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On density and regression estimation with incomplete data
By

Majid Mojirsheibani1 Kevin Manley2

Department of Mathematics, California State University, Northridge, CA 91330
and

William Pouliot3

Department of Economics, University of Birmingham, Birmingham, UK

Abstract

We consider the problem of estimation of a density function in the presence of incomplete data
and study the Hellinger distance between our proposed estimator and the true density function. Here
the presence of incomplete data is handled by utilizing a Horvitz-Thompson-type inverse weighting
approach, where the weights are estimates of the unknown selection probabilities. We also address
the problem of estimating a regression function with incomplete data.

Keywords: Convergence, incomplete data, empirical process, kernel, density.

1 Introduction

There has been a recent growing interest in the problem of density estimation in the presence of
incomplete data. See, for example, Dubnicka (2009), Müller (2012), Tang et al (2012), Wang (2008),
and Hazelton (2000) for kernel density estimation when auxiliary variables (covariates) are available,
and also Zou et al (2015) for wavelet density estimators with incomplete data. Most of the work in the
above cited references can be viewed, primarily, as the counterparts of the classical problem of density
estimation with complete data as discussed, for example, by Rosenblatt (1956), Parzen (1962), Prakasa
Rao (1983), and Devroye and Györfi (1985). Our interest in this paper is in the problem of density
estimation with incomplete data, but with an approach that is closer in spirit to the work of van de
Geer’s (1993, 2000), where the author uses empirical process theory, based on fully observable data, to
establish convergence results for the Hellinger distance between the true and the estimated densities.
We will also extend our approach to deal with the problem of regression function estimation.

1.1 Background tools from empirical process

The justification and presentation of our main results will be facilitated with the aid of some em-
pirical process theory results that are appropriate for situations where the data may be incomplete.
Therefore, out of necessity, our main contributions start with some new results on empirical processes
with incomplete data. To fix notation, let ψ : Rd+p → R, d > 0, p > 0, and initially consider the
estimation of the “mean” ν(ψ) := E(ψ(Z)) based on the independently and identically distributed
(iid) data Dn = {Z1, ∙ ∙ ∙ , Zn}. However, here we are interested in the situation where the data
Zi = (X ′

i, V
′

i )′ ∈ Rd+p, are not fully observed, more specifically Xi ∈ Rd is always available, but
Vi ∈ Rp may be unobservable (unavailable) for various unknown reasons. To clarify our setup further,
we also define the random variables ξi = 1 if Vi is observed, and ξi = 0 otherwise, and represent the
data as

Dn = {(Z1, ξ1), . . . , (Zn, ξn)} = {(X1, V1, ξ1), . . . , (Xn, Vn, ξn)}.

Some important examples of the function ψ include ψ(Z) = ψ(X, V ) = V ∈ R1, in which case the
estimation of E(ψ(Z)) reduces to the usual mean estimation for E(V ) when some of the Vi‘s are not
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available. This case has been addressed and studied extensively in the literature; see, for example, Cheng
(1994), Wang and Rao (2002), Hirano and Ridder (2003), Wang et al (2004), Rueda et al (2006), Müller
(2009), and Kim and Yu (2011). Another example involves estimation of higher moments as well as
mixed moments of the components of the random vector Z. On the other hand, when the function ψ
is of the form ψ(Z) ≡ ψz(Z) = I{Z ≤ z}, z ∈ Rd+p, then E(ψ(Z)) is the cumulative distribution
function (cdf) of Z. The case of ψ(Z) ≡ ψv(X ′, V ′) = I{V ≤ v} corresponds to the estimation
of the marginal cdf of V . These cases have been studied by, for example, Hu et al (2011), Liu et al
(2011), Chenouri et al (2009), and Cheng and Chu (1996). When there are no missing Vi’s in the data,
E(ψ(Z)) can be estimated by the classical nonparametric empirical version

νn(ψ) = n−1
n∑

i=1

ψ(Zi) .

As for performance of this estimator, nonasymptotic exponential bounds are available on the uniform
deviations on νn(ψ) from ν(φ) (uniform in ψ) under various conditions. In fact for our future reference,
we state one such result (see, for example, Pollard (1984; pp. 26-27):

Theorem 1 Let Ψ be a class of functions ψ : Rd+p → [−B,B], for some 0 < B < ∞. Then, for every
ε > 0 and every n ≥ 1, P

{
supψ∈Ψ |νn(ψ) − ν(ψ)| > ε

}
≤ 8E [N1 (ε/8 , Ψ ,Dn)] e−nε2/(128B2).

Here, the term N1(ε, Ψ,Dn), called the ε-covering number of Ψ, is the cardinality of the smallest
subclass of functions Ψε = {ψ1, ∙ ∙ ∙ , ψN(ε) : Rd+p → [−B,B]}, with the property that for fixed points

z1, . . . , zn and for each ψ ∈ Ψ there is a ψ? ∈ Ψε satisfying 1
n

∑n
i=1 |ψ(z1) − ψ?(zi)| < ε. Different

extensions and variants of Theorem 1 are given by Alexander (1984), Massart (1990), Talagrand (1994),
Giné (1996); also see the monograph by Vapnik (1998). Theorem 1 and its variants can provide tools
to establish strongly consistency results for many important statistical estimation problems, including
regression functions, density functions, and time series estimation; see, for example, the monograph by
van de Geer (2000).

1.2 The difficulty with incomplete data

The situation can become quite different and challenging when not every Zi = (Xi, Vi)′ is fully ob-
servable; in particular, some of the Vi‘s may be missing. Of course, one may decide to estimate
ν(ψ) = E(ψ(Z)) based on the complete cases only, where a complete case refers to the fully observable
Zi (i.e. when ξi = 1). In this case the estimator can be expressed as ν̃(ψ) = 1

n′

∑n
i=1 ξiψ(Zi), where

n′ =
∑n

i=1 ξi. However, there are drawbacks with such estimators: (i) If a large proportion of the
data (say 60 to 70 percent) have missing Vi’s then, from a practical point of view, it makes sense to
somehow revise ν̃n to take into account the information which is available from Xi’s. (ii) There are also
theoretical reasons for not using the estimator ν̃n. For example, this estimator is not in general unbiased
for ν(ψ) and therefore the corresponding empirical process, {ν̃(ψ) − ν(ψ)|ψ ∈ Ψ} is not centered in
general (not even asymptotically), and this plays a crucial role in establishing the theoretical properties
of our propose density and regression estimators in this paper.

1.3 Summary of main results

Our main contributions may be summarized as follows.

1. We present revised version of ν̃(ψ) that take into account the missing covariates via an inverse
weighting approach, where the weight functions are estimates of the selection probabilities. We
propose a plug-in approach to replace these unknown selection probabilities with kernel regression
and least-squares estimators

2. Under standard mild assumptions, we derive exponential bounds and inequalities similar to those
of Theorem 1 that are suitable for our situation involving incomplete data.
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3. We propose new density estimators in the presence of missing data. Furthermore, the new expo-
nential bounds and inequalities in 2 above will be used to study the convergence properties of the
proposed density estimator with respect to the Hellinger distance. Our methodology will also be
applied to construct regression function estimators that are strongly optimal in the L2 sense.

2 Main results

In this section we introduce the notion of missingness at random and suggest estimators of selection
probabilities which will be used to construct our density and regression function estimators. We first
establish a counterpart of Theorem 1, corresponding to the case of incomplete data: this result will help
us to study our density and regression estimators later in this section.

2.1 Revised estimation of ν(ψ) := E(ψ(Z))

The function P{ξ = 1|Z}, called the selection probability, plays an important role in estimation theory
with incomplete data. In practice, this function is usually unknown and must be estimated. Under
the commonly used assumption of data Missing At Random (MAR), it is assumed that the selection
probability does not depend on V itself. In other words

P{ξ = 1|X, V } = P{ξ = 1|X}(= E(ξ|X)) (1)

This assumption is essentially the baseline of analysis in the literature on incomplete data; see, for
example, Cheng (1994), Cheng and Chu (1996), Wang and Rao (2002), Müller (2012), Tang et al
(2012), and Bravo (2015). In what follows we shall focus on the case where the MAR assumption (1)
holds. Define

ν̂(ψ) = n−1
n∑

i=1

ξiψ(Zi)/π̂(Xi) (2)

The estimator of ν(ψ), where π̂(Xi) is an estimator of the selection probability

π(Xi) := E(ξi|Xi) = P{ξi = 1|Xi} (3)

