas per crop type. We conclude that the aggregation uncertainty 39 

can be substantial for crop productivity and production estimations in the context of food security, 40 

impact assessment, and model evaluation exercises.  41 
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1.  Introduction 42 

Crop models are increasingly applied at the global scale to study how agricultural yields and total 43 

production over regions might be affected by global phenomena such as market dynamics and 44 

climate change. Simulations of crop productivity (yield) at different spatial and temporal scales have 45 

been used for example in the context of food security, land use, and climate change (Asseng et al., 46 

2015; Challinor et al., 2014; Mueller et al., 2012; Nelson et al., 2014a,b). Uncertainties associated 47 

with crop model projections have been widely recognized and discussed, including those attributed 48 

to input uncertainty (Roux et al., 2014), as to differences in climate forcing data (Rosenzweig et al., 49 

2014), model structure and parameterization (Rötter et al., 2012), and assumptions on the 50 

effectiveness of CO2-fertilization on crop yields (Deryng et al., 2014). The uncertainty in cropland 51 

extent and its implications for land use modeling have been addressed before by Eitelberg et al. 52 

(2015), Fritz et al. (2015), and See et al. (2015).  53 

Gridded cropping system data sets on the spatial distribution of crops at the global scale have been 54 

reported by Leff et al. (2004), and more recently by Iizumi et al. (2014), and Ray et al. (2012) 55 

including distinct data on crop-specific harvested area. Anderson et al. (2015) directly compared four 56 

gridded cropping system data sets as MIRCA2000 (Portmann et al., 2010), SPAM2000 (You et al., 57 

2014), GAEZ (Fischer et al., 2012), and M3 (Monfreda et al., 2008). They conclude that the data sets’ 58 

differences in harvested area and yield could be attributed mainly to the input data used and the 59 

downscaling method applied, and report that the disagreement between data sets was largest in 60 

areas with minimal harvested area. Different schemes for the interpolation of site-specific yields for 61 

the aggregation to agro-climatic zones have been discussed by van Wart et al. (2013) within the 62 

context of yield gap and production analysis. 63 

Global gridded crop model (GGCM) results e.g. yield (t/ha) are typically reported in a standardized 64 

half degree grid format. This output is aggregated at annual time steps to different spatial scales 65 

within the context of model skill assessment, impact studies, or as input variable to land use models. 66 

It is used for example when comparing different countries or evaluating modeled yields against 67 
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agricultural statistics that are only available at the aggregated scale of administrative units. For this 68 

kind of aggregation, data sets on spatial patterns of crop-specific harvested area are applied, which 69 

are typically derived from data on cropland extent, national and sub-national census data, and 70 

allocation rules. To date, little attention has been paid to the uncertainty of aggregation of gridded 71 

crop model simulations induced by the choice of crop-specific harvested area data set. Thus the 72 

objective of this study is to assess this aggregation uncertainty at different spatial scales. We use the 73 

term “crop mask” in the following as a short version of “gridded crop-specific harvested area data 74 

set”. The uncertainty in simulated yields related to aggregation masks is determined by two factors: 75 

a) the differences in quantity and spatial patterns of crop-specific harvested area data sets, and b) 76 

the spatial and quantitative heterogeneity of simulated crop yields, which is specific to individual 77 

GGCMs.  78 

2. Material and methods 79 

2.1 Model input data and crop yield simulations 80 

In the Global Gridded Crop Model Intercomparison (GGCMI) project Phase 1 81 

(http://www.agmip.org/ag-grid/ggcmi/) of the Agricultural Model Intercomparison and Improvement 82 

Project (AgMIP) (Rosenzweig et al., 2013) 14 modeling groups performed historical global crop 83 

growth simulations according to the modeling protocol of Elliott et al. (2015). Crop growth has been 84 

simulated using the bias-corrected historical weather input data sets AgMERRA (Ruane et al., 2015) 85 

and the atmospheric CO2-data based on the Mauna Loa Observatory time series (Thoning et al., 86 

1989). AgMERRA provides daily data for the time period 1980-2010 and had been aggregated from 87 

the original resolution of 0.25° to 0.5° before being supplied to modelers. The Mauna Loa 88 

Observatory time series reports observed annual and monthly values of the atmospheric CO2-mixing 89 

ratio, so that models simulated crop growth with a CO2-mixing ratio of 339-390ppmv (here stating 90 

annual averages 1980-2010).  91 

Four crop types were simulated by the modeling teams: maize (Zea mays L.), wheat (Triticum 92 

aestivum L.), rice (Oryza sativa L.), and soybean (Glycine max (L.) Merr.) These crops had been 93 
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categorized in the GGCMI project as Priority 1 crops, because of their importance as agricultural 94 

commodity in terms of their global harvested area covered, production amount, level of trade, and 95 

direct or indirect contribution to human diet.  96 

The participating models cover a broad range of model types and of implemented processes. Their 97 

basic characteristics and key literature references are listed in Table 1 (more details in SI Appendix 98 

Tables A.1-5).  99 

Table 1: Participating models in the study  100 

Crop model Model type Key literature 

CGMS-WOFOST Empirical/process hybrid de Wit van Diepen (2008) 

CLM-Crop Dynamic Global Vegetation Model  Drewniak et al. (2013)  

EPIC-BOKU Site-based process model (based on EPIC) EPIC v0810 - Izaurralde et al. (2006), Williams (1995) 

EPIC-IIASA Site-based process model (based on EPIC) Izaurralde et al. (2006), Williams (1995) 

