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Abstract: To alleviate high friction and corrosive wear in piston ring and cylinder liner friction 

pairs lubricated with bio-oil, four kinds of coatings: Ni-P, Ni-P-MoS2, Ni-P-GO (graphene oxide), 

and Ni-P-MoS2-GO have been prepared via chemical nickel plating technology. An 

multi-functional engine cylinder liner - piston ring tribometer was employed to evaluate their 

tribological behaviors. Scanning electronic microscopy (SEM) was used for observing the 

surfaces before and after friction. Energy dispersive X-Ray spectroscopy (EDX) and X-ray 

photoelectron spectroscopy (XPS) were applied to measure the components and their chemical 

valences of the coatings surfaces before and after sliding, respectively. Furthermore, the chemical 

groups of the bio-oil under different frictional conditions were analyzed by Fourier transform 

infrared spectroscopy (FTIR). The results show that adhesive wear, stratching, spalling and mild 

wear took place respectively on the worn surfaces of piston rings with Ni-P, Ni-P-MoS2, Ni-P-GO, 

and Ni-P-MoS2-GO coatings. Ni-P-MoS2-GO coated piston rings showed excellent 

friction-reducing and anti-wear performance and subsequently has great potential for accelerating 

the application of bio-oil in IC engines.   
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Research Highlights: 

• Tribo-behaviour of Ni-P, Graphene Oxide (GO) and MoS2 coating with bio-oil tested 

• The corresponding tribological mechanisms were discussed  

• Ni-P- MoS2 coatings significantly reduce adhesive and delamination wear 

• Ni-P-MoS2-GO coatings show the lowest friction coefficient and wear 

• Corrosive wear eliminated by catalytic esterification between bio-oil and Ni-P-MoS2-GO 

coating  

Keywords: Sliding wear; Lubricant additives; Internal combustion engines; Tribochemistry 

 

1. Introduction 

Piston ring and cylinder liner friction pairs are almost the most important parts in the internal 

combustion (IC) engines because more than 30% of the energy consumption in an IC engine is 

caused by the piston ring - cylinder liner system [1]. To cope with the energy shortage and 

enhance the fuel efficiency, decrease of the friction and wear of the piston ring - cylinder liner 

contacts has attracted lots of researchers. Etsion et al [2] used laser surface textured piston rings to 

improve the fuel efficiency. They found that the laser texturing did not alter the exhaust gas 

components, but the laser-textured piston rings could reduce the fuel consumption by 4%, 

comparing with those without texture. However, under corrosive conditions, surface texture might 

not play a protective role for piston ring - cylinder liner contacts, while coatings on friction pairs 

have been considered as an effective method to decrease the corrosive wear.  

Skopp et al [3] analyzed the tribological behavior of titanium suboxide coatings for piston 

ring/cylinder liners under different conditions. It was found that thermally sprayed titanium  

suboxide coatings for piston ring exhibits a similar friction and wear performance to commercial 
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Mo-based coatings on piston ring. Cylinder liner-piston ring material with diamond like carbon 

(DLC) coatings exhibited better friction and wear performance than uncoated stainless [4]. Two 

kinds of coatings including thermal-sprayed CrN and physical vapor deposited DLC on the 

nitrided stainless steel and chrome plated stainless steel piston rings have been studied by Tung et 

al [5] under fully-formulated engine oils. Results showed that DLC coating had the lowest wear 

on cylinder liner. Unfortunately, DLC coating has a high internal stress [6], which leads to an 

abrupt spalling for coating. Chemical plating coating has become popular in recent decades, 

because of its lower internal stress, excellent mechanical properties, good anti-corrosion and 

anti-wear performances [7].  

On the other hand, recently, bio-oil has become one of the most promising alternatives to 

fossil fuel, which has many advantages including reproducible, carbon-neutral, and environmental 

friendly [8]. However, high contents of acidic components makes bio-oil easy to corrode the 

metal, which results in it cannot be used in IC engines directly [9]. Coating is an effective method 

to prevent metals from corrosion of bio-oil. In our previous work, electroless Ni-P and Ni-Cu-P 

coating was prepared on engine cylinder liner and their tribological behavior lubricated by bio-oil 

has been investigated [7] . The Ni–Cu–P coating on cylinder liner has demonstrated a very 

potential to accelerate the application of bio-oil in IC engines. Nevertheless, to the best of our 

knowledge, few reports has covered the friction and wear behavior of coated piston rings 

lubricated by bio-oil. In this work, four kinds of coatings including Ni-P, Ni-P-MoS2, Ni-P-GO, 

and Ni-P-MoS2-GO have been deposited on piston rings and their tribological properties have 

been compared. Finally, the corresponding mechanisms were explored. 