The estimator ν̂(ψ) in (2) is in the spirit of the classical Horvitz-Thompson estimator (Horvitz and
Thompson (1952)) in the sense that it works by weighting the complete cases by the inverse of the
estimates of the selection probabilities, π(Xi). In fact, this approach has been used by many authors in
the literature; see, for example, Robins et al. (1994) who propose a class of semiparametric estimators
of regression coefficients based on inverse probability weighting estimating equations, with the imposed
assumption that the missing probabilities are either known or can be modeled parametrically. Robins
and Rotnitzky (1995) study efficient estimation in semiparametric multivariate regression models with
missing response variables. Hirano et al. (2003) propose an estimator of the average treatment effect
of a binary treatment using nonparametric methods for the missing probabilities. Wang et al. (2010)
propose a class of kernel estimating equations to estimate a function θ(x) = g{E(Y |X = x)} whenever
one has access to some auxiliary covariate vector U . Here g is a known link function. Their method
works by weighting the units with complete data by either the inverse of the true selection probability
πi ≡ π(Xi , Ui) := P{ζi = 1|Xi , Ui), or an estimator of it, where πi is assumed to have a known func-
tional form. Unlike the above result, in this paper we do not assume the availability of any additional
auxiliary covariates. Furthermore, we do not imposse assumptions that the functional form of the miss-
ing probabilities must always be known or be such that the functional form of the missing probabilities
must always be known or be such that it can be modeled parametrically. Of course, if such assumptions
hold then our proposed least squares methods will produce more accurate results, but our approach can
also tackle the nonparametric case (via kernel methods) where missing probabilities are completely un-
known. In this paper, we also derive exponential bounds on the performance of the proposed estimators.
Unlike the above authors, here we carry out a Horvitz-Thompson type inversely weighted least squares
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criterion to estimate the underlying regression function, where the weights are the inverses of the esti-
mated selection probabilities of the complete cases. In the case of density estimation with incomplete
data, our results are quite new and may be viewed as the counterparts of the classical work of van de
Geer (1993, 200) who establishes strong Hellinger consistency of maximum likelihood density estimation.

As for the estimator of π̂(Xi) in (2), we consider two choices: (a) kernel regression and (b) the least
squares.

(a) The kernel regression estimation of π(Xi) = E(ξi|Xi)
Our first estimator is given by the kernel regression estimator

π̂ker(Xi) =
n∑

k=1, 6=i

ξkK

(
Xi − Xk

hn

)/ n∑

k=1, 6=i

K

(
Xi − Xk

hn

)

, (4)

with the convention 0/0 = 0, where K : Rd → R+ is the kernel used, and hn is the smoothing parameter
of the kernel (hn → 0, as n → ∞). Replacing π̂(∙) in (2) by π̂ker(∙), we find the following estimator of
ν(ψ) = E(ψ(Z))

ν̂(ker)
n (ψ) = n−1

n∑

i=1

ξiψ(Zi)/π̂ker(Xi) . (5)

To assess the performance of ν̂
(ker)
n (ψ), we first state a number of assumptions.

(A1) π0 := infx∈Rd P{ξ = 1|X = x} > 0.
(A2) The kernel K in (4) satisfies

∫
Rd K(x)dx = 1 and

∫
Rd |xi|K(x)dx < ∞, for i = 1, . . . , d, where

x = (x1, . . . , xd)′. The smoothing parameter, hn, of the kernel satisfies hn → 0 and nhd
n → ∞, as

n → ∞.
(A3) The random vector X has a compactly supported probability density function (pdf), f(x), which
is bounded away from zero on its compact support, i.e., f0 := infx f(x) > 0. Furthermore, f and its
first-order partial derivatives are uniformly bounded.
(A4) The partial derivatives ∂

∂xi
π(x) exist for i = 1, . . . , d and are bounded uniformly, in x, on the

compact support of f , where π(x) = E(ξ|X = x).

The result below is a counterpart of Theorem 1 and is suitable for our incomplete data setup.

Theorem 2 Let Ψ be a class of functions ψ : Rd+p → [−B,B], 0 < B < ∞, and let ν̂
(ker)
n (ψ) be as in

(5). Then under assumptions (A1)–(A4), for every ε > 0 there is a n0 > 0 such that for all n > n0

P

{

sup
ψ∈Ψ

∣
∣ν̂(ker)

n (ψ) − ν(ψ)
∣
∣ > ε

}

≤ 6n e−nhdC1ε2 + 8E
[
N1

(π0ε

16
, Ψ,Dn

)]
e−nC2ε2 ,

where C1 and C2, are positive constants not depending on n or ε.

The proof of the above result appears in the Appendix. In passing we also note that Theorem 2 in con-
junction with the Borel-Cantelli lemma imply that if (nhd

n)−1 log n → 0 and n−1 logE [N1 (π0ε/16, Ψ,Dn)] →

0, as n → ∞ and hn → 0, then supψ∈Ψ |ν̂(ker)
n (ψ) − ν(ψ)|

a.s.
→ 0.

Next, we consider the least squares estimator.

(b) The least-squares estimator of π(Xi) = E(ξi|Xi)

4



Let P be a known class of functions of the form π̃ : Rd → [π0, 1], where π0 is as in assumption
(A1). The least-squares estimator of π is

π̂LS = argmin
π̃∈P

1
n

n∑

i=1

(ξi − π̃(Xi))
2. (6)

Therefore, upon taking π̂ to be π̂LS in (2), we find the following estimator of ν(ψ) = E(ψ(Z))

ν̂(LS)(ψ) =
1
n

n∑

i=1

ξiψ(Zi)
π̂LS(Xi)

. (7)

The following result is a version of Theorem 2, corresponding to the least square estimtor.

Theorem 3 Let Ψ be a class of functions ψ : Rd+p → [−B,B], 0 < B < ∞ and let ν̂
(LS)
n (ψ) be as

in (7). Suppose that assumption (A1) holds and that π ∈ P . Then for every ε > 0, there is a n0 > 0
such that for all n > n0

P

{

sup
ψ∈Ψ

∣
∣ν̂(LS)

n (ψ) − ν(ψ)
∣
∣ > ε

}

≤ 8E [N1(C31ε, Ψ,Dn)] e−nC32ε2

+8E [N1(C33ε,P , (Xi)
n
i=1)] e−nC34ε2

+8E
[
N1(C35ε

2,P , (Xi)
n
i=1)

]
e−nC36ε4 ,

where C31 to C36 are positive constants not depending on n or ε.

The proof of this theorem appears in the Appendix.

In the next two sections we introduce our density and regression function estimators based on the ap-
proach and results of this section.

2.2 Density estimation

Once again let Z = (X ′, V ′)′, where X ∈ Rd is always observable but V ∈ Rp may be missing at

random in the sense that P{ξ = 1|Z}
MAR
= P{ξ = 1|X} =: π(X). Here, as before, ξ = 0 if V is missing

(and ξ = 1, otherwise). We are interested in estimating the probability density function of Z, based
on the data Dn = {(Z1, ξ1), . . . , (Zn, ξn)} = {(X1, V1, ξ1), . . . , (Xn, Vn, ξn)}. When (X,V ) ∈ R2,
Hazelton (2000) constructcs a kernel density estimator of the marginal distribution of V , using the X’s
as the auxiliary variables. This estimator, which is shown to be strongly uniformly consistent, is based
on the distribution function estimator of Cheng and Chu (1996). A more recent result along these lines
is the Horvitz-Thomson inverse weighting type density estimator of Dubnicka (2009) for the random
variable V , based on the availability of an auxiliary random variable X. Our approach here, which does
not assume the availability of any auxiliary variables, works as follows.

Suppose that the true pdf, g0, of Z belongs to a class of densities G. Clearly, when there are no missing
data, the classical maximum likelihood estimator (MLE) of g0 is ĝn = argmaxg∈G

∑n
i=1 log g(Zi). Now,

to tackle the presence of missing data define

L̂n(g) = n−1
n∑

i=1

ξi log g(Zi)
π̂(Xi)

, g ∈ G , (8)

where π̂ can be either π̂ker as defined in (4) or π̂LS as defined in (6). We consider the following estimator

ĝn = argmax
g∈G

L̂n(g) .

5



How good is this MLE-type density estimator? To answer this question we first recall that the Hellinger
distance ρH between two densities g1, g2 ∈ G is given by

ρH(g1, g2) =

√
1
2

∫ [√
g1(z) −

√
g2(z)

]2
dz .

Hellinger-consistency of certain nonparametric density estimators have been studied by van de Geer
(1993). For more on ρH and some of its properties see, for example, van de Geer (2000, Ch.4). The
following result gives exponential performance bounds on the distance (Hellinger) between ĝn and the
target density g0.

Theorem 4 Let ρH(ĝn, g0) be the Hellinger distance between ĝn and g0, and suppose that assumptions
(A1)-(A4) hold. Then for every ε > 0 there is an n0 > 0 such that for all n > n0

P
{
ρ2

H(ĝn, g0) > ε
}

≤ 8E

[

N1

(

C16ε,
G
g0

,Dn

)]

e−nC17ε2 + τn(ε),

in which

τn(ε) =






6n e−nhdC18ε2 if using π̂ker in (8),

8E [N1 (C19ε,Q, (Xi)n
i=1)] e−nC20ε2

+8E
[
N1

(
C21ε

2,Q, (Xi)n
i=1

)]
e−nC22ε4 if using π̂LS in (8),

where C16 − C22 are positive constants not depending on n or ε and

G
g0

=

{
g

g0
I{g0 > 0}

∣
∣
∣g ∈ G

}

.

The above result can be used to establish almost-sure convergence results for ĝn with respect to the
Hellinger distance. For example, with π̂ = π̂ker, if (nhd

n)−1 log n → 0 and n−1 logE [N1 (C16ε,G/g0,Dn)] →
0, as n → ∞ and hn → 0, then by the Borel-Cantelli lemma one has ρH(ĝn, g0)

a.s.
→ 0.