EPIC-TAMU Site-based process model (based on EPIC) EPIC v1102- Izaurralde et al. (2012) 

GEPIC Site-based process model (based on EPIC) EPIC v0810 - Liu et al. (2007), Williams (1995) 

LPJ-GUESS Dynamic Global Vegetation Model Lindeskog et al. (2013), Smith et al. (2001) 

LPJmL Dynamic Global Vegetation Model Waha et al. (2012), Bondeau et al. (2007)  

ORCHIDEE-crop Dynamic Global Vegetation Model Wu et al. (2015) 

pAPSIM Site-based process model APSIM v7.5 - Elliott et al. (2014), Keating et al. (2003)  

pDSSAT Site-based process model pDSSAT v1.0 - Elliott et al. (2014); DSSAT v4.5 - Jones et al. 
(2003)  

PEGASUS Empirical/process hybrid v1.1- Deryng et al. (2014), v1.0 - Deryng et al. (2011) 

PEPIC Site-based process model (based on EPIC) EPIC v0810- Liu et al. (2016), Williams (1995) 
PRYSBI2 Empirical/process hybrid Sakurai et al. (2014) 

For the crop growth simulations initial conditions of soil water, minerals, crop residues, and soil 101 

organic matter were derived by applying different soil input data and spin-up runs individual to each 102 

of the modeling groups (SI Appendix Table A.3). Modelers were asked to model all crops wherever a 103 

given crop can grow and at least on all current agricultural land. The GGCMI project distinguishes 104 

three levels of model harmonization with respect to agricultural management. We here used the 105 

simulations of the “default” model configuration if available, where every modeling team used their 106 

own assumptions on agricultural management (varieties, growing season, fertilizer etc.). The EPIC-107 

TAMU model was run at the global scale for the first time and ORCHIDEE-crop never globally 108 

simulated soybean before and thus could not provide a “default” simulation. These teams used the 109 

global input data on sowing and maturity dates, and fertilizer data provided within the context of the 110 
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GGCMI project for a rather harmonized simulation, so that for this study their “fullharm” model 111 

configuration was used. The modeling teams reported two separate yield time series per 112 

configuration type - one assuming rainfed and the other fully irrigated production conditions 113 

everywhere. The irrigated crop growth simulations were run assuming unlimited water supply 114 

without conveyance or application losses.  115 

As a second step we used crop yield simulations of seven models for the same four crop types of the 116 

Intersectoral Impact Model Intercomparison (ISI-MIP) and The Agricultural Model Intercomparison 117 

and Improvement Project (AgMIP) fast track (Rosenzweig et al., 2014) obtained from the open-access 118 

impact model data archive of ISI-MIP (http://esg.pik-potsdam.de/). These models were driven by 119 

output data from five climate models here for the RCP 8.5 pathway, including the suite of processes 120 

related to  “CO2- fertilization” for the future period 2070-2099 (modified carboxylation, and in some 121 

models reduced stomatal closure).  Note that the seven models: EPIC-BOKU (in ISI-MIP/AgMIP fast 122 

track refer to the name “EPIC”), GEPIC, GAEZ-IMAGE, LPJ-GUESS, LPJmL, pDSSAT, PEGASUS which 123 

took part in the ISI-MIP/AgMIP fast track, also participated in this GGCMI phase 1 study (model 124 

details are listed in SI Appendix Tables A.1-5), except the GAEZ-IMAGE model. 125 

2.2 Crop masks 126 

Four crop masks were used to aggregate simulated gridded yields: MIRCA2000 (Portmann et al., 127 

2010), Iizumi (Iizumi et al., 2014), Ray (Ray et al., 2012), and SPAM2005 (You et al., 2014). Data 128 

sources and main characteristics of the original cropping system data sets were summarized in Table 129 

2. 130 

Table 2 131 

 Major features of the four harvested area data sets applied for aggregation 132 

Feature MIRCA2000 Iizumi SPAM2005 Ray 

Harvested 
area  based 
on 

Monfreda et al. (2008) - 
with modifications, 
circa 2000 

Monfreda et al. (2008) - 
circa 2000 

FAOSTAT, AGROMAPS 
and own sub-national 
data collection, circa 
2005 

Sub-national data 
collection (70% to 90%) 
1961-2008 

National 
areas 

ESRI 2004 Dominant country code 
per 0.5° grid cell 

Same national total 
areas as in MIRCA2000 
(You et al., 2014) 

As in Ramankutty et al. 
(2008)  
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N° of crops 
covered 

26 crop classes Maize, soybean, wheat, 
and rice 

20 major crops Maize, soybean, wheat, 
and rice 

Original 
resolution 

5 arc minute, 0.083° 
(~10km) 

67.5 arc minute, 1.125° 
(~120km) 

5 arc minute, 0.083° 
(~10km) 

5 arc minute, 0.083° 
(~10km) 

Irrigation 
data based 
on 

Global Map of Irrigation 
Areas v.4 (Siebert et al., 
2007, 2005), AQUASTAT 
national data 

None Global Map of Irrigation 
Areas v.5 (Siebert et al., 
2007, 2005) 

None 

Cropland 
extent 
based on 

Ramankutty et al. 
(2008) 

Ramankutty et al. 
(2008) 

Ramankutty et al. 
(2008) 

Ramankutty et al. 
(2008) 

Data 
inclusion 
method 

Collection of statistical 
data and literature 

Yield estimation model Cross entropy approach 
with spatial allocation 
model optimization  

Administrative bottom-
up statistical data 
inclusion 

 133 

All four data products were based on the cropland extent (ha) per grid cell by Ramankutty et al. 134 

