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Highlights 

 Monodisperse ZnFe2O4 nanospheres were synthesized via a nonaqueous route. 

 ZnFe2O4 nanospheres have diameters of 7-16 nm and a large surface area of 87.40 m2/g. 

 ZnFe2O4 nanospheres show a high pontential for detecting low-ppm-level toluene. 

 ZnFe2O4 nanospheres exhibit good linearity with a high response and excellent 

selectivity. 

 

 

 

 



Abstract 

Monodisperse ZnFe2O4 nanospheres were succesuffully synthesized via a nonaqueous 

route in benzyl alcohol at low temperaure of 200 °C. It was found that the ZnFe2O4 is 7-16 

nm in diameter with a large surface area of 87.40 m2/g. The gas sensor based on ZnFe2O4 

nanospheres shows a high pontential for detecting low-ppm-level toluene, exhibiting a good 

linearity ranging from 1-100 ppm with a high response (100 ppm: 9.98) and excellent 

selectivity. 

Keywords: ZnFe2O4 nanospheres; Nonaqueous synthesis; Gas response; Toluene; 

Low-ppm-level; Selectivity 



1. Introduction 

Toluene (C7H8) is widely used in chemical industry and found to be neurotoxi, which is 

harmful to human beings even at a very low concentration [1]. An effective detection of 

toluene gas is of great benefit to both the environment and our own humanity. Many sensing 

materials such as SnO2 [2], ZnO [3], WO3 [4], α-Fe2O3 [5], In2O3 [6], Co3O4 [7], CuO [8], 

etc., and their hybrids [9,10] have been prepared for toluene detection. However, a highly 

selective detection of low-ppm-level toluene still remains a great challenge. As a 

multifunctional n-type semiconductor, ZnFe2O4 has attracted much attention in the fields of 

gas sensors, catalysts, magnets, Li-ion batteries and solar cells [11-18]. In particular, the 

excellent gas-sensing properties of various ZnFe2O4 materials have been extensively 

explored in recent years. For instance, the earlier works have been demonstrated, such as 

ZnFe2O4 particles to H2S [14], ultrafine powder to Cl2 [15], ZnFe2O4/ZnO to n-butanol [16], 

porous ZnFe2O4 nanoshpheres to acetone [17], and so on. However, the sensing 

performances of ZnFe2O4 towards toluene is yet reported but highly fascinating.  

ZnFe2O4 nanostructures have been prepared through various apporachs and investigated 

for diverse purposes. In which, nonaqueous approaches in organic solvents under exclusion 

of water have been reported to offer many advantages in controlling synthesis. The organic 

component in the reaction mixture not only acts as the oxygen supplying agent but also 

strongly influences products in terms of their particle size, shape, surface and assembly 

properties [19-21]. Many metal oxide nanoparticles, hybrid nanomaterials, aerogel and thin 

films with different shapes and sizes have been prepared based on the nonaqueous approach 

[19-25]. A solvent of benzyl alcohol has typically been used, the group of Niederberger in 



particular, to prepare nanocrystals of different metal oxides [19,23,24]. The benzyl alcohol 

prevents the use of any surfactants and itself may play a multiple role as reaction medium, 

oxygen supplying and/or capping agent [19].  

In this commnication, we report the synthesis of monodisperse ZnFe2O4 nanospheres by 

a nonaqueous route and its application for toluene detection. The synhesis was performed at 

200 °C for 24 h using nonaqueous zinc acetate and Iron (Ⅲ) acetylacetonate as precursors 

and benzyl alchol as oxygen supplying agent. The obtained ZnFe2O4 nanopheres was 

characterized via X-ray diffraction, transmission electron microscopy (TEM), and X-ray 

photoelectron spectroscopy (XPS). The high sensitivity and excellent selectivity of the 

ZnFe2O4 nanospheres towards toluene detection was evaluated at the operating temperatrue 

of 300 °C.  

2. Experimental section 

2.1 Materials synthesis 

All of the analytical grade reagents in this work were purchased from Aladdin and were 

used directly without any further purification. A typical preparation procedure was as follows: 

1 mmol nonaqueous Zinc acetate and 2 mmol Iron (III) acetylacetonate were dissolved in 30 

ml benzyl alcohol under stirring for 30 min. Subsequently, the resulting solution was 

transferred into 50 ml Teflon-lined stainless-steel autoclave. The crystallization was carried 

out at 200 °C for 24 h. When the autoclave was cooled naturally down to room temperature, 

the products were washed thoroughly with acetone, ethanol, and deionized water for several 

times. The final ZnFe2O4 powder was collected after dried at 60 °C.  