PROOF OF THEOREM 4
We prove the theorem for the case where π̂=π̂ker. The proof for the case where π̂=π̂LS is almost identical
and will not be given. Define the quantities

ḡn =
ĝn + g0

2
, ḡ =

g + g0

2
, g ∈ G

Ln

(
ḡn

g0
I{g0 > 0}

)

= E

[

log
ḡn(Z)
g0(Z)

I{g0(Z) > 0}

∣
∣
∣
∣Dn

]

L

(
ḡ

g0
I{g0 > 0}

)

= E

[

log
ḡ(Z)
g0(Z)

I{g0(Z) > 0}

]

.

We first show that

ρ2
H(ḡn, g0) ≤

1
2

{

L̂n

(
ḡn

g0
I{g0 > 0}

)

− Ln

(
ḡn

g0
I{g0 > 0}

)}

, (9)

where L̂n(∙) is as in (8). Here, (9) may be viewed as a version of Lemma 4.1 of van de Geer (2000)
tailored to fit our current situation where Zi’s are allowed to have missing components; in fact, to prove
(9), we borrow the arguments used in the proof of the cited result. First note that by the definition of
ĝn we have

∀ 0 < g ∈ G : L̂n

(
ĝn

g

)

= L̂n (ĝn) − L̂n(g) ≥ 0

Also, by the concavity of the logarithmic function

1
2

log
ĝn(z)
g0(z)

I{g0(z) > 0} ≤ log
ḡn(z)
g0(z)

I{g0(z) > 0} , where ḡn =
ĝn + g0

2
.

6



Thus

0 ≤ L̂n

(
ĝn

g0
I{g0 > 0}

)

≤ 2 L̂n

(
ḡn

g0
I{g0 > 0}

)

= 2

[

L̂n

(
ḡn

g0
I{g0 > 0}

)

− Ln

(
ḡn

g0
I{g0 > 0}

)]

+ 2 Ln

(
ḡn

g0
I{g0 > 0}

)

. (10)

But ḡn = (ĝn + g0)/2 is also a density and therefore by Lemma 1.3 of van de Geer (2000)

Ln

(
ḡn

g0
I{g0 > 0}

)

≤ −2 ρ2
H(ḡn, g0) .

This last inequality together with (10) imply (9). Therefore

ρ2
H(ĝn, g0) ≤ 16 ρ2

H(ḡn, g0)

≤ 8

[

L̂n

(
ḡn

g0
I{g0 > 0}

)

− Ln

(
ḡn

g0
I{g0 > 0}

)]

, (by (9))

≤ 8 sup
g∈G

∣
∣
∣
∣L̂n

(
ḡ

g0
I{g0 > 0}

)

− L

(
ḡ

g0
I{g0 > 0}

)∣∣
∣
∣ , (where ḡ = g+g0

2 ).

Next, define the class of functions

M =

{

m : Rd+p → R
∣
∣
∣m(z) = log

g(z) + g0(z)
2g0(z)

I{g0(z) > 0} , g ∈ G

}

and note that, by Theorem 2, for every ε > 0

P
{
ρ2

H(ĝn, g0) > ε
}

≤ P

{

sup
g∈G

∣
∣
∣
∣L̂n

(
ḡ

g0
I{g0 > 0}

)

− L

(
ḡ

g0
I{g0 > 0}

)∣∣
∣
∣ >

ε

8

}

= P

{

sup
m∈M

∣
∣
∣L̂n (m) − L (m)

∣
∣
∣ >

ε

8

}

≤ 6n e−nhd
nC14ε2 + 8E

[
N1

(π0ε

128
,M,Dn

)]
e−nC15ε2 ,

for n large enough, where C14 and C15 are positive constants not depending on n or ε. Now, let
m1,m2 ∈ M, where mk = log gk+g0

2g0
I{g0 > 0}, gk ∈ G, k = 1, 2, and observe that

|m1(z) − m2(z)| =

∣
∣
∣
∣log

g1(z) + g0(z)
g0(z)

− log
g2(z) + g0(z)

g0(z)

∣
∣
∣
∣ I{g0(z) > 0}

≤

∣
∣
∣
∣
g1(z)
g0(z)

−
g2(z)
g0(z)

∣
∣
∣
∣ I{g0(z) > 0}, (see van de Geer (2000, p.50)).

Therefore, n−1
∑n

i=1
ξi

π(Xi)
|m1(Zi) − m2(Zi)| ≤ n−1

∑n
i=1

ξi

π(Xi)

∣
∣
∣g1(Zi)
g0(Zi)

− g2(Zi)
g0(Zi)

∣
∣
∣ I{g0(Zi) > 0}, which

implies that if
{

g1

g0
I{g0 > 0}, . . . , gN

g0
I{g0 > 0}

}
is a minimal ε-cover of G

g0
, then {m1, . . . ,mN} is an ε-

cover of M, where mk = log gk+g0

2g0
I{g0 > 0}. Thus N1(ε,M,Dn) ≤ N1(ε, G

g0
,Dn), and this completes

the proof of Theorem 4.
2

2.3 Regression function estimation

Let (Z, Y ) be an Rd+p × R-valued random vector with an unknown distribution. Here Z = (X ′, V ′)′,
where X ∈ Rd is always observable but V ∈ Rp may be missing at random in the sense that

P{ξ = 1|Z, Y }
MAR
= P{ξ = 1|X, Y } =: π(X, Y ) .
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We note here that π is a map of the form Rd+1 → [0, 1]. Next, let Dn = {(X1, V1, Y1, ξ1), . . . ,
(Xn, Vn, Yn, ξn)} represent the data (iid) and consider the following kernel regression estimator of
π(Xi, Yi) = P{ξi = 1|Xi, Yi}

π̂ker(Xi, Yi) =
n∑

j=1, 6=i

ξjH ((Ui − Uj)/λn)
/ n∑

j=1, 6=i

H ((Ui − Uj)/λn) , where Uj = (X ′
j , Yj)

′, (11)

with the convention that 0/0 = 0, where H : Rd+1 → R+ is the kernel used with the smoothing
parameter λn satisfying λn → 0 as n → ∞. Alternatively, as a second choice, one may decide to
consider the least-squares estimator of π(Xi, Yi). More specifically, let Q be a known class of functions
of the form π̃ : Rd+1 → [πmin, 1], where πmin is as in assumption (A1’), given below. Then the least-
squares estimator is given by

π̂LS(Xi, Yi) = argmin
π̃∈Q

1
n

n∑

i=1

(ξi − π̃(Xi, Yi))
2. (12)

Let Φ be a class of candidate regression functions of the form φ : Rd+p → R. Also, let φ∗(z) =
E(Y |Z = z) be the true regression function. Put

L(φ) = E[φ(Z) − Y ]2 and L̂n(φ) =
1
n

n∑

i=1

ξi|φ(Zi) − Yi|2

π̂(Xi, Yi)
, ∀ φ ∈ Φ , (13)

where π̂ is either π̂ker as defined in (11) or π̂LS as defined in (12). Our proposed Horvitz-Thompson-based
least squares estimator of the unknown regression function φ∗ is given by

φn = argmin
φ∈Φ

L̂n(φ) . (14)

To study the properties of the L2 error of our estimator φn, we derive exponential performance bounds
on the deviations of the L2 error of φn from that of the best member of the class of candidate functions
Φ, i.e., the quantity

E([φn(Z) − φ∗(Z)]2
∣
∣Dn) − inf

φ∈Φ
E[φ(Z) − φ∗(Z)]2 .

We first state the following counterparts of Assumptions (A1) - (A4). Let U = (X ′, Y )′, and u =
(x′, y)′. Then the following assumption are exactly the same as those in (A1) - (A4), but with d replaced
by d + 1, K by H, h with λn, and π0 with πmin:
(A1’) πmin := infu∈Rd+1 P{ξ = 1|U = u} > 0.
(A2’) The kernel H in (11) satisfies

∫
Rd+1 H(u)du = 1 and

∫
Rd+1 |ui|H(u)du < ∞, for i = 1, . . . , (d+

1) . Also, the smoothing parameter λn satisfies λn → 0 and nλd+1
n → ∞, as n → ∞.

(A3’) The random vector U has a compactly supported pdf, which is bounded away from zero on
its compact support. Furthermore, the pdf of U and its first-order partial derivatives are uniformly
bounded.
(A4’) The partial derivatives ∂

∂ui
π(u) exist for i = 1, . . . , (d + 1) and are bounded uniformly, in u, on

the compact support of the pdf of U .