 

2. Experimental 
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2.1 Materials 

The cylinder liner samples were made from boron cast iron  and supplied by the Kaishan 

Cylinder Co. Ltd (China). Samples were cut to 122 mm in length, 15.6 mm in width and 6.3 mm 

in height. The top piston ring specimens were ductile iron and purchased from the Nanjing Feiyan 

Piston Ring Co., Ltd (China). The test rings were cut to 8mm in length, 2mm in width and 4mm 

in height. The Anhui Province Key Laboratory of Biomass & Clean Energy at the University of 

Science and Technology of China supplied the bio-oil used in this research, the composition and 

physiochemical properties can be can be found in previous work [10].  

For the preparation of the coatings, nickel sulfate (NiSO4·6H2O) was purchased from the 

Shanghai Liangren Chemical Co., Ltd (China). Sodium hydroxide (NaOH), sodium carbonate 

(Na2CO3), Sodium hypophosphite (NaH2PO2·H2O) and sodium acetate (CH3COONa) were 

purchased from Sinopharm Chemical Reagent Co., Ltd. Sodium citrate (Na3C6H5O7·2H2O) was 

supplied by the Guangdong Shantou Xilong Chemical Company. The lactic Acid (C3H6O3), 

thiourea (NH2CSNH2) and molybdenum disulfide (MoS2) were all received from the Shanghai 

Chemical Reagent Co., Ltd. Finally, the propionic acid (C3H6O2) was purchased from the Tianjin 

Guangfu Fine Chemical Research Institute. All of the chemicals were of analytical grade, and 

used as received without further processing. The graphene oxide (GO) used in the coatings was 

prepared according to previous work [11]. 

 

2.2 Coating preparation 

The piston ring samples were put into an alkaline solution (NaOH 50 g/L; Na2CO3 25 g/L) at 

80 oC to degrease, and then washed by deionized water. The samples were then immersed in 50% 

dilute hydrochloric acid until uniform minute bubbles occurred on their surfaces, they were then 
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washed with deionized water. The test specimens were then placed in a plating bath solution for 

60 min with a stirring speed of 300 rpm. A list of detailed process parameters is given in Table 1. 

After plating, the specimens were washed with deionized water and dried at 40 oC in a vacuum 

drying oven.  

 

2.3 Coating characterization 

A JEOL JSM-5600LV Scanning Electron Microscope (SEM) coupled with an Energy 

Dispersive X-ray spectrometer (EDX) was used to observe the micro-morphologies and detect the 

elemental compositions of the coating surfaces. The crystal structures of the coatings were 

analyzed using a Rigaku D/MAX2500V X-ray Diffraction (XRD) instrument with Cu Kα 

radiation, 2θ varying from 5° to 90° and a scanning velocity of 10°·min-1. The micro hardness of 

the coatings was measured using an MH-3 micro-vickers hardness tester at a load of 0.98 N for 10 

s. Each sample was tested ten times, and the hardness value of each coating was calculated from 

the average of these values.  

 

2.4 Tribological tests 

The friction and wear tests were carried out on a multi-functional piston ring- cylinder liner 

tribometer. The schematic diagram of the friction pairs are shown in Fig. 1. As can be seen, the 

piston ring slides on the cylinder liner via a reciprocating friction mode during the frictional 

process, with oil supplied through a drip feed. A more detailed test specification is given in Table 

2. The coefficient of friction was recorded automatically via the ratio of friction force to normal 

load. The wear loss of the friction pairs was calculated by the weight of the samples before and 

after sliding, to an accuracy of 0.1 mg. Each test was repeated three times to obtain a standard 
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deviation.  

After friction, the bio-oil was collected from each testing condition. The samples were 

washed by acetone and ultrasonically clean for 30 min. The worn surfaces of the piston ring were 

then observed by SEM, and the bonding energy of the typical active elements including C, O, Ni, 

P, Mo and S on the worn surfaces were characterized by a Thermo Scientific ESCALAB250Xi 

X-ray photoelectron spectroscopy (XPS) with a monochromatized Al Kα x-ray source.  The 

chemical shifts of XPS peaks were standardized by the C 1s peak at 284.6 eV. 