2.2 Materials characterization 



The crystal structure and phase identification of the as-synthesized ZnFe2O4 were 

estimated by X-ray diffraction (XRD, Rigaku TTRIII) using Cu K 1 radiation (with an 

incident X-ray wavelength of 1.54056 Å). The energy-dispersive X-ray spectroscopy (EDX) 

was carried out by a FEI QUANTA 200 equipped with an EDX attachment. Transmission 

electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) 

measurements were performed on a JEM-2100 (JEOL, Japan) at an operating acceleration 

voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) analysis was conducted using 

ESCALAB system with Al Kα X-ray radiation under a working voltage of 15 kV. The 

specific surface area of the as-prepared material was tested using Nitrogen adsorption 

isotherm method at 77.3 K with a Micromeritics ASAP 2010 automated sorption analyzer. 

Before the measurement, the sample was degassed under vacuum at 300 °C for 3 h. 

2.3 Gas sensor preparation and measurement 

The as-synthesized ZnFe2O4 nanospheres were used to fabricate gas sensors as 

following. A certain amount of products were firstly grinded with an appropriate amount of 

deionized water to form a paste. Then, the paste was carefully painted onto the outside 

surface of an alumina tube (4 mm in length, 1.2 mm in outside diameter, and 0.8 mm in 

internal diameter) with a pair of Au electrodes at each end connected by platinum wires. The 

thickness of sensing materials was about 0.6-0.8 mm.  

After being calcined in air at 400 oC for 1 h, a Ni-Cr heating wire was put through the 

tube and all wires were carefully connected to a Bakelite base to perform electrical 

measurements using a WS-30 A system. More details were described in the Supplementary 

Material. For a typical n-type gas sensor, the response (β) was defined as the ratio (Ra/Rg) of 



the sensor resistance in dry air (Ra) to that of analytic gas (Rg). The response and recovery 

times are defined as the time required to reach 90% of the initial equilibrium value.  

3. Results and discussion 

XRD pattern of the as-synthesized ZnFe2O4 sample is shown in Fig. 1. All peaks are 

well indexed to a cubic ZnFe2O4 structure (JPCDS Card No. 74-2397) with space group 

Fd 3 m, indicating no secondary phase formed in the synthesis process. The Rietveld 

refinement of XRD pattern was conducted using the commonly accepted Maud program 

developed by Luca Lutterotti [26]. The calculated XRD profile fits well with the 

experimental data cross the whole tested angles from 10-80°. The structural parameters 

obtained from the Rietveld refinement are listed in Table S1 in the Supplementary Material. 

The lattice constant is refined to be 8.4374 Å, which is in close agreement with the standard 

JCPDS value of 8.4432 Å (JPCDS Card No. 74-2397). Furthermore, the average crystallite 

size was estimated as 14.5 nm as shown by the broadening XRD peaks. In addition, the EDX 

results confirm that it is mainly composed Zn, Fe, and O (Fig. S2) with ratio of about 1:2:4, 

matching the chemical formula of ZnFe2O4. 

TEM and HRTEM images are displayed in Fig. 2 to show the fine microstructure of 

ZnFe2O4 product. As expected, the TEM images (Fig. 2 (a) and (b)) show that the ZnFe2O4 

appears spherical-like morphology with either isolated or as bundles. The diameter of the 

nanospheres is approximately 7 to 16 nm. HRTEM image of an individual nanosphere (Fig. 

2(c)) exhibits sets of lattice fringes with an interplanar distance of 0.478 nm, which is in line 

with that of (111) facet of ZnFe2O4. From the selected-area electron diffraction (SAED) 

pattern shown in Fig. 2 (d), diffraction rings are identified as the reflections (111), (220), 



(311), (222), (511), and (440) of cubic ZnFe2O4. These findings give additional evidence that 

the obtained ZnFe2O4 nanospheres are highly crystallized, further supporting the above XRD 

results.  

The specific surface area of the ZnFe2O4 nanospheres is examined by the nitrogen 

adsorption-desorption isotherms measurement and a value of 87.40 m2/g was achieved. This 

large accessible surface area can provide much more active sites for the gas molecules’ 

reaction and hence excellent gas-sensing performances are expected.  

The surface chemical states of ZnFe2O4 nanospheres were analyzed by XPS (Fig. S5), 

and core levels of Zn 2p, Fe 2p and O 1s could be identified. Two peaks of Zn 2p3/2 and Zn 

2p1/2 located at 1022.05 eV and 1045.10 eV with a better symmetry, implying the formation 

of Zn2+ [27]. The XPS of the Fe 2p region is fitted into four contributions. The first two 

peaks with the binding energy (BE) values of about 712.30 and 719.54 eV are assigned to Fe 

2p3/2 and its shakeup satellite, while the higher BE peaks around 726.02 eV and 734.03 eV 

correspond to Fe 2p1/2 and its shakeup satellite, respectively, indicating the presence of the 

Fe3+ cations [28]. In particular, the state of O 1s is well evolved into two distinguishable 

peaks with BE values of about 530.69 eV (lattice oxygen: Olattice) and 532.30 eV (adsorbed 

oxygen: Oads), respectively. The adsorbed oxygen is widely considered to play a critical role 

for gas detection.  