Theorem 5 Let Φ be a class of functions φ : Rd+p → [−B,B], for some B < ∞, and let φn be as in
(14). Suppose that |Y | ≤ A < ∞. Then, under assumptions (A1’)-(A4’), for every ε > 0 and n large
enough

P

{∣∣
∣
∣E
(
[φn(Z) − φ∗(Z)]2

∣
∣Dn

)
− inf

φ∈Φ
E[φ(Z) − φ∗(Z)]2

∣
∣
∣
∣ > ε

}

≤ 8E

[

N1

(
πminε

64(A + B)
, Φ,Dn

)]

e−nC10ε2 + δn(ε),

8



in which

δn(ε) =






6ne−nλd+1
n C11ε2 if using π̂ker in (13),

8E [N1 (C12ε,Q, (Xi, Yi)n
i=1)] e−nC13ε2

+8E
[
N1

(
C14ε

2,Q, (Xi, Yi)n
i=1

)]
e−nC15ε4 if using π̂LS in (13) ,

where C10 − C15 are positive constants not depending on n or ε.

We also note that the above result can be used to establish various almost-sure convergence results.
For example, suppose that π̂ker is used in (13). Now, if n−1 log{E[N1(πminε/(64(A+B)), Φ,Dn)]} → 0
and (nλd+1

n )−1 log n → 0, as n → ∞, then by an application of the Borel-Cantelli lemma E
(
[φn(Z) −

φ∗(Z)]2
∣
∣Dn

) a.s.
−→ infφ∈Φ E[φ(Z) − φ∗(Z)]2. Clearly, if φ∗ ∈ Φ then infφ∈Φ E[φ(Z) − φ∗(Z)]2 = 0,

which yields E
(
[φn(Z) − φ∗(Z)]2

∣
∣Dn

) a.s.
→ 0, under the above conditions.

PROOF OF THEOREM 5.
We give a proof for the case where π̂ in (13) is the kernel estimator π̂ker. The proof for the case
where π̂LS is used is virtually the same and will not be given. First note that using the decomposition
E
(
[φn(Z) − Y ]2

∣
∣Dn

)
= E

(
[φn(Z) − φ∗(Z)]2

∣
∣Dn

)
+ E[φ∗(Z) − Y ]2 we can write

E
(
[φn(Z) − φ∗(Z)]2

∣
∣Dn

)
=

{

E
(
[φn(Z) − Y ]2

∣
∣Dn

)
− inf

φ∈Φ
E[φ(Z) − Y ]2

}

+

{

inf
φ∈Φ

E[φ(Z) − Y ]2 − E[φ∗(Z) − Y ]2
}

. (15)

But
inf
φ∈Φ

E[φ(Z) − Y ]2 − E[φ∗(Z) − Y ]2 = inf
φΦ
E[φ(Z) − φ∗(Z)]2 . (16)

Furthermore,

E
(
[φn(Z) − Y ]2

∣
∣Dn

)
− inf

φ∈Φ
E[φ(Z) − Y ]2

= sup
φ∈Φ

{

E
(
[φn(Z) − Y ]2

∣
∣Dn

)
− L̂n(φn) + L̂n(φn) − L̂n(φ) + L̂n(φ) − E[φ(Z) − Y ]2

}

≤ sup
φ∈Φ

{

E
(
[φn(Z) − Y ]2

∣
∣Dn

)
− L̂n(φn) + L̂n(φ) − E[φ(Z) − Y ]2

}

(because L̂n(φn) − L̂n(φ) ≤ 0, ∀φ ∈ Φ)

≤
∣
∣
∣E
(
[φn(Z) − Y ]2

∣
∣Dn

)
− L̂n(φn)

∣
∣
∣+ sup

φ∈Φ

∣
∣
∣L̂n(φ) − E[φ(Z) − Y ]2

∣
∣
∣

≤ 2 sup
φ∈Φ

∣
∣
∣L̂n(φ) − E[φ(Z) − Y ]2

∣
∣
∣ , (17)

where L̂n(φ) is as in (13). Therefore in view of (15), (16), and (17), it is sufficient to show that the
bound in Theorem 5 is also a bound on

P

{

sup
φ∈Φ

∣
∣
∣L̂n(φ) − E[φ(Z) − Y ]2

∣
∣
∣ >

ε

2

}

. (18)

Now consider the class of functions of the form ϕ(z, y) = [y − φ(z)]2 indexed by members of Φ, i.e.,
the class of functions

F ≡ FΦ =
{

ϕ : Rd+p × R −→ [−(A + B), A + B]
∣
∣
∣ϕ(z, y) = [y − φ(z)]2 , φ ∈ Φ

}
.

Then, by the definition of L̂n(φ) in (13), we have

(18) = P

{

sup
ϕ∈F

∣
∣
∣
∣
∣
1
n

n∑

i=1

ξiϕ(Zi, Yi)
π̂ker(Xi, Yi)

− E[ϕ(Z, Y )]

∣
∣
∣
∣
∣
>

ε

2

}

. (19)

9



Furthermore, by an application of Theorem 2, for n large enough

(19) ≤ 6n e−nλd+1
n C10ε2 + 8E

[
N1

(πminε

32
,F ,Dn

)]
e−nC11ε2 ,

where πmin = infx,y π(x, y) = infx,y P(ξ = 1|X = x, Y = y), and where C10 and C11 are positive
constants not depending on n or ε. To complete the proof, observe that for any ϕ1, ϕ2 ∈ F

|ϕ1(z, y) − ϕ2(z, y)| =
∣
∣[y − φ1(z)]2 − [y − φ2(z)]2

∣
∣

≤
∣
∣[y − φ1(z)] + [y − φ2(z)]

∣
∣×
∣
∣[y − φ1(z)] − [y − φ2(z)]

∣
∣

≤ 2(A + B)
∣
∣φ1(z) − φ2(z)

∣
∣ .

Therefore n−1
∑n

i=1 |ϕ1(Zi, Yi) − ϕ2(Zi, Yi)| ≤ 2(A + B)n−1
∑n

i=1 |φ1(Zi) − φ2(Zi)|, which implies
that if {φ1, . . . , φN} is a minimal ε/(2(A + B))-cover of Φ with respect to the empirical L1 norm, then
{ϕ1, . . . , ϕN} is an ε-cover of F . Consequently, for every t > 0 we have N1(t,F ,Dn) ≤ N1(t/(2(A +
B)), Φ,Dn), and this completes the proof of Theorem 5.

2

Remarks.

Our proposed kernel estimators of the selection probabilities, as given by (4) or (14) play a crucial role
in the development of our proposed density and regression function estimators. This can be noticed
from the presence of the function π̂ in the denominator of the expressions in (8) and (13). The main
issue with kernel type estimators is usually the choice of the bandwidth. In the case of kernel regression
estimators, a popular choice of the bandwidth is the one that minimizes the Integrated Squared Error
(ISE) of the corresponding kernel regression estimator. However, since ISE depends on the underlying
unknown regression and density functions, Härdle and Marron (1985) replace them with ”leave-one-out”
estimators which are then used to de
ne their cross-validation bandwidth selection rule. A more recent approach is based on the cross-
validation method of Racine and Li (2004), which is implemented in the ’R’ package called ”np” (see
Racine and Hay
eld (2008)); in fact, we have used this method in our numerical studies of the next section. In the case
of density estimation with missing data, one may also consider choosing the bandwidth as the minimizer
of the mean Hellinger distance (MHD) or the mean weighted Hellinger distance (MWHD) proposed and
studied by Ibrahim A. Ahmad and A. R. Mugdadi (2006). Unfortunately, the fact that our setup involves
missing variables makes it very difficult to study MHD or MWHD analytically here. Alternatively, one
may choose the bandwidth (from a grid of values) as the minimizer of an empirical version of MWHD,
but we have not pursued that path in this paper.

3 Numerical examples

In what follows, we provide a number of numerical examples in order to assess the performance of our
proposed estimators.

Example A. [Density estimation.] Here we consider the performance of the density estimator ĝn as the
maximizer of L̂(g) defined by (8), where π̂ in (8) can be either π̂ker, defined in (4) or by π̂LS , defined
in (6). We denote the corresponding density estimators by ĝπ̂ker

and ĝp̂iLS
, respectively. We have

also considered the complete case (cc) density estimator, which uses the fully observed data only; this
estimator will be denoted by ĝcc. Next, we carry our the numerical work, we generated n iid observations,
Zn, ı = 1, . . . , n, from d-dimensional normal distributions; here we hav considered two different samples
sizes, n = 100 and n = 200. Also, we use two different values of d. d = 2 and d = 5. For d = 2,
we generated the actual data Zn = (Xi , Vi , i = 1, . . . , n, from a bivariate Gaussian distribution with
mean vector (0, 1)′ and covariance matrix Σ = (σ

if
), where σ1,1 = 1, σ2,2 = 2, σ1,2 = σ2,1 = 0. Here

Xi is always observable but Vi may be missing at random based on one of the following two missing
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probability models for the function π defined in Here Xi is always observable but Vi may be missing at
random based on one of the following two missing probability models for the function π defined in (3):

Model A. π(x) := P{ζ = 1|X = x} = exp(1 + 0.2x)/1 + exp(1 + 0.2x)},

Model B. π(x) := P{ζ = 1|X = x} = 0.4[exp(1 + 0.2x)/1 + cos{exp(x) + cos(x sin(x)))}].