 

3. Results and discussion 

3.1 Coating components and structures 

Fig. 2 shows the SEM images of the four coatings, with insets showing a magnified area. 

The Ni–P coating displayed a relatively smooth surface with a typical cauliflower-like 

micro-morphology (Fig. 2a), which is similar to literature results [for example 12]. Fig. 2b shows 

the effect of the introduction of MoS2, with grains and ‘debris’ observed on surfaces, indicating 

that the MoS2 was embedded in the Ni–P matrix via the co-deposition process [13]. Some porous 

structures can be seen on the surfaces of Ni-P-GO coating in Fig.2c, in contrast to Wu et al.s 

observed nodular structures [14]. This may be because the graphene oxide interfered with the 

deposition of the Ni-P coating, as a result of the sodium dodecyl sulfate used as a surfactant for 

the GO during ultrasonic dispersion. This was not the case when GO and MoS2 were used 

together.  This produced a pristine coated surface shown in Fig.2d, with more grains and far less 

porosity, compared with those in Fig 2b and Fig. 2c.  

Fig. 3 shows the XRD spectra of the coatings. As shown in the figure, there was a 

steamed-bun-like peak in each of these four coatings at 40-50 o. This was the typical amorphous 
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structure of Ni-P matrix [15]. It has been reported that amorphous structures are helpful to 

anti-friction and antiwear properties of a coating [16], therefore, heat treatment for crystallization 

process did not use. Furthermore, 2θ at 14.4 o were the (002) peaks of MoS2 in Ni-P-MoS2 and 

Ni-P-MoS2-GO coatings [17, 18], which confirmed the MoS2 was deposited in these two coatings. 

However, the peaks for GO did not be detected in Ni-P-GO and Ni-P-MoS2-GO. This may 

because GO in the coating were total coved by Ni-P matrix and the exposed GO was easy to be 

removed during the preparing process, and leaving some holes on the Ni-P-GO surfaces.  

Fig. 4 gives the EDX spectra of the four coating surfaces. The typical elements including Ni, 

P and contaminated C and O were detected in all these four coatings. Besides these elements, Mo 

and S were both detected in Ni-P-MoS2 and Ni-P-MoS2-GO coatings. These results agreed well 

with the former SEM and XRD results in Fig.2 and Fig.3, respectively. The contents of these 

elements were shown in Table 3. It can be found that the contaminated C was little on the Ni-P 

coating. However, it amounted to more than three times of contaminated C on those of Ni-P-MoS2. 

This may because the rough surfaces of the Ni-P-MoS2 coating made it more easy to be 

contaminated [19]. Although the content of C on Ni-P-GO coating surface was less than that of 

Ni-P-MoS2 coating surface, the content of O had the opposite results, which resulted from the fact 

that the C and O mainly came from the GO. As for Ni-P-MoS2-GO coatings, the contaminated 

and self-possessed C and O were also important on their surfaces.  

Fig. 5 displays the micro-hardness of the four coating surfaces. It can be noted that adding 

MoS2 had little influence on the micro-hardness of Ni-P coating, but adding GO decreased the 

micro-hardness of Ni-P coating obviously. This result is interesting, because GO had a high 

hardness [20]. It can reasonably be assumed that the few contents of GO and porous structures of 

the Ni-P-GO coating accounted for this result. When MoS2 and GO used together, the hardness of 
7 

 



Ni-P-MoS2-GO coatings increased a little comparing with that of Ni-P-GO coatings.  

 

3.2 Friction and wear behaviors 

Fig. 6a shows the variation of friction coefficient with time of the four different coatings. 

The run-in stage of these four coatings kept about 27 min, after that, all of them entered into 

stable friction stage [8]. Among these four coatings, Ni-P-GO coating has the highest friction 

coefficient, and followed by Ni-P coating, and then is Ni-P-MoS2 coating. The Ni-P-MoS2-GO 

coating has the lowest friction coefficient. This may because Ni-P-GO coating with a porous 

surface will destroy the formation of the lubricating oil film [21]. MoS2 and GO might have a 

synesthetic effect [22] to reduce the friction of the Ni-P-MoS2-GO coating.  

