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Pseudospin-induced chirality with staggered optical
graphene

Jian-Long Liu1,2, Wei-Min Ye1,3 and Shuang Zhang1

Pseudospin has an important role in understanding many interesting physical phenomena that are associated with two-

dimensional materials such as graphene. Pseudospin has been proposed to be directly related to angular momentum, and orbital

angular momentum was recently experimentally demonstrated to be an intrinsic property of pseudospin in a photonic honeycomb

lattice. However, in photonics, the interaction between spin and pseudospin for light has not been investigated. In this letter,

we propose that in an optical analog of staggered graphene (that is, a photonic honeycomb lattice waveguide with in-plane inver-

sion symmetry breaking), the pseudospin mode can strongly couple to the spin of an optical beam that is incident in certain

directions. The spin–pseudospin coupling that is caused by the spin–orbit conversion in the scattering process induces a strong

optical chiral effect for the transmitted optical beam. Spin–pseudospin coupling of light opens the door to the design of

pseudospin-mediated spin or valley-selective photonic devices.
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INTRODUCTION

Graphene and graphene-like two-dimensional (2D) materials have
attracted significant research interest in recent years1–5. Particular
attention has been paid to their unique electronic band structures,
which exhibit linear dispersion near the Dirac points at the corners of
the Brillouin zone. This unusual band feature gives rise to many
interesting electron-transport properties, including the quantum hall
effect1,2, Zitterbewegung3 and the Klein paradox4. In single-layer
graphene that is deposited on a substrate such as boron nitride and
silicon carbide, the inversion symmetry between the two sublattices is
broken. This symmetry breaking opens up gaps at the Dirac points,
which leads to an interesting optical selection rule at different
valleys6–10. Specifically, the optical transitions at the two valleys can
be excited by light of different circular polarizations or spins11–13.
Inversion symmetry breaking also leads to lift of the degeneracy
between the two sublattice pseudospins. In contrast, in an ideal
graphene without staggering potential, the pseudospin is considered to
be unmeasurable and cannot interact with any magnetic field, even
though it has been predicted to exhibit real orbital angular momentum
(OAM)14,15.
Recently, 2D photonic crystals with hexagonal lattices have provided

a successful platform for demonstrating optical analogs of some of the
interesting electronic properties of graphene16. Recent advances in this
field include the demonstration of an optical spin Hall effect17, the
discovery of unconventional edge states18, the demonstration of
photonic Floquet topological insulators19 and several other interesting
optical phenomena which are based on metasurfaces and photonic

and plasmonic crystals20–22. Artificial optical graphene has been used
to demonstrate that pseudospin is a measurable physical quantity. In
particular, multiple-beam interference, which is carefully aligned with
the honeycomb lattice, has been employed to excite the pseudospin
modes, which were shown to exhibit OAM23. In this paper, we show
that in a staggered optical graphene (SOG) in which the inversion
symmetry between the two sublattices is broken, the pseudospin
optical modes can be directly excited by a single circularly polarized
beam with the aid of spin–pseudospin coupling, which leads to strong
optical activity for an incident wave with in-plane wave-vector that
matches the location of the Dirac points of the lattice in the reciprocal
plane. Therefore, SOG not only represents a facile, lossless approach
for achieving strong optical chirality, which normally requires complex
three-dimensional metallic chiral structures, but also provides a
platform for investigating the extraordinary phenomena that are
associated with the pseudospin state of light in a honeycomb lattice.

MATERIALS AND METHODS

In previous studies, artificial photonic graphenes have been developed
using coupled optical resonators or waveguides, where each resonator
or waveguide serves as the optical analog of a carbon atom in
graphene. As a result, the coupling between the adjacent resonators
or waveguides can be treated as photon hopping in a similar manner as
electron hopping in their electronic counterparts. Under these condi-
tions, the tight-binding approximation and Hamiltonian approach can
be conveniently adopted14,17,23,24. Here, without resorting to the
tight-binding conditions, we show that OAM is an intrinsic property
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of pseudospin in a photonic honeycomb lattice. The derivation is
purely based on symmetry operations; the details are given below.
Figure 1a shows a schematic representation of a 2D honeycomb

lattice for investigating spin–pseudospin coupling. The primitive
lattice vectors of the honeycomb lattice are a1 ¼ ax̂ and
a2 ¼ x̂ þ ffiffiffi

