UNIVERSITY OF BIRMINGHAM

Research at Birmingham

Adverse drug reactions

Coleman, Jamie: Pontefract, Sarah

DOI: 10.7861/clinmedicine.16-5-481

License: None: All rights reserved

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard): Coleman, J & Pontefract, S 2016, 'Adverse drug reactions', Clinical Medicine, vol. 16, no. 5, pp. 481-485. https://doi.org/10.7861/clinmedicine.16-5-481

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Checked 18/11/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private

study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

AUTHOR QUERIES

۲

Title: Adverse drug reactions Jamie J Coleman and Sarah K Pontefract Authors:

 Check all names and affiliations are listed correctly.
 Their use if more limited to identify a small increase and he rate of common events such as myocardial infarction or stroke' – please clarify this sentence, it seems incomplete.

3. Define TPMT in Table 1.

۲

Clinical Medicine 2016 Vol 16, No 5: 1-5

CME CLINICAL PHARMACOLOGY

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Adverse drug reactions

Authors: Jamie J Coleman^A and Sarah K Pontefract^B

Adverse drug reactions (ADRs) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics, an ageing population and rising multimorbidity. This article summarises some of the key facts about ADRs and explores aspects relating to their prevention, diagnosis, reporting and management in current clinical practice.

Basics of adverse drug reactions

An adverse drug reaction (ADR) can be defined as 'an appreciably harmful or unpleasant reaction resulting from an intervention related to the use of a medicinal product; adverse effects usually predict hazard from future administration and warrant prevention, or specific treatment, or alteration of the dosage regimen, or withdrawal of the product'.1 Since 2012, the definition has included reactions occurring as a result of error, misuse or abuse, and to suspected reactions to medicines that are unlicensed or being used off-label in addition to the authorised use of a medicinal product in normal doses.² While this change potentially alters the reporting and surveillance carried out by manufactures and medicines regulators, in clinical practice it should not affect our approach to managing ADRs.

Seminal research undertaken in the late 20th and early 21st century in the USA and the UK demonstrated that ADRs are a common manifestation in clinical practice, including as a cause of unscheduled hospital admissions, occurring during hospital admission and manifesting after discharge.³⁻⁶ The incidence of ADRs has remained relatively unchanged over time, with research suggesting that between 5 and 10% of patients may suffer from an ADR at admission, during admission or at discharge, despite various preventative efforts. Inevitably, the event frequency is associated with the method used to identify such events and the majority of ADRs do not cause serious systemic manifestations. Nevertheless, this frequency of potential harm needs to be considered carefully because it has associated morbidity and mortality, can be financially costly and has a potentially negative effect on the prescriber-patient relationship.

56 ssor of clinical pharmacology and medical Authors: A education, University of Birmingham and honorary consultant 58 physician. University Hospitals Birminaham NHS Foundation Trust. 59 Birmingham, UK; ^Bresearch pharmacist, University of Birmingham, 60 Birmingham, UK

© Royal College of Physicians 2016. All rights reserved.

Medicines that have been particularly implicated in ADR-related hospital admissions include antiplatelets, anticoagulants, cytotoxics, immunosuppressants, diuretics, antidiabetics and antibiotics. Fatal ADRs, when they occur, are often attributable to haemorrhage, the most common suspected cause being an antithrombotic/anticoagulant co-administered with a non-steroidal anti-inflammatory drug (NSAID).7

Classification of adverse drug reactions

Traditionally ADRs have been classified into two types:

- 1 Type A reactions sometimes referred to as augmented reactions - which are 'dose-dependent' and predictable on the basis of the pharmacology of the drug
- 2 Type B reactions bizarre reactions which are idiosyncratic and not predictable on the basis of the pharmacology.⁸

Key points

۲

Adverse drug reactions (ADRs) – unintended, harmful events attributed to the use of medicines – occur as a cause of and during a significant proportion of unscheduled hospital admissions.

A careful medication history can assist a prescriber in understanding the patient's previous experiences with drug treatment particularly in identifying previous ADRs that may preclude re-exposure to the drug.

Preventing ADRs depends on avoiding treatment in cohorts of patients who are at increased susceptibility or providing treatment under a therapeutic plan that reduces the risk of an adverse effect (eg co-administration of other drugs, monitoring blood test results).

Spontaneous reporting (using the Yellow Card Scheme in the UK) based on the suspicion of an ADR is an important part of pharmacovigilance but, overall, ADRs are vastly underreported across healthcare settings and sectors. If in doubt, it is best to submit a report.