Although the wear of Ni-P and Ni-P-MoS2 coatings have very low wear loss in Fig.6b, the 

counterpart cylinder liners have high wear loss. This may because high micro-hardness of Ni-P 

and Ni-P-MoS2 coatings makes the counterpart easy to be cut [23]. The cylinder liner has a low 

wear loss with the Ni-P-GO coating, but the Ni-P-GO coating has about 7 times wear loss than 

Ni-P or Ni-P-MoS2 coating. The Ni-P-MoS2-GO coating have a relatively low wear loss for both 

of the cylinder liner and piston ring. Therefore, combined use of MoS2 and GO can improve the 

properties of Ni-P coating and protect the surface of friction pairs from severe friction and wear.  

 

3.3 Tribological mechanisms 

Fig. 7 shows the SEM images of worn surfaces of the piston ring with different coatings. 

Compared with the pristine surfaces without coating [7], there are no clear corrosive wear on 

these four coating surfaces, indicating these coatings could prevent the surfaces from corrosion of 

bio-oil under testing conditions. In addition, comparing with all the coatings before sliding, there 
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are obvious changes on the worn surfaces. Some delamination and adhesive phenomena occurred 

on the Ni-P coatings. Many dense furrows uniformly distributed on the Ni-P-MoS2 coatings. 

Some pits and furrows distributed non-uniformly on the Ni-P-GO coatings. The Ni-P-MoS2-GO 

had the smoothest surface with slim and few furrows. That is, introduction of MoS2 can prevent 

the Ni-P coating from delamination and adhesive wear; introduction of GO alone might lead to 

Ni-P coating become loose and porous and easy to be removed during sliding, resulting in a 

higher friction coefficient and wear loss of the coating; the synergetic effects of MoS2 and GO 

results in an excellent friction and wear properties of Ni-P-MoS2-GO coatings.  

To further explore what happened during sliding process, the bio-oil before and after sliding 

is analyzed by a Nicolet 67 Fourier-transform infrared spectrometer (FTIR, Thermo Nicolet, 

USA). As shown in Fig. 8, the peaks at 3327 cm-1 belong to stretching vibration of association 

hydroxyl group (O–H) [24], and are found in all these oils. However, the shape of this absorption 

band under Ni-P-GO and Ni-P-MoS2-GO coating became narrower than the others, indicating 

carboxyl group (-COOH) of the bio-oil decreased [25]. The peaks at ~2946 cm-1 are attributed to 

C–H stretching [26], and comparing with bio-oil before sliding, they increase after sliding, 

indicating some oxygen-containing compounds have adsorbed on the rubbing surfaces. The peaks 

at 1709 cm-1 belong to carbonyl group (C=O) [27], and they are enhanced after sliding, suggesting 

the increase of esters contents because of the tribo-induced esterification. Besides the inner 

reactions of inside organic acids and alcohols, GO offers many active hydroxyl and carboxyl 

groups. The peak at 756 cm-1 is ascribed to out-of-plane bending vibration of C–H bonding [28], 

and it increase after sliding, which is consistent with the peaks at 2946 cm-1. All these results 

indicate that esterification reaction occurred in the bio-oil during the sliding process, and some 

esters were produced.  
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C1s and O1s XPS spectra of worn surfaces with different coatings are shown in Fig. 9. As 

shown in the C1s spectra, the peaks at 288.7, 286.6, 284.6 and 282.9 eV are ascribed to the 

-COOR, C=C, C-C(C-H) groups and carbides, respectively, indicating some organics including 

esters, alkenes, and chemicals with hydrocarbon chain has been adsorbed or reacted on the worn 

surfaces [29]. These organics mainly came from the bio-oil, indicating the esterified components 

in bio-oil play an important lubricating role during the sliding process. The C=C group may be 

offered by GO in the coatings, because the peaks at 286.6 eV in Ni-P-GO and Ni-P-MoS2-GO are 

much larger than those in Ni-P-MoS2 and Ni-P coating. In addition, the peaks positioned at 282.9 

belong to the carbide [30], indicating some carbons reacted with the metal elements in the coating, 

and formed a complex lubricating film. The O1s spectra can be resolved into two peaks. The 

peaks at ~529.5 eV belong to metal oxides [31]; and the peaks at 531.4 eV are ascribed to sulfates 

[32].  