For d = 5, the data were generated from a 5-dimensional Gaussian distribution with vector (1, 1, 1, 1, 1)′

and the covariance matrix Σ = (σij ), where σ
j,k

= 2−|j−k|, 1 ≤ j, k ≤ 5. Here, the last four components
of Vi are allowed to be missing: more specifically, writing Zi = (Xi), Vi1 , Vi2 , Vi3 , Vi4)

′, the component
Xi is always observable, but (Vi1 , Vi2 , Vi3 , Vi4) may be missing according to one of the following two
missing probability models:

Model C. π(x) := P{ζ = 1|X = x} = exp(1 − 0.2x)/1 + exp(1 − 0.2x)},

Model D. π(x) := P{ζ = 1|X = x} = 0.5[1 + cos(2x sin(x))}].

The above choices of the missing probability mechanism result, roughly, in 30% missing data for Mode
A and about 50% missing data for models B, C, and D. Let g be the true probability density function
of Z. In order to and the density estimators ĝπ̂ker

and ĝπ̂LS
, we first used the cross-validation method

of Racine and Li (2004) in the R package called ”np” (see Racine and Hayfield 2008) to find the kernel
estimator π̂ker, defined in (4). As for the parameters of the logistic missing probability mechanism π̂LS ,
defined in (6), we used nonlinear least squares regression (based on the R package ”nls2”). To assess
the performance of the estimators ĝπ̂ker

, ĝπ̂LS
, and the complete case estimator ĝcc , we computed the

Hellinger distance between each estimator and the true density g based on two different sample sizes,
n = 100 and n = 200. As a point of reference, we have also included the usual maximum likelihood
estimator of g based on the full data of size n (i.e., when there are no missing data); this estimator is
denoted by g̃. The entire above process was repeated a total of 500 times, each time using a sample
of size n, and the average Hellinger distance were computed. The results for the case d = 2, which
correspond to models A and B, appear in the first two rows of Table 1. The numbers appearing in
brackets are the standard errors over 500 Monte Carlo runs. Table 1 shows both ĝπker

and ĝπLS tend
to outperform the complete case estimator ĝcc for models A and B. Under Model A, the estimator ĝπLS

is slightly superior to the kernel based estimator ĝπker
which is not surprising because we are assuming

that we know that the true underlying missing probability mechanism follows a logistic model. Similarly,
under Model B, the kernel estimator does a better job in estimating the highly nonlinear trigonometric
function π(x) than the least squares method which is still assumes a logistic model. The estimator g̃,
which is based on no missing data, is included only as a point of reference.

Table 1: Average Hellinger error, over 500 Monte Carlo runs, corresponding to the four models A, B,
C, and D, for the proposed density estimators, ĝp̂iker

and ĝπ̂LS
. Here ĝcc is the complete case estimator

(that discards all incomplete data points), and g̃ represents the estimator based on no missing data (it
is included as a point of reference). The numbers in brackets are the standard errors.

n=100 n=200
ĝp̂iker

ĝπ̂LS
ĝcc g̃ ĝp̂iker

ĝπ̂LS
ĝcc g̃

Model A .788 .0762 .0810 .0622 .544 .0538 .0585 .0465
(.00127) (.00128) (.00133) (.00108) (.00085) (.00083) (.00093) (.00074)

Model B .1124 .1159 .1227 .0662 .0832 .0904 .0981 .0465
(.00183) (.00204) (.00220) (.00108) (.00131) (.00150) (.00164) (.00074)

Model C .1061 .1031 .1124 .0755 .0736 .0715 .0812 .0527
(.00161) (.00159) (.00171) (.00111) (.00106) (.00105) (.00119) (.00079)

Model D .1508 .2388 .1854 .0755 .1208 .2082 .1729 .0527
(.00191) (.00719) (.00148) (.00111) (.00145) (.00664) (.00106) (.00079)

The restults for the case d = 5, which corresponds to models C and D, appear in the last two rows of

11



Table 2: Average L2 error, over 500 Monte Carlo runs, corresponding to the four models A, B, C, and
D, for the proposed density estimators, ĝp̂iker

and ĝπ̂LS
. Here ĝcc is the complete case estimator (that

discards all incomplete data points), and g̃ represents the estimator based on no missing data (it is
included as a point of reference). The numbers in brackets are the standard errors.

n=100 n=200
ĝp̂iker

ĝπ̂LS
ĝcc g̃ ĝp̂iker

ĝπ̂LS
ĝcc g̃

Model A .0349 .0338 .0364 .0295 .0241 .0237 .0261 .0206
(.00061) (.00060) (.00063) (.00051) (.00039) (.00037) (.00043) (.00034)

Model B .0519 .0533 .0565 .0295 .0377 .0408 .0445 .0206

(.00094) (.00104) (.00111) (.00051) (.00063) (.00072) (.00080) (.00034)

Model C .1076 .1060 .1107 .0909 .0898 .0885 .0942 .0759
(.00083) (.00083) (.00085) (.00069) (.00066) (.00066) (.00072) (.00058)

Model D .1286 .1540 .1434 .0909 .1153 .1433 .1387 .0759
(.00084) (.00205) (.00058) (.00069) (.00074) (.00204) (.00042) (.00058)

Table 3: Average L1 error, over 500 Monte Carlo runs, corresponding to the four models A, B, C, and
D, for the proposed density estimators, ĝp̂iker

and ĝπ̂LS
. Here ĝcc is the complete case estimator (that

discards all incomplete data points), and g̃ represents the estimator based on no missing data (it is
included as a point of reference). The numbers in brackets are the standard errors.

n=100 n=200
ĝp̂iker

ĝπ̂LS
ĝcc g̃ ĝp̂iker

ĝπ̂LS
ĝcc g̃

Model A .1603 .1561 .1674 .1361 .1122 .1105 .1214 .0958
(.00265) (.00264) (.00280) (.00226) (.00180) (.00171) (.00201) (.00153)

Model B .2290 .2336 .2472 .1361 .1686 .1809 .1960 .0958
(.00374) (.00410) (.00438) (.00226) (.00265) (.00298) (.00325) (.00153)

Model C .2392 .2323 .2533 .1705 .1660 .1612 .1832 .1186
(.00362) (.00358) (.00384) (.00249) (.00238) (.00236) (.00269) (.00178)

Model D .3396 .5313 .4170 .1705 .2723 .4657 .3892 .1186
(.00428) (.01555) (.00332) (.00249) (.00333) (.01482) (.00238) (.00178)

Table 1. As described earlier, the data were generated from a 5-dimensional Gaussian distribution with
a unit mean vector and covariance Σ = (σ

jk
) are known to be of the form σ

j,k
= 2−|j−k|, 1 ≤ j, k ≤ 5.

Once again Table 1 shows that with the logistic missing probability mechanism of Model C, the estimator
ĝπLS is superior to ĝπker

and that both of these estimators outperform the complete case estimator ĝcc.
The situation is completely reversed for Model D (the fourth row of Table 1), where ĝπker

is by fare the
best among the proposed estimators. In fact, we also note that here ĝπLS is a very poor estimator with
a rather large standard deviation. Some of these facts are reflected in the boxplots of the 500 Hellinger
errors (ie., distances) that appear in the first row of Figure 3 as well as the first row of Figure 3.
Although we have used the Hellinger distance to assess the performance of proposed density

estimators, we have also studied the L2 and L1 errors of each estimator. The results appear in Tables
2 and 3. As these tables show, one again ĝπ̂LS

can be the best estimator when the assumptions of a
logistic missing probability mechanism is indeed true. Otherwise, ĝπ̂ker

is the best estimator.

We can draw the following conclusions form the results in tables 1, 2 and 3: if the missing probability
mechanism, π(x) has a known form (such as the logistic model), then ĝπ̂LS

can be the best estimator.
But in the more realistic case where one has no information about functional form π(x), the density
estimator ĝπ̂LS

is, in general, the most appropriate one.
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Figure 1: Boxplots of the errors of various estimator under different models, when n = 100. Within
each of these 12 plots, boxplot 1 corresponds to ĝπ̂ker

, 2 corresponds to ĝπ̂LS
, 2 corresponds to ĝcc and

4 corresponds to the case with no missing data (i.e. g̃).
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Figure 2: Boxplots of the errors of various estimator under different models, when n = 200. Within
each of these 12 plots, boxplot 1 corresponds to ĝπ̂ker

, 2 corresponds to ĝπ̂LS
, 2 corresponds to ĝcc and

4 corresponds to the case with no missing data (i.e. g̃).
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Example B. [Regression function estimation.] Here we consider the performance of the following two
versions of the regression function estimator φn defined via (13) and (14). The first estimator, denoted
by φn,ker is the minimizer of (13) when π̂ is taken to be the kernel estimator in (14). The second
estimator, denoted by φ

n,LS
, is the minimizer of (14) when π̂ is taken to be the least squares estimator

in (14). We also consider the complete case estimator, denoted by φn,cc, and the estimator based on
the full data of size n (i.e., when there are no missing values). To perform our numerical studies, we
generated samples (Yi , Zi), i = 1, . . . , n of sizes n = 100 and n = 200 form

Y = sin(2Z1) + Z2
2

+ Z3 − exp(−Z4) + ε with ε ≈ N(0.0.5). (20)

where ε is independent of Z = (Z1 , Z2 , Z3 , Z4) and Z has a Gaussian distribution with mean 0 and
the covariance matrix Σ = (σ(ij)i,j>1 , where σij = 2−|i−j|. In passing we also note that (20) is similar
to the model used in Meier et al. (2009). Here, Z1 and Z2 are always observable, but Z3 and Z4 are
allowed to be missing at random according to one of the following two missing probability mechanism:

Model (I). π(z1 , z2) := P{ζ = 1|Z1 = z1 , Z2 = z2} = 0.4[1 + cos(z1 + z2)].