3
p

ŷ
� �

a=2. We consider the eigenmode of the 2D honey-
comb lattice with an in-plane vector K ¼ �4p=3ax̂ (Figure 1b).
The in-plane vector K is unchanged by the rotation operation
C ẑ; 2p=3ð Þ ¼ C3 with respect to the center of the hexagon cell
A1B1A2B2A3B3. The action of the C3 rotational operator on the
eigenmode at the K point can be written as25
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From Figure 1a, we can write

R�1
C3
XA1 ¼ XA3 ¼ XA1 þ a1; R�1

C3
XB1 ¼ XB3 ¼ XB1 þ a2

where XA1 and XB1 are the positions of element A1 and B1,
respectively, in a hexagonal cell. Thus, Equation (1) can be rewritten as

C33wK Xð Þ ¼ RC3wK R�1
C3

X � XA1ð Þ þ XA1 þ a1
� �

¼ RC3wK R�1
C3

X � XB1ð Þ þ XB1 þ a2
� �

ð2Þ

Because the lattice has translational invariance, the eigenmode of the
2D honeycomb lattice satisfies

wK X þma1 þ na2ð Þ ¼ eiK� ma1þna2ð ÞwK Xð Þ
Because the in-plane vector K is unchanged by the rotation operation
C3, it can be deduced from Equation (2) that

C33wK Xð Þ ¼ eiK�a1RC3wK R�1
C3

X � XA1ð Þ þ XA1

� �

¼ eiK�a2RC3wK R�1
C3

X � XB1ð Þ þ XB1

� �

which can be rewritten as

C33wK Xð Þ ¼ ei
2p
3 RC3wK R�1

C3
X � XA1ð Þ þ XA1

� �

¼ e�i2p3 RC3wK R�1
C3

X � XB1ð Þ þ XB1

� �
ð3Þ

On the basis of Equation (1), Equation (3) can be rewritten using the
rotation operation C ẑ; 2p=3ð Þ with respect to the centers of elements
A1 and B1 as

C33wK Xð Þ ¼ ei
2p
3 C3 XA1ð Þ3wK Xð Þ ¼ e�i2p3 C3 XB1ð Þ3wK Xð Þ ð4Þ

For honeycomb structures with C3 rotational symmetry, the eigen-
mode at the K point satisfies

C33wK Xð Þ ¼ ei
2qp
3 wK Xð Þ; q ¼ �1; 0; 1 ð5Þ

The OAM of an optical mode is directly related to its angular phase
distribution around a certain point. Alternatively, it is manifested as
the phase that is acquired by the mode when it is rotated by certain
angles (depending on the rotational symmetry of the system).
Equation (5) shows that rotating the eigenmode around the center
of the hexagon by 120° introduces phase terms of − 2π/3, 0 and 2π/3
for q=− 1, 0 and +1, respectively, which correspond to OAMs of 1, 0
or − 1, respectively. By combining Equations (4) and (5), it can be
deduced that

C3 XA1ð Þ3wK Xð Þ ¼ ei
2 q�1ð Þp

3 wK Xð Þ;
C3 XB1ð Þ3wK Xð Þ ¼ ei

2 qþ1ð Þp
3 wK Xð Þ ð6Þ

From Equation (6), we can deduce that the eigenmode with q=− 1
has OAMs of − 1 at sublattice A and 0 at sublattice B; the eigenmode
with q= 0 has OAMs of 1 at sublattice A and − 1 at sublattice B; and
the eigenmode with q= 1 has OAMs of 0 at sublattice A and 1 at
sublattice B. Because of the high spatial symmetry of the q= 0 mode, it
cannot be excited by an incident plane wave. We therefore focus on
the two modes with q=± 1. Similar to graphene, the eigenmodes of
q= 1 and − 1 can be endowed with pseudospins þj i and �j i,
respectively, which possess OAMs of (0, 1) and (−1, 0) at sublattices
(A and B), respectively. Because of the spin–orbit conversion of light
during the scattering process, the eigenmodes with different pseudos-
pins can be selectively excited by external circularly polarized light of
different handednesses.