The Ni2p and P2p XPS spectra are shown in Fig. 10. The peaks at 853.8 eV and 871.2 eV 

are attributed to Ni2p3/2 and Ni2p1/2, respectively, and matched well with NiO [33]. This 

suggests that a NiO tribo-film is formed during the sliding process. These results agree with the 

O1s spectra. In P2p spectra, the lager peaks at 129.8 eV belong to the red phosphorus, and the 

small peaks at 133.1 eV are contributed to the pyrophosphate on the surfaces [7, 34], again 

confirming the tribo-reaction between the coatings and the components in bio-oil, and these 

findings also were in accord with our previous studies [7].  

Fig. 11 shows the Mo3d and S2p XPS spectra of the worn surfaces of Ni-P-MoS2 and 

Ni-P-MoS2-GO coatings. Although there are some noises in the curves, three typical Mo3d bands 

can be seen, which positioned at 232.3, 229.6 and 228.5 eV, respectively. They can be attributed 

to MoO3, MoS2, and Mo2C, respectively [35-37]. The peaks at 170.4, 167.7 and 162.3 eV in S2p 
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spectra are attributed to sulfates, sulfites, and MoS2 [38, 39], which agree with the signals in O1s 

and Mo3d. This indicates that MoS2 can be adsorbed or reacted on the coating surfaces to consist 

of a complex tribo-film.  

Table 4 presents the elemental contents of the piston ring surfaces after sliding. Compared 

with those before sliding, the contents of carbon and oxygen increase obviously, suggesting lots of 

organics in bio-oil has been adsorbed or reacted on the rubbing surfaces. The contents of nickel 

and phosphorus decreases clearly, due to the covering by carbon and oxygen. Ni-P-GO coating 

has low contents of carbon, oxygen and nickel on the rubbing surfaces, which denotes a poor 

lubrication condition, resulting in a high friction coefficient and wear loss of the coating. 

Although the contents of carbon and oxygen is also low in Ni-P-MoS2-GO coating, the contents 

of nickel, phosphorus , molybdenum, and sulfur are the highest, and the tribo-film composed by 

all these components may effectively act as a thick protective layer to prevent the surfaces from 

severe friction and wear. Furthermore, the relative contents of molybdenum and sulfur on 

Ni-P-MoS2-GO worn surfaces even higher than those on pristine surfaces. This may because GO 

can remain MoS2 on the surfaces and prevents its oxidation [22].  

 

4. Conclusions 

In this work, four kinds of coatings including Ni-P, Ni-P-MoS2, Ni-P-GO and 

Ni-P-MoS2-GO have been prepared on the piston rings. A multi-function cylinder liner – piston 

ring tribometer was used for measure their tribological behavior. Introduction of MoS2 in Ni-P 

coating can prevent the surfaces from adhesive and delaminated wear under bio-oil lubrication 

conditions. Introduction of GO in Ni-P coating leads to a porous surface and increase the friction 

and wear. Both of MoS2 and GO added into Ni-P coating will account for an excellent lubricating 
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role. Besides the tribo-film composed of components in the coatings, the adsorbed film came from 

the organics in the bio-oil plays an important role in antifriction and antiwear, and the 

Ni-P-MoS2-GO coatings shows a great potential for preventing the corrosion of bio-oil and 

accelerating its application. This is because on one hand, MoS2 and GO have synergistic 

lubricating effects; on the other hand, hydroxyl groups in GO can react with the carboxyl groups 

in bio-oil and lead to catalytic esterification reactions of bio-oil during the sliding process, which 

reduced the corrosive wear of bio-oil significantly.  
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Table and Figure Captions 

 

Table 1 Composition and operating conditions for electroless coatings. 

Table 2 Tribological testing conditions 

Table 3 Surface chemical composition of piston ring surfaces before tribo-test . 

Table 4 Surface chemical composition of piston ring surfaces after tribo-test .  

 

Fig. 1 Schematic diagram of the friction pairs and the tribometer 

Fig.2 SEM images of coating surfaces: (a) Ni-P , (b) Ni-P-MoS2, (c) Ni-P-GO, (d) 

Ni-P-MoS2-GO 

Fig. 3 XRD patterns of the four coating surfaces 

Fig. 4 EDX spectra of the four coating surfaces 

Fig. 5 Micro-hardness of the four coating surfaces. 