(2008), who merged sub-national and national inventory data with two global satellite based land 135 

cover products. MIRCA2000 and Iizumi rely on the harvested area data of Monfreda et al. (2008) who 136 

used about 50% of sub-national and also FAO-based national data averaged over the time period 137 

1997-2003. SPAM2005 is the update of the former SPAM2000 data set, wherein the share of sub-138 

national data collection for harvested area was about 50% and Ray’s share of that was 70-90% - the 139 

rest of both had been complemented with FAO national data as well. MIRCA2000, Iizumi, and 140 

SPAM2005 report static harvested area data per grid cell (circa 2000 or 2005) whereas Ray provides a 141 

dynamic annual time-series (1961-2008). MIRCA2000 and SPAM2005 independently report the 142 

spatial distribution of irrigated and rainfed harvested areas (ha) per crop type, which is an important 143 

feature for crop modeling and aggregation but are based on different baseline years (2000 vs. 2005). 144 

The Iizumi and Ray data sets do not further distinguish harvested areas into irrigated and rainfed 145 

fractions. The four data sets display differences in spatial patterns of harvested area as highlighted by 146 

Fig. 1 for maize (for the other crops see SI Appendix, Fig. B.1-4)  147 

{Placeholder Figure 1} 148 

2.3 Pre-processing the crop masks  149 

The Iizumi data set, originally reported at a spatial resolution of 1.125°, was interpolated to 0.5°. 150 

MIRCA2000, SPAM2005, and Ray originally provided data at 5 arc minutes resolutions, which we 151 

aggregated to 0.5°. The original information on cropland extent and harvested area around the year 152 
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2000 from MIRCA2000, Iizumi, and SPAM2005 data sets, were kept constant and used to aggregate 153 

the simulated yields for the time period 1980-2010. The original Ray data set covered all simulated 154 

years up to 2008 and the aggregated yield time series used for this analysis thus spanned only the 155 

years 1980-2008. All aggregations with SPAM2005 and MIRCA2000 were performed with their own 156 

shares of rainfed and irrigated areas. In the case of the Ray and Iizumi data sets, their harvested area 157 

per grid cell were split into irrigated and rainfed fractions using MIRCA2000‘s relative shares for a 158 

given crop in each 0.5° grid cell. Grid cells, for which MIRCA2000 specifies no harvested area for the 159 

crop of interest, were assumed to be without irrigation if they contained crops in the original Ray or 160 

Iizumi data sets. 161 

2.4 Aggregating gridded yield data 162 

The GGCMs simulations provided crop yield data in tons of dry matter per hectare (t/ha) for four 163 

crop types under fully rainfed and fully irrigated conditions in annual time steps within the time 164 

period 1980-2010. These grid cell-specific yield estimates have been aggregated to time series at 165 

three spatial scales: global, country, and food production unit (FPU, major river basins crossed with 166 

countries) (Cai and Rosegrant, 2002) using the four crop masks as weights in the averaging (equation 167 

1): 168 

                
                         

 
                           

 
   

                                 
   

 

i: any grid cell in the aggregation unit 169 

n: number of grid cells in the aggregation unit 170 

yieldi_i: simulated yield (t/ha) under full irrigated conditions in grid cell i 171 

yieldi_r: simulated yield (t/ha) under rainfed conditions in grid cell i 172 

area_irrigatedi: irrigated harvested area (ha) in grid cell i 173 

area_rainfedi: rainfed harvested area (ha) in grid cell i 174 

To derive the productivity (t/ha) per year and aggregation unit, each rainfed yield, simulated by the 175 

models in a corresponding grid cell, is multiplied with the rainfed harvested area. The same 176 



9 
 

procedure was carried out for the irrigated yields. Then the sum of all rainfed and irrigated 177 

production is divided by the total sum of harvested area reported by the individual data sets of that 178 

spatial aggregation unit, resulting in the aggregated mean yield (t/ha) per year and aggregation unit. 179 

Grid cells were assigned to countries according to the boundary information of Global Administrative 180 

Areas (GADM-0, http://gadm.org/), assigning grid cells to the country that has the largest area share 181 

in that grid cell. Here we used information on crop specific harvested areas, which can be larger than 182 

the physical cropland extent in multiple cropping systems with several harvests per year, which was 183 

accounted for in the harvested area data sets. The GGCMs simulated only a single growing period per 184 

grid cell, which we assume to be representative for the different growing periods due to current 185 

state of implementation of cropping management systems in the models. 186 

For an assessment of aggregation uncertainties in projections of future changes in crop productivity, 187 

simulated gridded future yields of the ISI-MIP/AgMIP fast track are aggregated to country scale by 188 

three different time slices (1961, 1984 and 2008) of the Ray data set.  189 

In order to quantify the differences between the different crop mask aggregations, we display 190 

absolute (t/ha) and relative (%) differences between yield aggregated with each of the four masks: 191 

MIRCA2000 (further abbreviated as MIRCA), Ray, Iizumi, and SPAM2005 (in the following abbreviated 192 

as SPAM) for selected regions/countries as well as by computing the yield time series differences 193 

over time. The correlation coefficients between the differently aggregated time series were used to 194 

describe how yield aggregates of individual years are affected by the different crop masks and how 195 

this affects variability over time. If all years were affected equally, aggregated yield time series differ 196 

in their mean but are highly correlated. Data analysis was conducted in R (R Development Core 197 