KEYWORDS: Adverse drug reactions, clinical pharmacology, drug-related side effects and adverse reactions, pharmacovigilance, adverse drug reaction reporting systems

43

44

45

46

47

48

49

50

51

52

53

54

55

57

CME Clinical pharmacology

Although still widely quoted, this basic classification does not work for all ADRs, such as with chronic adverse effects associated with cumulative drug exposure (eg osteoporosis with long-term corticosteroid treatment) or withdrawal reactions (eg rebound hypertension with centrally-acting antihypertensive cessation). An alternative and perhaps more comprehensive classification scheme is 'DoTS', which classifies reactions dependent on the Dose of the drug, the Time course of the reaction and relevant Susceptibility factors (such as genetic, pathological and other biological differences).9 As well as classifying reactions, DoTS has the advantage of being helpful to consider the diagnosis and prevention of ADRs in practice.

Preventing adverse drug reactions

- While some ADRs are unpredictable – such as anaphylaxis in a patient after one previous uneventful exposure to a penicillin-containing antibiotic - many are preventable with adequate foresight and monitoring. Preventability (or avoidability) usually refers to when the drug treatment plan is inconsistent with current evidence-based practice or is unrealistic when taking known circumstances into account.¹⁰ Epidemiological studies tend to find that between a third and a half of ADRs are (at least potentially) preventable although preventability is much easier to diagnose in hindsight. However, interventions that reduce the probability of an ADR occurring can be an 2.6 important way to reduce the risk of patient harm. There are two basic steps that can be following to prevent an ADR occurring:
 - 1 identify the subgroup of patients who are likely to be susceptible to the adverse effect and modify the treatment choice accordingly
 - 2 ensure the treatment plan mitigates any possible adverse effects.
- Identifying susceptibility

- Knowledge of patient susceptibilities can inform your
- prescribing decision and reduce the risk of an ADR. A
- patient's medication history will identify any previous ADRs

and therefore preclude re-exposure to the drug. In other cases, susceptibility factors such as age, gender, pregnancy status and ethnicity can help predict the risk of an ADR occurring. For example, National Institute for Health and Care Excellence guidance has suggested that patients of African or Caribbean descent should be prescribed an angiotensin-II receptor blocker in favour of an angiotensin converting enzyme (ACE) inhibitor for hypertension because of the risk of ACE inhibitor-induced angioedema. Pharmacogenetics is starting to yield more personalised medicine choices by predicting who is more susceptible to suffer a specific ADR (Table 1).

Clinical decision support systems available at the point of care can inform practitioners of any patient specific cautions to treatment or additional monitoring requirements to reduce the risk of harm. A detailed discussion is beyond the remit of this paper, but practitioners should not rely on decision support as systems vary widely in their provision of information from absence of relevant alerts to information overload leading to alert fatigue.

Treatment plan

Prudent, safe prescribing is key to reducing errors that can contribute to ADRs. Treatment plans should consider and mitigate for any possible adverse effects.¹¹ For example, coprescription of folic acid with methotrexate will reduce the incidence of adverse effects associated with folate deficiency; and monitoring electrolytes and renal function when treating with renally active drugs or diuretics. These examples can all prevent treatment-emergent adverse effects although may be limited because monitoring recommendations are often inadequate or ambiguous. It is important to remember that prudent prescribing may also avoid the use of drugs altogether and the treatment plan should always consider nonpharmacological or conservative options.

Overall a systems approach, involving multiple strategies and including the patient and all healthcare professionals, is required to reduce the risk of an ADR and prevent those 'avoidable' reactions occurring in practice.¹²

43 44	Table 1. Examples of pharmacogenetic susceptibility for drug-specific adverse drug reactions.							
45	Drug/drug class	Pharmacogenetic	Additional susceptibility factors	Example of clinical context				
46 47 48	Carbamazepine	<i>marker</i> <i>HL</i> 5:02 (in the populations listed)	Han-Chinese, Thai and Malaysian populations	Marker for carbamazepine-induced Stevens- Johnson syndrome and toxic epidermal necrolysis				
49 50 51	Simvastatin	SLCO1B1 (solute carrier organic anion transporter 1B1)	Advanced age, untreated hypothyroidism, excess physical activity, concomitant medications (eg fibrates)	Statin-induced rhabdomyolysis (rare) whose risk is four times greater with single defective allele, 16 times greater with two defective alleles				
52 53 54 55	Abacavir	HLA-B*57:01	Higher CD8 cell count at start of therapy	Marker for abacavir-induced hypersensitivity reactions with fever, rash, lethargy and abdominal and acute respiratory symptoms				
56	Thiopurines	Thiopurine Methyl	N/A	1 in 10 individuals are heterozygous (50%				
57 58	(Azathioprine and mercaptopurine)	Transferase Activity		normal TPMT activity) and 1 in 300 have completely deficient activity. Thiopurine-induced				
59 60				myelosuppression is associated with TPMT activity.				
60 61	N/A = not applicable; The second se							

© Royal College of Physicians 2016. All rights reserved.