RESULTS AND DISCUSSION

To confirm the theoretical analysis that was presented above, we
numerically study a realistic SOG that is based on a photonic-crystal
slab of thickness h. Figure 1c shows a schematic illustration of the
SOG. The photonic lattice consists of two sets of circular apertures
with diameters dA and dB. The simulation uses a dielectric slab with
a refractive index n= 3 (which corresponds to AlAs at a wavelength
~ 800 nm), and the other geometric parameters are set as h= 0.2a,
dA= 0.30a and dB= 0.28a. The band diagram for this structure is
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Figure 1 Illustration of the honeycomb lattice. (a) A honeycomb lattice with a
lattice constant a and lattice vectors a1 ¼ ax̂ and a2 ¼ a

2 x̂þ
ffiffiffi
3

p
ŷ

� �
. (b) The

first Brillouin zone in the reciprocal space with the positions of K and K′
indicated. (c) Schematic illustration of an artificial SOG based on a 2D
photonic-crystal slab. The slab is illuminated by a plane wave with circular
polarizations.
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plotted in Figure 2a. The dispersion relation of the eigenmodes near
one K point �4p=3a; 0ð Þ is calculated using the commercial FEM
software COMSOL and is plotted in Figure 2b. The eigenfrequencies
(o0

0 = 1.048× 2πc/a and o00
0 = 1.052× 2πc/a) at the K point lie inside

the light cone, which means that the eigenmodes of the SOG can
couple directly with external light fields. Figure 2c and 2d shows the
field distributions (|Hz|) on the symmetric plane in the z direction for
the two eigenmodes with frequencies of o0

0 and o00
0 , respectively.

As expected, the field distributions show a threefold rotational
symmetry. The phase patterns (arg(Hz)) of the modes that were
obtained from the simulations are shown in Figure 2f and 2g,
respectively. Figure 2f shows that phase vortices are located at lattice
B and are accompanied by an opposite phase vortex (q= 1) located at
the center of the hexagon cell. For the eigenmode with q=− 1
(Figure 2g), the opposite phase vortices are located only at lattice A.
We also calculate the amplitude and phase pattern of an eigenmode
with q= 0, which are shown in Figure 2e and 2h, respectively. The
eigenfrequency is o000

0 = 1.110×2πc/a, which is relatively far from the
resonance frequencies of the other two modes. Opposite phase vortices
are located at lattices A and B, while no phase vortex is present at
the center of the hexagon cell (which corresponds to q= 0). The
simulation results are consistent with the theoretical analysis.
We propose to use a circularly polarized optical beam to selectively

excite the pseudospins in the SOG. The spin angular momentum of

the incident light can be converted to OAM by light scattering upon
subwavelength objects26–28. We use a numerical simulation to check
the spin–orbit AM conversion. In the simulation, a dielectric slab with
a single air hole is illuminated by right- and left-circular polarized light
(RCP/LCP). The diameter of the hole is 0.28a, and the other
parameters are kept the same as in the mode calculation in
the previous sections. The frequency of the incident light is
s 1.048× 2πc/a, which is the same as the eigenfrequency o0

0 in the
mode calculation. The incidence is inclined with the k vector
�4p=3a; 0ð Þ. The simulation results, including the amplitude (|Hz|)
and phase (arg(Hz)) distributions on the symmetric plane in the
z direction, are shown in Figure 3a–3d, respectively. For an incident
plane wave with circular polarization at normal incidence onto
a lossless circular object, no transfer of the angular momentum occurs
between the light and the object; the angular momentum must be
conserved. Consequently, the wave scattered into the guided mode has
an exact OAM of 1 or − 1 because the guided mode is linearly
polarized and does not carry spin angular momentum. In our case,
however, the incidence is inclined (almost 40°), so the spin of the light
that is projected onto the plane is less than 1. This leads to a non-
uniform angular distribution of the field amplitude around the
aperture as shown in Figure 3a and 3b. Nonetheless, the phase
distributions clearly exhibit opposite vorticities that are located at the
center of the hole (Figure 3c and 3d). This spin–orbit AM conversion
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provides a bridge that links the spin of the incident light and the
pseudospins of the SOG.
To demonstrate the spin–pseudospin coupling and the selective