Model (II). π(z1 , z2) := P{ζ = 1|Z1 = z1 , Z2 = z2} = exp(2 − 3z1 − z2)/[1 + exp(2 + z1 + z2)].}

Model (I) results in apprximately 45% missing data where as model (II), which is logistic restults in aobut
75% missing data. Since the true underlying data generating model (20) is nerver known in practice,
we decided to fit the partial second order model D(Y |Z = z) = z1 + z2 + z3 + z4 + z4 + z2

1
+ z2

2
. As

in Example A, we used the cross-validation method of RAcine and Li (2004) in the R package ”np”
(Racine and Hayfield 2008) to find the kernel regression estimator π̂ of π which is then sued to find
φn,ker via (13) and (14). Simiarly, the parameters of the logistic missing probability mechanism were
estimated using nonlinear least squares regression (based on the R package ”nls2”),w hich are then used
to find φn,LS . To assess the performance of these two estimators we computed the empirical L2 error
of each estimator. This simulation process was repeated a total of 500 times (each time using samples
of size n = 100 and n = 200 observations to find the least squares estimators φ

n,ker
, φ

n,LS
and φcc)

and the average L2 errors were computed. The results appear in Table 4; the numbers appearing in
brackets are the standard errors computed over 500 Monte Carlo runs. As a point of reference, we have
also included the estimator corresponding to the case with no missing data this appears as φ̃n in Table
4.

Table 4: Average L2 error, over 500 Monte Carlo runs corresponding to models (I) and (II) for regression
function estimators φn,LS , φn,LS , φn,cc and φ̃n . Here φ̃n is based on the data with no missing values.

n=100 n=200

φ̂
n,ker

φ̂n,LS φ̂cc φ̃n φ̂
n,ker

φ̂n,LS φ̂cc φ̃n

Model (I) .9733 1.0741 1.0537 .7324 .8008 .8814 .8690 .6704
(.02463) (.02284) (.02849) (.00598) (.00758) (.00730) (.01039) (.00337)

Model (II) 4.6476 4.4798 6.0594 .7324 2.8740 2.5824 5.2582 .6704
(.27083) (.27177) (.30785) (.00598) (.14868) (.14347) (.20042) (.00337)

Table 4 shows, φ
n,ker

outperforms both φn,LS and φncc under Model (I). On the other hand when Model
(II) is correct, φn,LS is better. it is also important to ntice that, under Model (II), the error of φn,cc

is substantially larger than every other estimator. In general, since the popular logistic model does not
necessarily hold true, it would be safer to use φ

n,ker
instead of φn,LS in practice. Figure 3 gives the

boxplots of the 500 L2 errors of various estimators. These boxplots show that the estimator are much
more variable under Model (II).
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Figure 3: Boxplots of the L2 errors of various regression estimators under Models (I) and (II). Within
each of these 4 plots, boxplot 1 corresponds to φ

n,ker
, 2 corresponds to φ

n,LS
, 3 corresponds to φn,cc

and 4 corresponds to the case with no missing data (i.e, ˜phi
n
.

4 Appendix

To prove theorems 2 and 3 we first state two technical lemmas which may be of some independent
theoretical interests as well.

Lemma 1 Define ν̆n(ψ) = n−1
∑n

i=1 ξiψ(Zi)/π(Xi), where the function π(Xi) is as in (3) and ξi’s
are the Bernoulli random variable that appear in (1) . Suppose that Assumption (A1) holds. Then for
every ε > 0 and n ≥ 1

P

{

sup
ψ∈Ψ

∣
∣ν̆n(ψ) − ν(ψ)

∣
∣ > ε

}

≤ 8E
[
N1

(π0ε

8
, Ψ,Dn

)]
e−nπ2

0ε2/(128B2) ,

where B is as in Theorem 2 and π0 = infx π(x) > 0.

Lemma 2 Let f be the pdf of the random vector X and put T (x) = π(x)f(x), where π(x) =
E[ξ|X = x]. Let T̂ (x) = (nhd

n)−1
∑n

j=1 ξjK((x − Xj)/hn). Then
(i) Under conditions (A2), (A3),and (A4),

∣
∣
∣E
[
T̂ (X)

∣
∣X
]
− T (X)

∣
∣
∣

a.s.
≤ chn,

where c > 0 is a constant not depending on n.
(ii) For every constant β > 0,

P

{∣
∣
∣T̂ (X) − E

[
T̂ (X)

∣
∣X
]∣∣
∣ > β

∣
∣
∣
∣X = x

}

≤ 2 exp

{
−nhd

nβ2

2‖K‖∞ [2‖f‖∞ + h2d
n β/3]

}

.

PROOF OF THEOREM 2.
Let ν̆n(ψ) = n−1

∑n
i=1 ξiψ(Zi)/π(Xi) and observe that

P

{

sup
ψ∈Ψ

∣
∣ν̂(ker)

n (ψ) − ν(ψ)
∣
∣ > ε

}

≤ P

{

sup
ψ∈Ψ

∣
∣ν̂(ker)

n (ψ) − ν̆n(ψ)
∣
∣ >

ε

2

}

+ P

{

sup
ψ∈Ψ

∣
∣ν̆n(ψ) − ν(ψ)

∣
∣ >

ε

2

}

:= Δn,1(ε) + Δn,2(ε) . (21)
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Now by Lemma 1, for every ε > 0 and every n ≥ 1,

Δn,2(ε) ≤ 8E [N1 (π0ε/16, Ψ,Dn)] e−nπ2
0ε2/(512B2) . (22)

To deal with the term Δn,1(ε) in (21) first note that

∣
∣ν̂(ker)

n (ψ) − ν̆n(ψ)
∣
∣ ≤

1
n

n∑

i=1

ξi |ψ(Zi)| ∙

∣
∣
∣
∣

1
π̂ker(Xi)

−
1

π(Xi)

∣
∣
∣
∣ ≤

B

n

n∑

i=1

∣
∣
∣
∣

1
π̂ker(Xi)

−
1

π(Xi)

∣
∣
∣
∣ ,

where B = ‖ψ‖∞. Thus

Δn,1(ε) ≤ P

{
1
n

n∑

i=1

∣
∣
∣
∣

1
π̂ker(Xi)

−
1

π(Xi)

∣
∣
∣
∣ >

ε

2B

}

(23)

≤ P

{[
1
n

n∑

i=1

∣
∣
∣
∣
π(Xi) − π̂ker(Xi)
π̂ker(Xi) π(Xi)

∣
∣
∣
∣ >

ε

2B

]

∩
n⋂

i=1

[
π̂ker(Xi) ≥ 2−1π0

]
}

+ P

{
n⋃

i=1

[
π̂ker(Xi) < 2−1π0

]
}

≤ P

{

n−1
n∑

i=1

|π̂ker(Xi) − π(Xi)| > (4B)−1π2
0ε

}

+ P

{
n⋃

i=1

[
π̂ker(Xi) < 2−1π0

]
}

:= Δ(i)
n,1(ε) + Δ(ii)

n,1(ε) . (24)

Let T (X) = π(X)f(X) and define T̂ (Xi) = ((n−1)hd
n)−1

∑n
j=1, 6=i ξiK((Xi−Xj)/hn) and f̂(Xi) =

((n−1)hd
n)−1

∑n
j=1, 6=i K((Xi−Xj)/hn), and note that since |T̂ (Xi)/f̂(Xi)| ≤ 1, one finds |π̂ker(Xi) − π(Xi)| ≤

[|T̂ (Xi) − T (Xi)| + |f̂(Xi) − f(Xi)|]/f(Xi). Therefore

Δ(i)
n,1(ε) ≤

n∑

i=1

P

{
1

f(Xi)

∣
∣
∣T̂ (Xi) − T (Xi)

∣
∣
∣ > (8B)−1π2

0ε

}

+
n∑

i=1

P

{
1

f(Xi)

∣
∣
∣f̂(Xi) − f(Xi)

∣
∣
∣ > (8B)−1π2

0ε

}

:=
n∑

i=1

pn,i(ε) +
n∑

i=1

qn,i(ε) . (25)

But

pn,i(ε) ≤ P
{∣∣
∣T̂ (Xi) − E(T̂ (Xi)|Xi) + E(T̂ (Xi)|Xi) − T (Xi)

∣
∣
∣ > (8B)−1f0π

2
0ε
}

(because f0 := inf f(x) > 0 by Assumption (A3)),

≤ P
{∣∣
∣T̂ (Xi) − E(T̂ (Xi)|Xi)

∣
∣
∣+ (16B)−1f0π

2
0ε > (8B)−1f0π

2
0ε
}

(by Part (i) of Lemma 2, for n large enough)