Fig. 6 (a) Friction coefficient, and (b)wear loss of piston ring-cylinder liner friction pairs 

Fig. 7 SEM images of worn surfaces of the piston ring with different coatings: (a) Ni-P , (b) 

Ni-P-MoS2, (c) Ni-P-GO, (d) Ni-P-MoS2-GO 

Fig. 8 FTIR spectra of bio-oil before and after sliding  

Fig. 9 C1s and O1s XPS spectra of worn surfaces with different coatings 

Fig. 10 Ni2p and P2p XPS spectra of worn surfaces with different coatings 

Fig. 11 Mo3d and S2p XPS spectra of worn surfaces of Ni-P-MoS2 and Ni-P-MoS2-GO coatings 
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Table 1 Composition and operating conditions for electroless coatings. 

Composition and operating 

 

Values 

conditions Ni-P Ni-P-GO Ni-P-MoS2 Ni-P-MoS2-GO 

GO (g/L) / 0.1 / 0.1 

MoS2 (g/L) / / 1 1 

NiSO4·6H2O (g/L) 26 26 26 26 

NaH2PO2·H2O (g/L) 30 30 30 30 

Na3C6H5O7·2H2O (g/L) 15 15 15 15 

C3H6O3 (mL/L) 17 17 17 17 

CH3COONa (g/L) 10 10 10 10 

NH2CSNH2 (mg/L) 1 1 1 1 

C3H6O2 (mL /L) 2 2 2 2 

pH 4.5±0.1 4.5±0.1 4.5±0.1 4.5±0.1 

Temperature (oC) 88±2 88±2 88±2 88±2 

Time (min) 60 60 60 60 
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Table 2 Tribological testing conditions 

Testing conditions Values 

Reciprocating frequency 5 Hz 

Stroke 80 mm 

Oil feed rate 50 mL·h-1 

Normal load 140 N 

Temperature 85 oC 

Duration 60 min 
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Table 3 Surface chemical composition of piston ring surfaces before tribo-test . 

Piston ring surfaces 

coating 

Chemical composition (at%) 

C O Ni P Mo S 

Ni-P 1.98 / 81.17 16.85 / / 

Ni-P-MoS2 7.15 9.2 68.23 15.04 0.22 0.16 

Ni-P-GO 6.74 17.06 62.95 13.25 / / 

Ni-P-MoS2-GO 10.58 8.32 65.67 15.24 0.12 0.07 
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Table 4 Surface chemical composition of piston ring surfaces after tribo-test 

Piston ring 

surfaces coating 

Chemical composition (at%) 

C O Ni P Mo S 

Ni-P 63.45 25.81 6.72 4.02 / / 

Ni-P-MoS2 72.67 19.52 3.3 2.94 0.19 1.38 

Ni-P-GO 67.24 22.37 5.3 5.09 / / 

Ni-P-MoS2-GO 57.85 20.75 7.16 8.07 0.76 5.41 
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Fig. 1 Schematic diagram of the friction pairs and the tribometer 
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Fig.2 SEM images of coating surfaces: (a) Ni-P , (b) Ni-P-MoS2, (c) Ni-P-GO, (d) 

Ni-P-MoS2-GO 
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Fig. 3 XRD patterns of the four coating surfaces 
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Fig. 4 EDX spectra of the four coating surfaces 
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Fig. 5 Micro-hardness of the four coating surfaces 

27 
 



 

0 10 20 30 40 50 60

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Stable friction

 

 
Fr

ict
io

n 
co

ef
fic

ie
nt

Time(min)

 Ni-P
 Ni-P-MoS2
 Ni-P-GO
 Ni-P-MoS2-GO

(a)
Run-in

   

0

10

20

30

40

Ni-P-MoS2-GONi-P-GONi-P-MoS2

 

 

W
ea

r l
os

s 
(m

g)

Coating

 Cylinder liner

 Piston ring
(b)

Ni-P

 

 

Fig. 6 (a) Friction coefficient, and (b)wear loss of piston ring-cylinder liner friction pairs 
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Fig. 7 SEM images of worn surfaces of the piston ring with different coatings: (a) Ni-P , (b) 

Ni-P-MoS2, (c) Ni-P-GO, (d) Ni-P-MoS2-GO 
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Fig. 8 FTIR spectra of bio-oil before and after sliding  
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Fig. 9 C1s and O1s XPS spectra of worn surfaces with different coatings 
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Fig. 10 Ni2p and P2p XPS spectra of worn surfaces with different coatings 
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Fig. 11 Mo3d and S2p XPS spectra of worn surfaces of Ni-P-MoS2 and Ni-P-MoS2-GO coatings 
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