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Summary 

The tree canopy is an energetically challenging environment to traverse. Along with compliant 
vegetation, gaps in the canopy can prove energetically costly if they force a route-extending detour. 
Arboreal apes exhibit diverse locomotion strategies, including for gap crossing. Which one they 
employ in any given scenario may be influenced by the energy costs to do so, which are affected by 
the details of the immediate environment in combination with their body size. Measuring energetics 
of arboreal apes is not tractable, thus our knowledge in this area is limited. We devised a novel, 
custom-made experimental setup to record the energy expenditure of parkour athletes tree-
swaying, jumping, and vertical-climbing. The latter strategy was vastly more expensive indicating 
that when energy economy is the focus arboreal apes will prioritise routes that limit height changes. 
Whether tree-swaying or jumping was most economical for the athletes depended upon interactions 
between tree stiffness, the distance to cross, number of tree-sways required and their own mass. 
Updated analysis of previous inter-specific correlations suggests that whether the relative costs to 
vertical climb are size-invariant across primate species is complicated by details of the climbing 
context.  
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1. Introduction 

Animals strive to navigate their environment efficiently since they must ensure that the energy they 
expend to forage does not outweigh the energy they gain from food. A classic example of solving this 
problem in an energy-demanding environment is provided by tree-living apes, which frequently 
encounter gaps in the forest canopy. To avoid taking a circuitous detour, apes may instigate one of 
several gap crossing strategies. While jumping and descending to cross terrestrially may be used in 
such situations, the most iconic gap-crossing behaviour is the tree-sway performed by orang-utans, 
whereby a tree trunk is oscillated to aid in reaching peripheral branches of the next tree that would 
otherwise be out of reach [1].  

Which available gap crossing method is energetically cheapest for a large-bodied arboreal ape, and 
indeed which locomotion strategy is most economic when travelling through continuous forest 
canopy, is likely to be influenced by the interactions between properties of the animal’s immediate 
environment such as the compliance and natural frequency of branches, along with their own size 
[2]. Beyond modelled estimates [1], little is known about the energetic costs of primate arboreal 
locomotion. 

We use a novel and innovative approach to tackle this issue, including manufacturing a custom-
made tree-sway support using glass fibre poles to realistically simulate the compliance of forest 
trees. Humans today still share many of the adaptations for orthograde arboreality exhibited by the 
other apes, such as a broad and shallow chest, and also shoulder blades positioned to enable 
extensive range of motion in the shoulders [3, 4]. Many populations of humans remain adept at 
arboreal locomotion [5, 6], and this includes practitioners of certain sports, most notably parkour 
athletes, who have elite gymnastics and athletic abilities allowing them to emulate the locomotion 
of arboreal apes [7]. Parkour athletes specialize in developing new techniques for moving through 
complex, three-dimensional urban environments whilst avoiding the ground. These involve the limbs 
in a wide range of joint positions, in suspension and compression, much like the locomotion of living 
non-human apes [2, 8]. 
 
We measured the energy expenditure of professional parkour athletes during tree-swaying, jumping 
and vertical climbing, and used this referential model to test previous estimates based on mechanics 
[1], to compare the costs of different arboreal locomotor behaviours, and to gain some empirical 
insight into how environmental variation and body mass can affect the relative energy costs of these 
behaviours. 
 
 
2. Materials and methods 

Empirical data 

Twenty-eight parkour proponents undertook horizontal jumping, tree-sway and vertical climbing (Figure 1). 
Each activity involved multiple conditions designed to represent, within reason, the varying mechanical 
conditions experienced by arboreal apes in a forest canopy. The jumping conditions were a short and a long 
standing jump. The tree-sway conditions were denoted by different pole stiffnesses to represent a wide range 
of tree trunk stiffnesses that can be swayed to bridge canopy gaps. A ladder represents an ideal tree for 
climbing and ’ladder climb’ is a defined locomotor code for arboreal primates [2] while a rope emulates tree 
vines ubiquitous in tropical rainforests and often used by apes to ascend into tree crowns [2]. During all these 
activities, rate of oxygen consumption (V’O2) was measured via a mobile respiratory gas analyser (Oxycon 
mobile, Viasys) [9]. 