= E
[
P
{∣∣
∣T̂ (Xi) − E(T̂ (Xi)|Xi)

∣
∣
∣ > (16B)−1f0π

2
0ε
∣
∣
∣Xi

}]

≤ 2 exp

{
−(n − 1)hd

nf2
0 π4

0ε
2

(16B)2(2‖K‖∞)[2‖f‖∞ + h2d
n f0π2

0ε/(48B)]

}

(by Part (ii) of Lemma 2)

≤ 2 exp

{
−(n − 1)hd

nf2
0 π4

0ε
2

2(16B)2‖K‖∞[2‖f‖∞ + f0/12]

}

, (for large n), (26)

where we have used the fact that in bounding P{|π̂ker(Xi) − π(Xi)| > (4B)−1π2
0ε}, one only needs to

consider 0 < ε ≤ 4B/π2
0 because |π̂ker(Xi) − π(Xi)| ≤ 1. Similarly, since f̂(Xi) is the special case of
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T̂ (Xi) (take ξj = 1 in the definition of T̂ (Xi), for all j), the above arguments leading to (26) give

qn,i(ε) ≤ 2 exp

{
−(n − 1)hd

nf2
0 π4

0ε
2

2(16B)2‖K‖∞[2‖f‖∞ + f0/12]

}

,

for n large enough. Thus, in view of (25), for n large enough

Δ(i)
n,1(ε) ≤ 4n e−(n−1)hd

nC15ε2 , (27)

where C15 = {2(16B)2‖K‖∞[2‖f‖∞ + f0/12]}−1f2
0 π4

0 . To complete the proof of Theorem 2, we also

need to bound the term Δ(ii)
n,1(ε) in (24). Since P{π̂ker(Xi) < π0/2} ≤ P{|π̂ker(Xi) − π(Xi)| > π0/2},

the arguments that lead to the bound on Δ(i)
n,1(ε) (see (25) and (27)) yield

Δ(ii)
n,1(ε) ≤

n∑

i=1

P{π̂ker(Xi) < π0/2} ≤
n∑

i=1

P{|π̂ker(Xi) − π(Xi)| > π0/2}

≤ 2n e−(n−1)hd
nC16 , (28)

where C16 = {128‖K‖∞(2‖f‖∞ + f0π0/24)}−1f2
0 π2

0 . Therefore, Δn,1(ε) ≤ Δ(i)
n,1(ε) + Δ(ii)

n,1(ε) ≤

6n e−nhdC17 , with C17 = 1
2 min(C15, C16). The theorem now follows from the bounds in (21), (22),

(24), (27), and (28). 2

PROOF OF THEOREM 3.
We start by writing,

P

{

sup
ψ∈Ψ

∣
∣ν̂(LS)

n (ψ) − ν(ψ)
∣
∣ > ε

}

≤ P

{

sup
ψ∈Ψ

∣
∣ν̂(LS)

n (ψ) − ν̆n(ψ)
∣
∣ >

ε

2

}

+ P

{

sup
ψ∈Ψ

∣
∣ν̆n(ψ) − ν(ψ)

∣
∣ >

ε

2

}

,

where ν̆n(ψ) = n−1
∑n

i=1 ξiψ(Zi)/π(Xi). But, by Lemma 1, for every n ≥ 1,

P

{

sup
ψ∈Ψ

∣
∣ν̆n(ψ) − ν(ψ)

∣
∣ >

ε

2

}

≤ 8E [N1 (π0ε/16, Ψ,Dn)] e−nπ2
0ε2/(512B2) .

Furthermore, since |ν̂(LS)
n (ψ) − ν̆n(ψ)| ≤ Bn−1

∑n
i=1 |(π̂LS(Xi))−1 − (π(Xi))−1|, one finds

P

{

sup
ψ∈Ψ

∣
∣ν̂(LS)

n (ψ) − ν̆n(ψ)
∣
∣ >

ε

2

}

≤ P

{
1
n

n∑

i=1

∣
∣
∣
∣

1
π̂LS(Xi)

−
1

π(Xi)

∣
∣
∣
∣ >

ε

2B

}

≤ P

{
1
n

n∑

i=1

|π(Xi) − π̂LS(Xi)| >
π2

0ε

2B

}

(the second inequality follows because π̂LS(Xi) ≥ π0 and π(Xi) ≥ π0)

≤ P

{

sup
π̃∈P

∣
∣
∣
∣
∣
1
n

n∑

i=1

|π̃(Xi) − π(Xi)| − E |π̃(Xi) − π(Xi)|

∣
∣
∣
∣
∣
>

π2
0ε

4B

}

+ P

{

E
[
|π̂LS(X) − π(X)|

∣
∣
∣Dn

]
>

π2
0ε

4B

}

:= In(ε) + IIn(ε) . (29)

Using Theorem 1, with Ψ replaced by the class P , it is straightforward to see that

In(ε) ≤ 8E

[

N1

(
π2

0ε

32B
,P , (Xi)

n
i=1

)]

e−nC19ε2 ,
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where C19 = π4
0/(2048B2). As for the term IIn(ε) in (29), let

L̂n(π̃) = n−1
n∑

i=1

(ξi − π̃(Xi))
2 , ∀ π̃ ∈ P ,

and note that by the Cauchy-Schwartz inequality

IIn(ε) ≤ P

{

E
[
(π̂LS(X) − π(X))2

∣
∣
∣Dn

]
>

π4
0ε

2

16B2

}

= P

{

E
[
(π̂LS(X) − ξ)2

∣
∣
∣Dn

]
− E (π(X) − ξ)2 >

π4
0ε

2

16B2

}

, (since π(X) = E(ξ|X))

≤ P

{

2 sup
π̃∈P

∣
∣
∣L̂(π̃) − E(π̃(X) − ξ)2

∣
∣
∣ >

π4
0ε

2

16B2

}

, (30)

where (30) follows from the fact that, since E(π(X) − ξ)2 = inf π̃∈P E(π̃(X) − ξ)2, one has

E
[
(π̂LS(X) − ξ)2

∣
∣
∣Dn

]
− E (π(X) − ξ)2

≤ sup
π̃∈P

{
E
[
(π̂LS(X) − ξ)2

∣
∣
∣Dn

]
− L̂(π̂LS) + L̂(π̂LS) − L̂(π̃) + L̂(π̃) − E(π̃(X) − ξ)2

}

≤ 2 sup
π̃∈P

∣
∣
∣L̂(π̃) − E(π̃(X) − ξ)2

∣
∣
∣ , (because L̂(π̂LS) − L̂(π̃) ≤ 0, ∀π̃ ∈ P).

Finally, using Theorem 1, we find

(30) ≤ 8E

[

N1

(
π4

0ε
2

(16)2B
,P , (Xi)

n
i=1

)]

e−nC20ε4 ,

where C20 = π8
0/((128)(32)2B2). This completes the proof of Theorem 3. 2

PROOF OF LEMMA 1.
The proof is based on the symmetrization arguments of Dudley and Pollard (Dudley (1978, P.925)
and Pollard (1984, Sec. II.3)); also see van der Vaart and Wellner (1996, Sec. 2.3). Let D′

n =
{(X ′

1, V
′
1 , ξ′1), . . . , (X

′
n, V ′

n, ξ′n)} be a hypothetical sample (a ghost sample) independent of the data

Dn, where (X ′
i, V

′
i , ξ′i)

iid
= (X1, V1, ξ1), i = 1, . . . , n, and put

ν̆ ′
n(ψ) = n−1

n∑

i=1

ξ′iψ(Z ′
i)/π(X ′

i) .

Next, fix the data Dn and observe that if supψ∈Ψ |ν̆n(ψ)− ν(ψ)| > ε, then there is at least one ψε ∈ Ψ,
which depends on Dn (but not D′

n), such that |ν̆n(ψε)−ν(ψε|Dn)| > ε, where ν(ψε|Dn) = E[ψε(Z)|Dn].
Now observe that for nε2 ≥ 8B2/π2

0

P
{∣
∣ν̆ ′

n(ψε) − ν(ψε|Dn)
∣
∣ <

ε

2

∣
∣
∣Dn

}
= 1 − P

{∣
∣ν̆ ′

n(ψε) − ν(ψε|Dn)
∣
∣ ≥

ε

2

∣
∣
∣Dn

}

≥ 1 − sup
ψ∈Ψ

P
{∣
∣ν̆ ′

n(ψ) − ν(ψ)
∣
∣ ≥

ε

2

}

≥ 1 − sup
ψ∈Ψ

E
(
ν̆ ′

n(ψ) − ν(ψ)
)2

/(ε/2)2, (Markov’s inequality)

≥ 1 −
4

nε2
sup
ψ∈Ψ

Var(ξ1ψ(Z1)/π(X1)) (31)

≥ 1 −
4B2

nπ2
0ε

2
≥

1
2
, (because nε2 ≥ 8B2/π2

0) ,

where (31) follows from the MAR assumption (??) and the fact that

E[ξψ(Z)/π(X)] = E[E(ξψ(Z)/π(X)|Z)]
by (??)
= E(ψ(Z)) =: ν(ψ) .
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Therefore, for nε2 ≥ 8B2/π2
0 , we have