CME Clinical pharmacology

Diagnosing adverse drug reactions

1

2

3

4

5

6

7

8

9

27

ADRs are one of the great mimics in healthcare, often emulating 'traditional diseases' and manifesting in all systems of the body. Drug-related problems in patients admitted to hospital may present in many different ways, including weakness or drowsiness, biochemical or haematological derangements (such as acute kidney injury, electrolyte imbalance or anaemia), bleeding, gastrointestinal disturbances, hypoglycaemia or healthcare-associated 10 infections such as Clostridium difficile. However, rarer 11 manifestations - such as drug-induced lupus, fixed drug 12 eruptions, drug-induced eosinophilia or angioedema -13 require a level of vigilance and suspicion on behalf of the 14 clinician who should look very hard to identify a causative 15 agent. A comprehensive medication history is fundamental 16 in identifying any possible connection between a presenting 17 complaint or subsequent finding and an ADR, as well 18 as preventing future ADRs. Various criteria can help in 19 attributing causality to a particular drug (Table 2). 20 In some cases, specific investigations can assist in the 21 diagnosis of an ADR by providing objective evidence of the 22 reaction and confirming a drug-induced disease. For example, 23 organ-specific damage accompanied by intracellular tissue 24 deposition of the drug or a metabolite (eg indinavir crystalluria 25 and nephropathy).¹⁴ 26

28						
29	Table 2. Medication history elements that may					
30	assist clinical assessment of adverse drug reaction					
31	(ADR) probability.					
32 33	Question	Clinical relevance				
34	Have you taken the	Prior drug exposure doesn't				
35	medication before without	entirely rule out an ADR, although				
36	adverse effects?	tolerating treatment previously				
37		may make hypersusceptibility				
38		reactions less likely				
39	Did anything else change	Examination of whether there				
40	around the time of	are alternative causes (other than				
41	possible ADR other than	the suspected drug) that could				
42	the suspected drug (eq	on their own have caused the				
43	other treatments, over-the-	reaction				
44	counter medicines, disease					
45	progression)					
46	Did the reaction occur only	While not all ADRs occur				
47	after the drug was started?	immediately or early in therapy				
48	arter the drug was started.	(ie on drug challenge), an effect				
49		occurring before drug exposure is				
50		good counter evidence				
51	Dilul					
52	Did the reaction resolve	Effects that disappear				
53	when the drug was	when treatment is stopped				
54	stopped (or when a specific	(de-challenge) may increase				
55	treatment was given)?	suspicion of an ADR unless an irreversible reaction				
56		Ineversible reaction				
57	Was there ever intentional	An ADR occurring on re-exposure				
58	or accidental use of the	to a drug increases the probability				
59	drug following an ADR?	of a causal relationship				
60	Based on original criteria described	by Naranjo et al (1981)				
61						

© Royal College of Physicians 2016. All rights reserved.

Pharmacovigilance

Pharmacovigilance is defined as 'the science and activities relating to the detection, assessment, understanding and prevention of adverse events or any other drug-related problem'.15

New legislation was introduced in the European Union in 2012 to ensure good vigilance practice for pharmaceutical companies and the medicines regulators. This new guidance clearly identifies the roles and responsibilities of relevant stakeholders in terms of drug safety. Notably, the guidance has introduced a programme of more intensive surveillance for new pharmacological agents and biological agents with black triangle status (ie those requiring additional monitoring). One of the guiding principles is that the pro-active strategies of the risk management policy replace the previous reactive strategies.