Team, 2014), using the standard Pearson correlation (Becker et al., 1988). 198 

3.    Results  199 

The different crop masks lead to different yield estimates for individual years at all spatial scales 200 

(global, national, and FPU). The mean relative differences among aggregated global yields reach up to 201 

6 % for maize, 17 % for wheat, 14 % for rice, and 10% for soybean across the different crop models 202 
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(further details at bottom of the Tables 3-6). The ranges depended on the heterogeneity of the 203 

simulated spatial yield patterns by the GGCMs and how strongly opposing deviations in different 204 

regions compensate each other. The aggregation with different crop masks also affects the simulated 205 

temporal dynamics, with minimum correlation coefficients between the global aggregated yield time 206 

series of r=0.77 for maize, r=0.85 for wheat, r=0.64 for rice, and r=0.28 for soybean (Tables 3-6). 207 

Across 208 countries, 14 GGCMs, and 31 years, aggregation induced differences between nationally 208 

aggregated yield estimates for the four crop types can be very large (>10 DM t /ha), but the majority 209 

is below 10% of relative difference (<0.3 DM t/ha in absolute terms). The aggregations with Ray show 210 

least differences to aggregations with MIRCA, whereas SPAM-based aggregations show strongest 211 

differences to MIRCA, Iizumi, and Ray-based aggregations (Fig. 2). Largest relative differences in yield 212 

sets can be found for soybean especially in comparison of SPAM to each of the other three 213 

aggregated sets. Aggregated maize yield are least affected by the aggregation uncertainty. 214 

{Placeholder figure 2} 215 

When accounting for differences in total crop area, e.g. when looking at differences in production (t) 216 

rather than in productivity (t/ha), the relative differences between country scale aggregations are 217 

even stronger (Fig. C in the SI Appendix). This is caused by differences in quantity and spatial pattern 218 

of the harvested area data set applied for the aggregations. At the national level, the crop cover 219 

mask can be of greater importance. In the Tables 3-6, the effects of different aggregations on country 220 

scale are displayed for the top-ten producer (for all countries and the four crops Tables D.1-4 in the SI 221 

Appendix). Differences over the 31 years are shown as the percentage minimum and maximum mean 222 

relative difference between the aggregations with Ray, Iizumi, SPAM, and MIRCA-based aggregation. 223 

Differences in temporal dynamics induced by the different crop masks applied for the aggregation 224 

are shown by the minimum correlation coefficient (r) between aggregated national time series (one 225 

per GGCM). Countries were ranked by their share on global production as averaged over the years 226 

2009-2013 (FAO, 2014). 227 
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Table 3: Lowest and highest values of mean relative difference (%) and the lowest correlation 228 

coefficient (r) between the aggregated maize yield time series (t/ha) calculated from the 14 models, 229 

during the AgMERRA time period, aggregated for the top-10 producer countries with one harvested 230 

area data set in relation to the aggregation with each of the other three masks (see more detailed 231 

results for all countries in SI Appendix Table D.1). 232 

maize top-10 
producer 
countries 

lowest value 
of relative 
difference 

(%) 

masks lowest 
value of 
relative 

difference 

highest value 
of relative 
difference 

(%) 

masks 
highest value 

of relative 
difference 

minimum 
correlation 

(r) 

masks 
minimum 

correlation 

Share on 
global 

production 
(%) 

USA -3 SPAM-MIRCA 2 Ray-MIRCA 0.98 Ray-Iizumi 35.74 
China -11 SPAM-MIRCA 8 Ray-SPAM 0.94 Ray-SPAM 21.54 
Brazil -9 SPAM-MIRCA 7 Ray-SPAM 0.95 Ray-Iizumi 7.04 
Argentina -7 Iizumi-MIRCA 10 Ray-Iizumi 0.93 Ray-Iizumi 2.54 
Mexico -14 SPAM-MIRCA 17 Ray-SPAM 0.71 Ray-SPAM 2.38 
India -21 SPAM-MIRCA 38 Ray-SPAM 0.56 MIRCA-Ray 2.38 
Ukraine -11 Iizumi-MIRCA 20 Ray-SPAM 0.96 Iizumi-SPAM 2.18 
Indonesia -8 Iizumi-MIRCA 6 Ray-MIRCA 0.85 Iizumi-SPAM 2.06 
France -20 Iizumi-SPAM 28 SPAM-MIRCA 0.95 MIRCA-Iizumi 1.70 
South Africa -37 SPAM-MIRCA 67 Iizumi-SPAM 0.75 MIRCA-SPAM 1.34 
global -5 Ray-Iizumi 5 Iizumi-MIRCA 0.77 MIRCA-Ray 100 
 233 

Of the top-10 maize producers (United States, China, Brazil, Argentina, Mexico, India, Ukraine, 234 

Indonesia, France, and South Africa) - South Africa, India, and France show stronger sensitivity to the 235 

choice of the aggregation mask, while the USA (SI Appendix Fig. F.3) is less sensitive to the choice of 236 

crop mask (for all countries see SI Appendix Table D.1). Of the top-10 maize producers, yield 237 

simulations can be strongly affected by the national aggregation mask by up to 67% (South Africa), 238 

38% (India) or 28% (France, Fig. 3). Individual years can be affected more strongly, so that the 239 

correlation between the MIRCA-based aggregated time series and the ones obtained with the Ray 240 

mask can be low, as in India (r=0.56), while the correlation is not necessarily low if there are stronger 241 

differences in mean yields (e.g. France with minimum r=0.95).  242 

{Placeholder figure 3} 243 

From the top-10 wheat producer countries (Table 4) Canada with -28-41% has the largest span of 244 

relative yield difference as well as a low correlation coefficient of r=0.41 (Iizumi-SPAM). For Pakistan, 245 

differences in mean yield of up to 43% can be observed for the MIRCA-based aggregation compared 246 

to the one with Iizumi. Only the mean relative difference between aggregated yield sets for Russia, 247 
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United States, France, and Germany are about 15% or less. For the case of wheat productivity in 248 