Horizontal jumping involved repeated jumping at 1.2 or 1.8 m, at 0.2 Hz. The tree-sway apparatus comprised 
three 5-m fibreglass poles of differing thicknesses and stiffness, held vertically by attachment to a base plate. 
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Each pole included foot supports 2 m from the top of the pole. Up to three different conditions were recorded 
for each pole, represented by different amounts of displacement (low, medium and high) as chosen by the 
participant. For vertical climbing, participants climbed up and down a 5-m rope. After at least 15 minutes of 
rest to ensure that oxygen consumption and blood lactate levels had returned to baseline, participants then 
climbed a vertical ladder, matching repetitions to the rope trial.  

For horizontal jumping and tree-sway, the last of four minutes of V’O2 data was used to calculate mean rate of 
energy expenditure during the activity. In the vertical climbing trials V’O2 was also recorded during the 
subsequent period of excess post-exercise oxygen consumption, to account for anaerobic metabolism. 
Furthermore, blood lactate levels were taken before and after each trial. These measures were combined to 
calculate rate of energy expenditure [10]. 

See supplementary material for further details. 

Model building 

Based on the empirical data, models were produced to estimate and compare the energetic cost to cross a gap 
in the forest canopy by jumping or tree-swaying under various scenarios. Model outputs provided a 3D 
landscape of the energy costs of gap crossing dependent on gap distance and tree stiffness. Each model 
included a fixed number of tree-sways required to reach the target tree, and a fixed body mass. 

The energy costs of swaying were calculated from equations derived from multiple linear regressions to 
predict total oxygen consumption (VO2) per sway cycle from body mass and sway amplitude for each pole 
thickness separately. The sway distance required to cross a given gap was less than the actual gap due to arm 
reach. Standard digital analysis applied to orang-utan tree-sway videos (6 independent recordings of wild 
orang-utans representing both sub-species, some of which were analysed in [1]) indicated that a median of 
71.6% of the exhibited reach of the animal was used to reach horizontally to the target tree or vine, with the 
rest of the distance made up by swaying the tree. This value was used in the model to estimate the sway 
amplitude required to bridge the gap assuming the mean arm span of the participants in the empirical study 
(158.3 ± SD 7.3 cm). Sway amplitudes of 0.4 to 0.7 m were modelled, at 0.1 m increments. For gap distances of 
1.8 m, jumping cost was estimated from a prediction equation based on V’O2 and body mass measured in the 
present study for jumps of 1.8 m. For 1.5 to 1.7 m inclusive, jumping cost was estimated given the linear 
relationship between jumping distance and V’O2, between the recorded distances of 1.8 and 1.2 m. 

 

3. Results and Discussion 

Thorpe et al. [1] estimated the energetic cost for a model arboreal ape to cross a canopy gap based 
on the external (mechanical) work done. The present empirical values (Table 1) suggest that actual 
gap crossing costs by jumping, tree-swaying or vertical climbing are each an order of magnitude 
larger than the model estimates. While parkour athletes may be less energetically economical at gap 
crossing than arboreal apes, this marked difference in costs also holds for ladder climbing. This 
suggests the main explanation for the difference between empirical and model values is that the 
external work to move the body is a fraction of the entire metabolic cost to perform the activity. 
Alongside basal metabolic rate and inherent muscular inefficiency, work done that is not directly 
related to movement of the animal surely accounts for much of this discrepancy. This is clearly 
demonstrated by the vertical climbing activities; the energetic cost to descend and ascend a rope is 
around twice that for a ladder, despite the external work done on the body (i.e. work against gravity) 
being the same. Indirect energy costs for rope climbing include skeletal muscle contractions to 
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maintain body posture, substantial movement of body parts around the centre of mass to enable 
propulsion along the rope, and gripping the rope. These same factors feature in ladder climbing but 
clearly to a lesser extent. 

Nonetheless, gap crossing can save a lot of energy compared to taking a detour and thus extending 
the route through the trees. Parkour athletes traversing an arboreal-like course expended around 
1.2 kJ/m [7]; Table 1 indicates that the cost to sway or jump across a gap for these athletes is around 
5 kJ/m, thus saving them energy if their detour to circumnavigate that gap would amount to 
anything more than just a few metres. 