Reporting of adverse drug reactions

The mainstay of detecting potential ADRs over the last half a century has been spontaneous reporting systems such as the Yellow Card Scheme in the UK, operated by the Medicines and Healthcare Products Regulatory Agency (MHRA) and the Commission on Human Medicines (CHM). The scheme was founded in 1964 following the thalidomide disaster in the late 1950s. Through spontaneous reporting, the scheme collects data of suspected ADRs related to all licensed and unlicensed medicines and vaccines, including those issued on prescription or purchased over-the-counter. For a report to be valid, only four items of information are required: an identifiable patient, a reaction, a suspected medicinal product and an identifiable reporter. However, reporters are encouraged to provide as much information as possible, ie to provide additional data and clinical context for assessors. The UK scheme continues to receive in the region of 25,000 reports per year and provides the medicine regulators an insight into the occurrence of ADRs. Unfortunately, underreporting remains a key challenge, with fewer than 5% of all ADRs estimated as being reported in practice. This limits the ability of systems to give accurate incidence data. In 2014, NHS England and the MHRA issued a joint alert: Improving medication error incident reporting and learning. As part of this, ADRs occurring as a result of medication errors reported to the National Reporting and Learning System (NRLS) will automatically be reported to the Yellow Card Scheme.

Patients are increasingly involved in their own therapeutic management and, because an early assessment of patient Yellow Card reporting proved the value of this approach,¹⁶ all patients are now actively encouraged to report ADRs. Paper reports (on the original yellow cards) have largely been superseded by online reporting systems or use of the Yellow Card app. Electronic health records used in general practice and in some hospitals can also include integrated reporting that sends data on ADRs directly to central agencies for processing before entry into national and international databases

Spontaneous reporting systems, while widely adopted for pharmacovigilance, are most effective when the adverse events are rare and uncommon (less than 1% of treated patients) and when the event is typical of a drug-induced condition (eg

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

62

CME Clinical pharmacology

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

19

20

Specific treatments	Drug/drug class causing ADR	Clinical effect of treatment	Clinical context
Naloxone	Opioids	Antidote for opioid toxicity	Widely used for treatment of overdosage with opioids in a non-medical setting and reversal of postoperative respirato depression
Icatibant	ACE inhibitors	Treatment for life-threatening angioedema affecting airway/ head and neck	This selective bradykinin B2 receptor antagonist has prover to reduce the time to complete resolution of angioedema
Idarucizumab	Dabigatran	Antidote for the reversal of direct oral thrombin inhibitor	Novel humanised monoclonal antibody fragment develope as specific reversal agent, promptly restoring dabigatran- prolonged coagulation parameters to baseline values
Intravenous lipid emulsion (Intralipid®)	Local Anaesthetics (eg lidocaine)	Treatment for systemic toxicity from local anaesthetic agents (eg severe cardiotoxic effects)	Reduce adverse effects resulting from inadvertent local anaesthetic overdoses, intravascular injections, or rapid absorption effects from injections in highly vascular sites

erythema multiforme). The e if more limited to identify a
small increase in the rate of common events such as myocardial
infarction or stroke. This is the reason why recent drug safety
scandals, such as thiazolidinedione-induced and rofecoxibinduced cardiovascular events, remained undetected despite
widespread use of these agents.

While beyond the scope of this article, modern signal 28 generation can detect early potential signals of harm and 29 alert clinicians to potential new therapeutic risks. Complex 30 statistical data-mining algorithms are run routinely to detect 31 such signals but usually require further assessment before being 32 actioned. The ability to examine drug exposure and potential 33 adverse events in databases such as the Clinical Practice 34 Research Datalink (CPRD) - the database of anonymised 35 longitudinal UK primary care records – can support or refute 36 the existence of potential signals. 37

There are many other methods and data streams used in pharmacovigilance, including formal drug safety studies, published data, pharmaceutical company data from periodic safety update reports (PSURs) and shared international data. However, regulators and scientists are also looking at the ability of other 'big data' sources, such as social media, to detect early signals; this remains an exciting and largely unexplored area of research.

45 46

47 Managing adverse drug reactions

48 Altering a dosage regimen or withdrawing a medicine 49 suspected of causing an ADR are common methods of 50 managing ADRs in practice. However, the course taken to 51 manage an ADR is likely to vary from clinician to clinician. 52 Under EU legislation, the approval of all new medicines 53 onto the market must now be accompanied by a robust risk 54 management plan from the marketing authorisation holder, 55 $\operatorname{solution}$ as ongoing safety trials – may involve the which -56 development of specific treatments for managing specific 57 ADRs. Such has been the case with antidotes for direct oral 58 anticoagulant-induced bleeding. This and other notable 59 examples of approaches for the management of specific ADRs 60 are shown in Table 3. 61

Conclusion

Herein we have discussed the identification, management and reporting of ADRs. We have described how modern technology is changing the way that ADRs are predicted, prevented, detected and managed, and how we continue to try and improve these processes with technological advances. Individualised therapy is becoming more of a possibility as not just pharmacogenetics but other phenotypic information can be combined to generate patient-specific advice to prescribers. Such regulatory science at national and international level can help achieve a positive benefit-to-harm ratio throughout the lifecycle of a medicinal product. For individual clinicians, achieving the best outcomes from therapies remains a key goal because avoiding or mitigating the risk of ADRs continues to challenge our everyday clinical practice.