Russia low differences in yields are shown but the correlation coefficient reaches as low values as 249 

r=0.05 displaying the larger deviations of temporal patterns in aggregated yield sets (MIRCA-SPAM). 250 

Table 4: Lowest and highest values of mean relative difference (%) and the lowest correlation 251 

coefficient (r) between the aggregated wheat yield time series (t/ha) calculated from the 14 models, 252 

during the AgMERRA time period, aggregated for the top-10 producer countries with one harvested 253 

area data set in relation to the aggregation with each of the other three masks (see more detailed 254 

results for all countries in (SI Appendix Table D.2). 255 

wheat 
top-10 
producer 
countries 

lowest value 
of relative 
difference 

(%) 

masks lowest 
value of 
relative 

difference 

highest value 
of relative 

difference (%) 

masks highest 
value of relative 

difference 

minimum 
correlation 

(r) 

masks 
minimum 

correlation 

Share on 
global 

production 
(%) 

China -19 SPAM-MIRCA 19 Iizumi-SPAM 0.82 SPAM-MIRCA 17.26 
India -16 SPAM-MIRCA 33 Iizumi-SPAM 0.89 Iizumi-SPAM 12.77 
USA -8 Iizumi-MIRCA 7 Ray-Iizumi 0.77 Iizumi-SPAM 8.61 
Russia -6 Iizumi-SPAM 6 Iizumi-SPAM 0.05 SPAM-MIRCA 7.29 
France -5 Iizumi-SPAM 6 Ray-Iizumi 0.85 Iizumi-MIRCA 5.60 
Canada -28 Ray-SPAM 41 SPAM-MIRCA 0.41 Iizumi-SPAM 4.09 
Australia -21 Iizumi-SPAM 16 SPAM-MIRCA 0.87 Iizumi-SPAM 3.62 
Pakistan -19 SPAM-MIRCA 43 Iizumi-MIRCA 0.79 SPAM-MIRCA 3.52 
Germany -4 Iizumi-MIRCA 5 Ray-Iizumi 0.94 MIRCA-Ray 3.50 
Turkey -17 Iizumi-SPAM 15 SPAM-MIRCA 0.72 MIRCA-Ray 3.05 
global -17 SPAM-MIRCA 10 Ray-SPAM 0.85 MIRCA-Ray 100 
 256 

In the case of rice productivity (Table 5), relative differences between aggregations sets for Indonesia 257 

and Brazil are below 10%. Indonesia has fairly high correlation across all masks pairings but for Brazil 258 

the correlation between the MIRCA and Ray-based aggregations is as low as r=0.32. Rice yields for 259 

Vietnam, Philippines, Thailand, and Japan show very strong relative differences between aggregated 260 

yield sets. For rice in Vietnam also the temporal dynamics are affected by the choice of aggregation 261 

mask, reflected by a very low correlation coefficient of r=0.13 when comparing MIRCA- to SPAM-262 

based aggregations. 263 

Table 5: Lowest and highest values of mean relative difference (%) and the lowest correlation 264 

coefficient (r) between the aggregated rice yield time series (t/ha) calculated from 11 models, during 265 

the AgMERRA time period, aggregated for the top-10 producer countries with one harvested area 266 
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data set in relation to the aggregation with each of the other three masks (see more detailed results 267 

for all countries in SI Appendix Table D.3). Note that the models PEGASUS, PAPSIM, and EPIC-TAMU 268 

did not simulate rice. 269 

rice  
top-10 
producer 
countries 

lowest value 
of relative 

difference (%) 

masks 
lowest value 

of relative 
difference 

highest value 
of relative 

difference (%) 

masks highest 
value of relative 

difference 

minimum 
correlation 

(r) 

masks 
minimum 

correlation 

Share on 
global 

production 
(%) 

China -25 Iizumi-MIRCA 14 SPAM-MIRCA 0.71 MIRCA-Ray 27.99 
India -10 Iizumi-SPAM 13 SPAM-MIRCA 0.88 MIRCA-Ray 20.97 
Indonesia -5 Iizumi-MIRCA 4 Ray-SPAM 0.95 Iizumi-SPAM 9.36 
Bangladesh -15 Iizumi-SPAM 17 SPAM-MIRCA 0.97 MIRCA-SPAM 6.97 
Vietnam -33 Iizumi-SPAM 42 SPAM-MIRCA 0.13 MIRCA-SPAM 5.81 
Thailand -29 Iizumi-SPAM 35 SPAM-MIRCA 0.78 Ray-SPAM 4.97 
Myanmar -11 Iizumi-SPAM 10 Ray-SPAM 0.92 MIRCA-SPAM 4.18 
Philippines -33 Iizumi-SPAM 38 SPAM-MIRCA 0.77 Ray-SPAM 2.37 
Brazil -9 Ray-Iizumi 8 Iizumi-SPAM 0.32 MIRCA-Ray 1.69 
Japan -18 Ray-Iizumi 51 Iizumi-MIRCA 0.79 MIRCA-Ray 1.48 
global -14 Iizumi-SPAM 11 SPAM-MIRCA 0.64 MIRCA-Ray 100 
 270 