1
2

≤ P
{∣
∣ν̆ ′

n(ψε) − ν(ψε|Dn)
∣
∣ <

ε

2

∣
∣
∣Dn

}

≤ P
{
|ν̆n(ψε) − ν(ψε|Dn)| −

∣
∣ν̆ ′

n(ψε) − ν̆n(ψε)
∣
∣ <

ε

2

∣
∣
∣Dn

}

≤ P
{∣
∣ν̆ ′

n(ψε) − ν̆n(ψε)
∣
∣ >

ε

2

∣
∣
∣Dn

}

(because by the definition of ψε, conditional on Dn, |ν̆n(ψε) − ν(ψε|Dn)| > ε)

≤ P

{

sup
ψ∈Ψ

∣
∣ν̆ ′

n(ψ) − ν̆n(ψ)
∣
∣ >

ε

2

∣
∣
∣Dn

}

. (32)

Now observe that the far left and the far right sides of (32) do not depend on ψε and that the chain of
inequalities between them remain valid on the set {supψ∈Ψ |ν̆n(ψ) − ν(ψ)| > ε}. Therefore, integrating
the two far sides of (32) with respect to the distribution of Dn, over this set, we find

P{sup
ψ∈Ψ

|ν̆n(ψ) − ν(ψ)| > ε} ≤ 2P

{

sup
ψ∈Ψ

∣
∣ν̆ ′

n(ψ) − ν̆n(ψ)
∣
∣ >

ε

2

}

≤ 2P

{

sup
ψ∈Ψ

1
n

∣
∣
∣
∣
∣

n∑

i=1

[
ξ′iψ(Z ′

i)
π(X ′

i)
−

ξiψ(Zi)
π(Xi)

]∣∣
∣
∣
∣
>

ε

2

}

. (33)

Next, let σ1, . . . , σn be iid random variables, independent of Dn and D′
n,where P{σi = +1} = P{σi =

−1} = 1/2. Observing that σi’s are random signs, we have

(33) = 2P

{

sup
ψ∈Ψ

1
n

∣
∣
∣
∣
∣

n∑

i=1

σi

[
ξ′iψ(Z ′

i)
π(X ′

i)
−

ξiψ(Zi)
π(Xi)

]∣∣
∣
∣
∣
>

ε

2

}

≤ 4P

{

sup
ψ∈Ψ

1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ(Zi)
π(Xi)

∣
∣
∣
∣
∣
>

ε

4

}

≤ 4E

[

P

{

sup
ψ∈Ψ

1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ(Zi)
π(Xi)

∣
∣
∣
∣
∣
>

ε

4

∣
∣
∣
∣
∣
Dn

}]

. (34)

Now, put ε′ = ε/8 and, for fixed Dn, let Ψε′ be a weighted empirical L1 ε′-cover of Ψ based on the weights
Wi = ξi/π(Xi). That is, for each ψ ∈ Ψ there is a ψ∗ ∈ Ψε′ such that n−1

∑n
i=1 Wi |ψ(Zi) − ψ∗(Zi)| <

ε′ = ε/8. Let Γ1(ε′, Ψ,Dn) be the ε′-covering number of Ψ with respect to the weighted empirical L1

norm. Then for some ψ∗ ∈ Ψε′ we have

1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ(Zi)
π(Xi)

∣
∣
∣
∣
∣

≤
1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξi

π(Xi)
[ψ(Zi) − ψ∗(Zi)]

∣
∣
∣
∣
∣
+

1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ
∗(Zi)

π(Xi)

∣
∣
∣
∣
∣

≤
ε

8
+

1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ
∗(Zi)

π(Xi)

∣
∣
∣
∣
∣

.

Consequently

(34) ≤ 4E

[

P

{

sup
ψ∈Ψε′

1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ(Zi)
π(Xi)

∣
∣
∣
∣
∣
>

ε

8

∣
∣
∣
∣
∣
Dn

}]

≤ 4E

[

Γ1(ε
′, Ψ,Dn) ∙ max

ψ∈Ψε′
P

{
1
n

∣
∣
∣
∣
∣

n∑

i=1

σiξiψ(Zi)
π(Xi)

∣
∣
∣
∣
∣
>

ε

8

∣
∣
∣
∣
∣
Dn

}]

≤ 8E [Γ1(ε/8, Ψ,Dn)] e−nπ2
0ε2/(128B2) , (by Hoeffding’s inequality).
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However, for all functions ψ1, ψ2 : Rd+p → R one has
∑n

i=1(ξi/π(Xi))|ψ1(Zi)−ψ2(Zi)| ≤ (1/π0)
∑n

i=1 |ψ1(Zi)−
ψ2(Zi)|. Therefore, if {φ1, . . . , φN} is a minimal (π0ε)-cover of Ψ with respect to the empirical L1

norm, then it is an ε-cover of Ψ with respect to the weighted empirical L1 norm. Thus, for every ε > 0,
we find Γ1(ε, Ψ,Dn) ≤ N1(επ0, Ψ,Dn). Putting all the above together, we have, for nε2 ≥ 8B2/π2

0 ,

P{sup
ψ∈Ψ

|ν̆n(ψ) − ν(ψ)| > ε} ≤ 8E
[
N1

(π0ε

8
, Ψ,Dn

)]
e−nπ2

0ε2/(128B2) .

When nε2 < 8B2/π2
0 the lemma is trivially true (because the bound in the lemma will exceed 1).

2

PROOF OF LEMMA 2.

Part (i). The proof is similar to (and in fact easier than) that of Lemma 2.2 of Mojirsheibani and
Montazeri (2007) and goes as follows. First note that

E
[
T̂ (X)

∣
∣
∣X
]

= h−dE
[
ξ1K((X − X1)/h)

∣
∣
∣X
]

a.s.
= h−d

n E
[
K((X − X1)/hn)E[ξ1|X, X1]

∣
∣
∣X
]
.

Since E[ξ1|X, X1] = E[ξ1|X1] = π(X1) (because X is independent of ξ1 and X1), we find

E
[
T̂ (X)

∣
∣X
]
− T (X) = h−d

n E
[
(π(X1) − π(X))K((X − X1)/hn)

∣
∣
∣X
]

+ E
[
π(X)

{
h−d

n K((X − X1)/hn) − f(X)
} ∣∣
∣X
]

:= Rn,1(X) + Rn,2(X) .

Now a one-term Taylor expansion gives

Rn,1(X) = h−d
n E

[(
d∑

i=1

(Xi − X1,i) ∂π(X∗)/∂Xi

)

×K((X − X1)/hn)

∣
∣
∣
∣X

]

,

where Xi and X1,i are the ith components of X and X1, respectively, and X∗ is a point on the interior
of the line segment joining the points X and X1. Therefore,

|Rn,1(X)| ≤ C10

d∑

i=1

E
[
|X1,i − Xi|h

−d
n K((X − X1)/hn)

∣
∣
∣X
]

(where C10 = max
1≤i≤d

sup
x

|∂π(x)/∂xi| < ∞, by Assumption A4)

= C10

d∑

i=1

∫
|xi − Xi|h

−d
n K((X − x)/hn)f(x)dx

≤ C10‖f‖∞
d∑

i=1

hn

∫
|ui|K(u)du = C11hn, (by Assumptions A2 and A4),

where 0 < C11 < ∞. As for the term Rn,2(X), we have

|Rn,2(X)| =

∣
∣
∣
∣π(X)

∫
h−dK((X − x)/hn)[f(x) − f(X)]dx

∣
∣
∣
∣

=

∣
∣
∣
∣π(X)

∫
[f(X − hnv) − f(X)]K(v)dv

∣
∣
∣
∣

≤

(
d∑

i=1

sup
x

|∂f(x)/∂xi| ∙
∫

|vi|K(v)dv

)

hn = C12hn ,

where 0 < C12 < ∞, by Assumptions A2. This completes the proof of part (i).
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Part (ii). For j = 1, . . . , n, let

Sj(X) = h−d
n

{
ξjK((X − Xj)/hn) − E

[
ξjK((X − Xj)/hn)

∣
∣X
]}

,

and observe that, conditional on X, the terms Sj(X) are independent, zero-mean random variables,
bounded by −h−d

n ‖K‖∞ and +h−d
n ‖K‖∞. Furthermore, Var(Sj(X)|X) = E[S2

j (X)|X] ≤ 2h−d
n

‖K‖∞‖f‖∞. Therefore, by Bernstein’s (1946) inequality,

P

{∣
∣
∣T̂ (X) − E

[
T̂ (X)

∣
∣
∣X
]∣∣
∣ > β

∣
∣
∣
∣X = x

}

= P





1
n

∣
∣
∣
∣
∣
∣

n∑

j=1

Sj(X)

∣
∣
∣
∣
∣
∣
> β

∣
∣
∣
∣
∣
X = x






≤ 2 exp





−nβ2

2
[
2h−d

n ‖K‖∞‖f‖∞ + hd
n‖K‖∞β/3

]





,

which does not depend on x. The lemma now follows upon integrating both sides with respect to the
distribution of X.
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