Conflicts of interest

JJC is a member of the Pharmacovigilance Expert Advisory Group of the Medicines and Healthcare Products Regulatory Agency (MHRA) and an honorary consultant at the West Midlands Centre for Adverse Drug Reactions, which receives funding from the MHRA through the Yellow Card Centre.

Acknowledgments

The views expressed in this publication are those of the authors alone and are not necessarily those of the MHRA, the University of Birmingham or University Hospitals Birmingham NHS Foundation Trust.

References

- Aronson JK, Ferner RE. Clarification of terminology in drug safety. Drug Saf 2005;28:851–70.
- 2 European Directive 2010/84/EU of 15 December 2010 amending, as regards pharmacovigilance, Directive 2001/83/EC on the Community code relating to medicinal products for human use.
- 3 Bates DW, Leape LL, Petrycki S. Incidence and preventability of adverse drug events in hospitalized adults. *J Gen Intern Med* 1993;8:289–94.

© Royal College of Physicians 2016. All rights reserved.

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

62

CME Clinical pharmacology

1	4	Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug	12 Rommers MK, Teepe-Twiss IM, Guchelaar HJ. Preventing adverse	62
2		reactions in hospitalized patients: a meta-analysis of prospective	drug events in hospital practice: an overview. Pharmacoepidemiol	63
3		studies. JAMA 1998;279:1200–5.	<i>Drug Saf</i> 2007;16:1129–35.	64
4	5	Pirmohamed M, James S, Meakin S <i>et al</i> . Adverse drug reactions	13 Naranjo CA, Busto U, Sellers EM <i>et al.</i> A method for estimating	65
5		as cause of admission to hospital: prospective analysis of 18 820 patients. <i>BMJ</i> 2004;329:15–9.	the probability of adverse drug reactions. <i>Clin Pharmacol Ther</i> 1981;30:239–45.	66
6	6	Davies EC, Green CF, Taylor S <i>et al.</i> Adverse drug reactions in	14 Hauben M, Aronson JK. Gold standards in pharmacovigilance: the	67
7	0	hospital in-patients: a prospective analysis of 3695 patient-episodes.	use of definitive anecdotal reports of adverse drug reactions as pure	68
8		PLoS One 2009;4:e4439.	gold and high-grade ore. Drug Saf 2007;30:645–55.	69
9	7	Wester K, Jönsson AK, Spigset O, Druid H, Hägg S. Incidence of	15 World Health Organization. <i>The importance of pharmacovigilance</i> .	70
10		fatal adverse drug reactions: a population based study. Br J Clin	Geneva: World Health Organization, 2002.	71
11		Pharmacol 2008;65:573–9.	16 Avery AJ, Anderson C, Bond C et al. Evaluation of patient	72
12	8	Rawlins MD, Thompson JW. Pathogenesis of adverse drug	reporting of adverse drug reactions to the UK 'Yellow Card	73
13		reactions. In: Davies DM, ed. Textbook of adverse drug reactions.	Scheme': literature review, descriptive and qualitative analyses, and	74
14		Oxford: Oxford University Press, 1977:10.	questionnaire surveys. Health Technol Assess 2011;15:1–234, iii-iv.	75
15	9	Aronson JK, Ferner RE. Joining the DoTS: new approach to		76
16	10	classifying adverse drug reactions. <i>BMJ</i> 2003;327:1222–5. Ferner RE, Aronson JK. Preventability of drug-related harms - part	Address for correspondence: Prof J Coleman, Institute	77
17	10	I: a systematic review. <i>Drug Saf</i> 2010;33:985–94.	of Clinical Sciences, The Medical School, Vincent Drive,	78
18	11	Coleman JJ, Ferner RE, Evans SJ. Monitoring for adverse drug	Edgbaston, Birmingham B15 2SP, UK.	79
19		reactions. Br J Clin Pharmacol 2006;61:371–8.	Email: j.j.coleman@bham.ac.uk	80
20				81
21				82
22				83
23				84
24				85
25				86
26				87
27				88
28				89
29				90
30				91
31				92
32				93
33				94
34				95
35				96
36				97
37				98
38				99
39				100
40				101
41				102
42				103
43				104
44				105
45				106
46				107
47				108
48				109
49				110
50				111
51				112
52				113
53				114
54				115
55				116
56				117
57				118
58				119
59				120
60				121
61				122