For soybean several countries show large relative differences attributed to the crop mask and the 271 

modelled yield patterns across the country. For soybean in Bolivia the relative difference between 272 

the Ray and the SPAM-based aggregation reach 427%, for Paraguay 82% between Iizumi- and SPAM-273 

based aggregations, followed by India with 48% relative yield difference between the Ray- and the 274 

SPAM-based aggregation. China and the United States show the lower sensitivity to the crop mask 275 

applied with ranging around 10% relative difference between the different aggregated yield sets. 276 

Although soybean yields of Brazil show relatively low sensitivity to the aggregation mask effects with 277 

23% as maximum relative difference, but the correlation coefficient of r=0.07 between the Ray- to 278 

SPAM-based aggregation is very low, displaying little agreement in temporal pattern between the 279 

time series. Temporal dynamics of soybean productivity in Uruguay, Canada, and India are greatly 280 

affected by the aggregation mask and can reach even negative correlation coefficients. 281 

Table 6: Lowest and highest values of mean relative difference (%) and the lowest correlation 282 

coefficient (r) between the aggregated soybean yield time series (t/ha) calculated from 13 models, 283 

during the AgMERRA time period, aggregated for the top-10 producer countries with one harvested 284 

area data set in relation to the aggregation with each of the other three masks (see more detailed 285 
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results for all countries in SI Appendix Table D.4). Note that the model EPIC-TAMU did not simulate 286 

soybean. 287 

soybean 
top-10 
producer 
countries 

lowest value 
of relative 
difference 

(%) 

masks lowest 
value of 
relative 

difference 

highest value 
of relative 
difference 

(%) 

masks highest 
value of 
relative 

difference 

minimum 
correlation 

(r) 

masks minimum 
correlation 

Share on 
global 

production 
(%) 

USA -4 Ray-SPAM 9 Ray-MIRCA 0.91 Ray-SPAM 34.52 
Brazil -8 Iizumi-MIRCA 23 Ray-Iizumi 0.07 Ray-SPAM 27.48 
Argentina -22 Ray-Iizumi 25 Iizumi-MIRCA 0.8 Ray-Iizumi 17.51 
China -8 SPAM-MIRCA 14 Iizumi-SPAM 0.83 Ray-SPAM 5.53 
India -13 SPAM-MIRCA 48 Ray-SPAM -0.08 Ray-MIRCA 4.85 
Paraguay -41 SPAM-MIRCA 82 Iizumi-SPAM 0.83 SPAM-MIRCA 2.61 
Canada -16 SPAM-MIRCA 20 Ray-SPAM -0.23 SPAM-MIRCA 1.77 
Uruguay -16 Ray-SPAM 27 Iizumi-SPAM -0.01 Ray-SPAM 0.88 
Ukraine -9 SPAM-MIRCA 12 Ray-SPAM 0.82 Ray-SPAM 0.80 
Bolivia -68 SPAM-MIRCA 427 Ray-SPAM 0.45 Ray-SPAM 0.78 
global -6 SPAM-MIRCA 10 Ray-SPAM 0.28 Ray-SPAM 100 
The differences due to aggregation can become exceptionally high in countries with pronounced 288 

differences in crop-specific harvested area information (SI Appendix Tables G.1-2) and where GGCMs 289 

simulate heterogeneous yield patterns, as reflecting strong gradients in climatic conditions or crop 290 

management practices. Strong yield gradients between grid cells within a country can also derive 291 

from model-specific calibration processes of e.g. simulated yields to observations of field 292 

experiments or country-specific reference data sets (SI Appendix Table A.5). The effect of calibration 293 

may even increase the aggregation uncertainty, which is exemplified by maize yield aggregations in 294 

Egypt (Fig. 4, SI Appendix Fig. E.1). In Egypt almost the entire maize production is irrigated. In Fig.4 295 

we show GGCM simulations of four different models. PEGASUS and PRYSBI2 simulate very 296 

heterogeneous yield patterns, whereas pDSSAT assumes more homogeneous and LPJmL simulates 297 

very homogeneous yield patterns, assuming national uniform crop production intensities.  298 

{Placeholder figure 4} 299 

In the case of model PRYSBI2, the only area with higher yields is around Port Said, for which only the 300 

Iizumi crop mask reports some larger harvested area for maize (Fig. 4, SI Appendix G.1-2). PRYSBI2 301 

calibrates several parameters (more details in SI Appendix Table A.5) on grid cell level to best match 302 

the yields to the Iizumi et al. (2014) yield reference data set in their “default” simulation. 303 

Consequently, aggregated PRYSBI2 yields are very low, except when aggregated with the Iizumi crop 304 

mask, which results in an aggregated annual yield being up to 250% more productive compared to 305 
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the other aggregations. For the model PEGASUS, the productive harvested area is located along the 306 

Mediterranean coastline. Calibration in PEGASUS consisted in tuning the radiation use efficiency 307 

factor (ß) to select a proper crop variety to best match the yield data of Monfreda et al. (2008) 308 

according to the Willmott index of agreement. The aggregated national result for PEGASUS’s yields 309 

shows stronger differences for the SPAM aggregation, which reports less harvested maize areas 310 

along the Mediterranean coast line. LPJmL calibrates its parameters: maximum leaf-area-index under 311 

unstressed conditions, harvest index, and factor (alpha) for up-scaling leaf-level-photosynthesis to 312 

stand level, at country scale, to best match the national yields reported by the FAO. LPJmL thus 313 

simulated a very homogeneous yield pattern for irrigated maize in Egypt, as climatic conditions are 314 

similarly very hot and dry - but irrigated across the area. The yields of pDSSAT are calibrated to field 315 

experiment results. The maize yield pattern of pDSSAT for Egypt is less homogeneous than LPJmL as 316 

it takes into account more spatial detail on fertilizer application and other management parameters. 317 