Hanna et al. [11] reported that the mass-specific metabolic costs to climb are constant across 
primates of differing size. For humans they used an estimate derived from rock climbing data (~68 
J/kg/m). This is similar to our value for ladder climbing (Table 1; suggesting that the costs of ascent 
and descent during climbing are similar to each other, probably because of the aforementioned 
indirect energy costs), and about half that of rope climbing. Replacing the human data point in [11] 
with that for ladder climbing maintains a negative inter-specific relationship between cost of 
transport and body mass, and is highly correlated (R2=0.97; supplementary information). This means 
that climbing efficiency is highly positively correlated with mass, and indicates that smaller-bodied 
species experience increased relative metabolic climbing costs (~two-fold). In contrast, including 
instead the value for rope climbing results in no inter-specific relationship between mass and 
climbing efficiency. However, humans may be inefficient rope climbers. The human data point is 
particularly influential on the slope because the dataset includes no data for non-human apes. Thus, 
we cannot yet conclude whether relative climbing costs are invariant across primate body sizes; the 
details of the climbing context (e.g. vegetation type) and the plasticity of great ape behaviour can 
heavily affect the metabolic costs to climb and in turn inter-specific comparisons based on size 
alone. 

Both [1] and the empirical findings of the present study concur that vertical climbing is an order of 
magnitude more energetically expensive than tree-swaying or jumping, underlining the substantial 
costs for an ape to climb directly against gravity. This suggests that when focussing on energetic 
economy, arboreal primates will aim to move through the trees in ways that limit their changes in 
height above the forest floor. When they do accept noteworthy losses in height to make progress 
this likely indicates morphological limitations and/or an overriding focus on safety in terms of 
limiting the risk of injury from falling. 

Our models indicate that the energy expended to sway or jump is greatly affected by the details of 
the local environment (gap distance, branch stiffness), and the mass and reach of the animal (Figure 
2). Larger animals can experience greater energy savings by jumping instead of tree-swaying than 
can smaller animals. Yet smaller individuals are more inclined to jump. For heavier individuals the 
threat of injury, e.g. due to a breaking branch, overrides the opportunity to save energy. Some 
populations of orangutans spend more time on the ground than previously believed [12]. The high 
relative energy cost of climbing up and down emphasises the nutritional importance of terrestrial-
based foods and the value of social and fleeing opportunities available on the ground.  

Our study brings into question well-held beliefs about how the costs of climbing scale with body 
mass and demonstrates the importance of ecological context in understanding performance. 
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Table 1. Estimates of energy costs to bridge a canopy gap based on equations in [1] and on empirical 
measurements. 

 Thorpe et al. (2007) [1] Present study 
Body mass (kg) 75.3 

Height from ground (m) 4.0 
Gap distance (m) 1.8 

Sway distance (m)* 0.67 
No. half tree-sway cycles** 6 

Stiffness of tree (N m-1) 925 1485 1922 925 1485 1922 
Work to sway (kJ) 0.26 0.41 0.53 3.30 3.54 4.07 
Work to jump (kJ) 0.7 5.2 

  Rope Ladder 
Work to vertically climb (descend 

and ascend) (kJ) 
3.0 36.6 18.3 

Body mass is the study participant mean; height from ground is at the participant centre of mass during tree-
swaying; gap distance is the higher of the two jump distances tested in the study; sway distance is the 
calculated distance required to sway accounting for reach; no. half sway cycles is the average of those 
presented in [1]; tree stiffness values are those of the three tree-sway poles. 

* Orang-utan reach was not accounted for in [1]. 

** [1] calculates the energy cost to tree-sway based on half cycles, e.g. 6 half tree-sway cycles represents 3 full 
tree-sways.  
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Figure 1. Horizontal jumping (A); pole swaying (B); climbing a ladder (C) and a rope (D). Photographs 
by Lewis Halsey. 
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Figure 2. The modelled energy cost for an arboreal ape to cross a canopy gap of typical distance by 
either jumping or tree-swaying. Each panel displays an energy cost landscape: energy expenditure is 
on the y axis, supported by a colour scale. This landscape is related to tree stiffness and gap 
distance, and represents a unique combination of ape body mass (60, 75 or 90 kg) and number of 
sways (3.5, 4.5 or 5.5). The area of each landscape grey-shaded indicates the tree stiffnesses and gap 
distances where jumping to cross the gap is energetically cheaper than tree-swaying. The range on 
the y axis differs for each body mass to maximise resolution. View the figure in colour for full clarity. 
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