excitation of pseudospins, simulations are carried out to calculate the
transmission spectrum of the SOG. The incident circularly polarized
light with the fixed in-plane wave vector K �4p=3a; 0ð Þ illuminates
the photonic slab as shown in Figure 1c. All of the geometric
parameters are the same as in Figure 2b. The zero-order transmittance
is measured and shown in Figure 4a. There is a significant difference
in transmission between the RCP and LCP incidences near the two
eigenfrequencies, which confirms the presence of very strong optical
chirality. The key reason for this transmission difference is the broken
inversion symmetry of the SOG structure. Because the inversion
symmetry is broken, the bandgap at the Dirac point is open and
the two pseudospin states have different eigenfrequencies. Thus, when
the incident RCP and LCP light couples with the pseudospins, the
resonance peaks in the transmission spectra between the two circular
polarizations are different. In our setting, the photonic-crystal slab is
not an ideal 2D sheet because of the finite thickness in the z direction.
An analysis is performed based on Fano line shapes to describe the
interference between the scattered fields from the A and B sublattices
and the plane slab29. The fitting curve is expressed as

TðoÞ ¼ 1� C1
aΓ=2þ o� o0ð Þ2
Γ=2ð Þ2 þ o� o0ð Þ2 � C2 o� odð Þ ð7Þ

where ω0 is the resonant frequency, Γ is the linewidth (full-width at
half-maximum), α is the Breit–Wigner–Fano coupling coefficient30

and C1, C2 and ωd are three coefficients to be fitted. The third term on
the right-hand side of Equation (7) represents the contribution of the
direct transmission of a homogeneous slab with an effective refractive
index. This term represents the background of the spectrum in
Figure 4a. Because the frequency band we are concerned with is very
narrow, the background spectrum can assume a linear form that

is fitted by C2 and ωd within this narrow range. Figure 4a shows the
Fano line-shape fitted curves and the simulation data. The curves all
agree well with the simulation data, and the fitted resonant frequencies
are consistent with the simulated eigenfrequencies in the band
calculation that is shown in Figure 2b.
To verify the contribution of the spin–pseudospin coupling to the

transmission spectrum, we examine the field distributions when the
crystal is illuminated by RCP and LCP light. As in Figure 2c, 2d, 2f and
2g, we extract the amplitude and phase of the magnetic field on the
symmetric plane in the z direction. The frequencies of the incident
light are fixed at the eigenfrequencies at the K point. The results are
shown in Figure 4b–4e. The amplitude and phase patterns show good
agreement with those of the eigenmodes that are shown in Figure 2,
which confirms that the incident circularly polarized beam can excite
pseudospins with matched handedness.
In the above simulations, we have used a free-standing 2D photonic-

crystal with no added substrate. Free-standing 2D photonic-crystal
membranes based on silicon or other semiconductor materials have
been demonstrated by many groups31–33. Therefore, the symmetric
configuration that is investigated in our paper can be fabricated
without posing significant technical challenges. On the other hand,
the presence of a substrate does affect the performance. If a substrate
(for example, glass) is added, the Q-values of the leaky modes will
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decrease, and the contrast between the RCP and LCP transmission is
expected to decrease.

CONCLUSIONS

We studied spin–pseudospin coupling in a SOG structure. We predict
and numerically demonstrate that the two pseudospin states at the
Dirac point of the SOG can be directly excited by external circularly
polarized light with opposite handedness. As a result, we show that the
transmission spectrum of the lattice exhibits strong chirality, which
arises from the coupling between the spin and the intrinsic handed-
ness of the pseudospin. Because of the inversion symmetry of the
reciprocal space, the spin–orbit interaction from the pseudospin leads
to coupling of the spin and valley degrees of freedom, which makes
it possible to selectively choose the spin of the incident light at
different valleys. Because this spin–valley coupling occurs inside the
light cone, this study may also provide opportunities to construct
valley-dependent circularly polarized light emitters or generators.
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