Further analysis reveals that sub-regions of larger producing countries, as in individual FPUs of the 318 

USA, show a mixed response. Major production areas of the USA along the Mississippi (SI Appendix 319 

Fig. F.1), the Missouri, and the Ohio River catchments show very little sensitivity to the choice of the 320 

crop mask. Other FPUs, such as the Colorado River catchment (SI Appendix Fig.F.2) or California, 321 

show larger discrepancies between the aggregated yield sets. At the national scale, these regional 322 

discrepancies do not show, as the national aggregated productivity is numerically dominated by the 323 

major production areas, which show little sensitivity to the choice of the aggregation mask (SI 324 

Appendix Fig. F.3) 325 

Assuming static crop masks in the assessments of climate change impacts on agricultural productivity 326 

can also strongly affect the projected impact on crop yields. We demonstrate this by aggregating the 327 

climate change impact projections on yields of the ISI-MIP/AgMIP fast track (Rosenzweig et al., 2014) 328 

with different time slices of the Ray crop mask (years: 1961, 1984, and 2008) as if the assessment had 329 

been conducted in these years, assuming ‘current’ crop masks. We find strong effects on the 330 

projected future yield changes in response to climate and elevated atmospheric CO2 for individual 331 
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crops in some countries. Figure 5 shows the differences in projected relative yield changes 332 

(percentage change of the period 2070-2099 relative to the 1980-2009 baseline) between the 333 

country scale aggregation with the 1961 mask and the aggregation with the two other masks (1984 334 

and 2008) for all seven models that contributed to the ISI-MIP/AgMIP fast track (Rosenzweig et al., 335 

2014). The differences in the five climate projections affect the heterogeneity of simulated yields and 336 

thus the sensitivity of aggregated yield changes to the crop mask (bars and whiskers in Fig. 5). For 337 

aggregated maize yield projections in India most models show a positive trend with time in projected 338 

changes in yields. The projected difference in relative yield change simulated by EPIC-BOKU, GEPIC, 339 

and pDSSAT models are considerably higher for the aggregation with Ray’s harvested area time slice 340 

of 2008 compared to the 1961 as the relative yield change of the aggregated yield with the 1984 341 

mask compared to 1961er. For the case of wheat in Australia the projected yield changes agree quite 342 

well, showing only slightly median differences between the time slices used for aggregation. Only the 343 

EPIC-BOKU projections show a high variability and maximal difference of yield change of up to -10% 344 

with the 2008er in comparison to the 1961 mask but only 4% difference for the 1984 in comparison 345 

to the 1961 time slice. This is because the crop-specific harvested area regions in the former case 346 

have changed a lot with significant expansion of harvested maize areas in southern India, whereas in 347 

Australia the regions have remained roughly similar. 348 

{Placeholder figure 5} 349 

In the case of rice productivity in Brazil, aggregations with the crop mask of 2008 lead to higher 350 

difference in yield change projections than the 1984 mask (except for GEPIC) compared to the 351 

aggregation with the 1961 time slice. For soybean in Argentina the magnitude of differences in 352 

projected yield change are less pronounced between the time-slices’ aggregation used but are very 353 

different among models as for pDSSAT, and LPJ-GUESS up to 20% but more than 40% for PEGASUS. 354 

Differences in climate change impact projections for all other countries of the top-10 producer 355 

countries are lower than for those countries displayed in Fig.5. 356 
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4. Discussion 357 

We find that differences in crop masks affect not only the mean bias of aggregated yield time series 358 

but also the temporal dynamics, resulting in low or even negative correlations between the 359 

differently aggregated time series (Tables 3-6, and D.1-8 in the SI Appendix). This is of particular 360 

concern, as model skill is often determined by comparing temporal dynamics rather than mean 361 

yields. Large difference between aggregated yield time series occur, when areas suitable for crop 362 

growth (determined by the individual model) are combined with a large harvested area reported by 363 

one mask but rather little by another (Fig. 4, SI Appendix, Tables G.1-2). Developers of GGCMs need 364 

to analyze the spatial variability of their simulations for plausibility. Models that tend to simulate 365 

very heterogeneous patterns of crop yields due to calibration, flexible parameter specifications, and 366 

assumptions on management practices (e.g. cultivar choice, fertilizer application, sowing dates) were 367 

more sensitive to the choice of crop mask (SI Appendix, Table A.5). Further differences between the 368 

aggregated productivity time series result from the fact, that spatial location of national borders of 369 

the various original crop masks are different due to different data products included by the authors 370 

(Table 2). When applying publicly available statistics for down-scaling data to a grid cell (as the 371 

authors did to produce the harvested area data sets) its accuracy is also limited by the fact, that the 372 

historical development of states cannot be well reflected in a timely manner. Also, we assume that 373 

each grid cell always belongs to a single country, whereas often the simulated grid cell level results 374 

would need to be attributed as fractions to multiple countries. However, since we treat this 375 

consistently across the different crop mask data sets used, we consider the resulting error as not 376 

relevant in the comparison of the different crop masks in the aggregation process. 377 

The spatial patterns of crop-specific harvested areas as provided by the four data sets here used for 378 

aggregation, and the information on where irrigation is applied for these crops is central to large-379 

scale crop modeling. The crop-modelling community requires more complex and updated data on 380 

the spatial and temporal dynamics of agricultural production systems. The Ray data set is the only 381 

crop mask that is dynamic in time and it also is typically the aggregation mask that shows the largest 382 
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differences in the temporal dynamics between the aggregated yield time series (low correlation 383 

coefficients). We conclude that each of the four harvested area data sets has its unique features and 384 

none can be identified as particularly superior by our study. For particular regions spatial 385 

aggregations should be performed with alternative crop masks to assess the effects of aggregation 386 

uncertainty and to avoid drawing erroneous conclusions on model skill or projected impacts.  387 

Reporting productivity is what is typically done to communicate or analyze climate change impacts 388 

on agriculture (e.g. Müller et al., 2015; Osborne et al., 2013; Wheeler and von Braun, 2013) or to 389 

inform land use change models (Müller and Robertson, 2014; Nelson et al. 2014a,b; Schmitz et al., 390 

2014). With some exceptions, as e.g. GLOBIOM (Havlík et al., 2012, 2011) and MAgPIE (Dietrich et al., 391 

2014; Lotze-Campen et al., 2008), these models require information on changes in agricultural 392 

productivity aggregated to their simulation units (because of their often coarser resolution, as e.g. 393 

national or supra-national regions). General shifts of cropping areas towards higher productive areas 394 

are very likely (Beddow and Pardey, 2015) as can be investigated by land use models, which project 395 

changes in land use and production as socio-economic responses to changes in agricultural 396 

productivity. Future land use uncertainty can also be addressed by aggregating simulated changes in 397 

productivity with external land use scenarios as in Pugh et al. (2015) and remain a challenge for 398 

further crop modeling studies. 399 

5. Conclusions 400 

This study shows quantitative differences between the aggregated gridded yield time series revealing 401 

the uncertainty induced by the aggregation applying differing harvested area data sets. The effects of 402 

aggregation uncertainty are the shift of the multi-annual mean national yield and an influence on the 403 

variability over time, depending on the heterogeneity of simulated yield patterns by the models and 404 

the differences between crop masks. This uncertainty is already significant in global aggregations of 405 

grid cell scale yield simulations and can be very large for some aggregation-unit-crop-model-year 406 

combinations. Aggregation uncertainty of gridded yields becomes even more important when taking 407 
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into account production instead of productivity. For projections of future agricultural production, this 408 

aggregation uncertainty will likely be small compared to given uncertainties in future climate change, 409 

adaptation options, and capacities. The potentially large differences between different aggregations 410 

for individual countries or regions will have to be considered in future model evaluations and also in 411 

future crop yield projections. This requires considerable investment for building a transparent 412 

method for aggregation. The study also illustrates the need to transition from assuming static 413 

harvested areas towards dynamic projections that account for spatial shifts in crop distribution and 414 

production induced by changes in social and environmental conditions.  415 
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Fig. 1: Maps of spatial patterns of total harvested maize area according to MIRCA2000 (panel A) and the absolute 

differences in ha over 0.5° grid cells between Iizumi (panel B), Ray (time slice for the year 2000 in panel C), and 

SPAM2005 (panel D) and MIRCA2000 respectively. See the same figure for irrigated areas only in SI Appendix, Fig. B.1.  
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Fig.2: Boxplots of relative differences (%) between aggregated yield time series (t/ha) over 208 countries, 14 GGCMs and 

31 years of the weather data set AgMERRA for the four crop types (n= 357365 for maize, n= 290061 for wheat, n= 214617 

for rice, n= 202619 for soybean). Boxes show the interquartile (25-75%) range across the GGCMs used, whiskers expand 

to 1.5 times of inner-quartile range of national aggregated yield, and black lines within the boxes display the median 

value (outliers are not displayed). 
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Fig. 3: Absolute (t/ha) (left panel) and (right panel) relative difference (%) between nationally annual aggregated yield 

time series displayed for the example case of maize yield (DM t/ha) in France. Difference per model, year, and mask from 

the four aggregation sets is largest with the SPAM aggregation (dotted lines) and for most models accounting for about 

one additional t/ha. 
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Fig. 4: (Left panel) For irrigated maize harvested areas (ha) in Egypt, spatial patterns and quantities differ between the 

crop masks. The maps show grid cell scale harvested area as reported by MIRCA2000 (A), and the absolute differences 

between harvested areas of Iizumi (B), Ray (C), and SPAM2005 (D) and MIRCA2000, respectively. (Right panel) Spatial 

patterns of simulated irrigated maize yields, as means over the AgMERRA weather data time period and before any 

masking by crop-specific harvested area data, supplied by four models A) PRYSBI2, B) PEGASUS, C) LPJmL, and D) 

pDSSAT. The gray shaded areas indicate grid cells where the climate conditions were regarded as unsuitable to grow 

irrigated maize by a model. 
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Fig. 5: Differences in projected relative yield changes (percentage change of the period 2070-2099 relative to 1980-2009) 

between the aggregation with the Ray crop mask of 1961, and that of 1984 (red) and 2008 (green). The panels display 

aggregated yields for one of the top-10 producer countries for each of the four crops: (Upper left panel) India for maize, 

(upper right panel) Australia for wheat, (bottom left panel) Brazil for rice, and (bottom right panel) Argentina for 

soybean. Boxes show the interquartile (25-75%) range across the five GCMs used, whiskers expand to 1.5 times the 

inner-quartile range of national aggregated yield and outliers are depicted as dots. Black lines within the boxes display 

the median value. 
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