To understand the gas-sensing properties towards toluene, sensors were constructed 

from the as-prepared ZnFe2O4 nanospheres. As shown in Fig. S3 and Table S2, we made 

comparison between response, response time and recovery time to 100 ppm toluene at 

typical temperature. At low temperature such as 260 °C, the response is 79.12, but the gas 



sensor takes much longer time to response (>156 s) and recovery (383 s). At higher 

temperature of 340 °C, although the fast response (6 s) and recovery (8 s) can be obtained, 

the response reduces to be 3.8. Therefore, taking the gas-sensing properties such as response, 

response and recovery time, etc., into the overall consideration, an operating temperature of 

300 °C was chosen. Fig. 3 (a) shows the actual resistance of the ZnFe2O4 sensor exposed to 

various concentrations of toluene gas ranging from 1-100 ppm. As can be seen, the sensors 

demonstrated a reduced resistance upon exposure to toluene, typically observing in n-type 

semiconductor gas sensors. It can be seen that even a very low concentration of toluene, i.e. 

1 ppm, can be effectively detected. The corresponding responses are 1.41, 1.83, 2.20, 3.85, 

5.15, 6.75, and 9.98 to 1, 5, 10, 30, 50, 70, and 100 ppm toluene, respectively, as plotted in 

Fig. 3(b). The relationship between the response and toluene concentration (1-100 ppm) 

shows a very good linearity, that is β=0.08C+1.29 (here β is the response and C is the 

toluene concentration) with a relative correlative coefficient R2=0.991 by lineal fitting of the 

experimental data. The response time and recovery time of the sensor are calculated to be 

18.14 and 29.20 s towards 100 ppm toluene, as shown in Fig. 3(c). In addition, the 

reproducibility of ZnFe2O4 sensor was also studied with 100 ppm toluene gas. In Fig. 3(d), 

the reproducibility test demonstrates that the sensor nearly maintains its initial value of 

response without a big fluctuation upon five successive sensing tests. Besides, a long-term 

stability of the ZnFe2O4 based sensor has been tested. As shown in Fig. S 4, the sensor 

exhibits a good stability towards 50 ppm and100 ppm toluene in 20 days. The mean response 

are calculated to be 5.23 and 9.99 with changes of ±17% and ±11 % for 50 ppm and 100 

ppm toluene, respectively. These findings verify our sensor could possess excellent stability 



in long term. Previous reports in open literatures about various sensing materials based 

toluene sensors with distinct morphologies are compared in Table S3. Obviously, the 

ZnFe2O4 nanospheres based sensor in our work possesses a comparable sensing-performance 

towards toluene.  

The selectivity of sensors is also considered as one of the important parameters in their 

practical applications in guaranteeing exact recognition of a specific target molecule among 

various gases. Therefore, the response of the ZnFe2O4 based sensor to different gases, 

including ethanol, 2-methoxyethanol, toluene, formaldehyde, acetone, ammonium, methanol 

and isopropanol, was tested towards a fixed concentration of 100 ppm at the same operating 

temperature, as comparably summarized in Fig. 4. Apparently, the ZnFe2O4 based sensor 

exhibits a much higher sensitivity to toluene rather than to other tested gases. Several factors 

might be attributed to the good selectivity with respect to both toluene molecules and 

ZnFe2O4. Firstly, it is probable that the methyl group (-CH3) played an important role in 

enhancing the sensing behavior because of its adsorbing ability [29]. Secondly, lower 

enthalpy change of the dehydrogenation for toluene possibly results in higher response [30]. 

Moreover, the small energy difference in terms of lowest unoccupied molecule orbit (LUMO) 

energy and highest occupied molecule orbit (HUMO) energy between toluene and ZnFe2O4 

could favor the interaction to take place, which is contributed to the good selectivity of 

toluene [31]. 

The gas-sensing mechanism of ZnFe2O4 nanospheres can be detailed by following the 

classical electron depletion theory [32,33] and visibly displayed in Fig. 5. In air, oxygen 

molecules adsorb on the surface of the sensing materials, and thus capture electrons from the 



conduction band of ZnFe2O4 to create oxygen species Oads (such as O–, O2–, and O–), as 

shown in XPS analysis (Fig. S5). As a result, the charge concentrations decrease, leading to a 

widening thickness of the charge accumulation layer (the increase of Ra) (Fig. 5 (a)). After 

exposing to reducing gas like toluene, toluene molecules react with the adsorbed oxygen 

species, which is 
7 8 ads 2 2C H +O CO +H O , releasing the trapped electrons back into 

ZnFe2O4. Thus the charge concentrations will increase and the thickness of the charge 

accumulation layer decrease accordingly (the decrease of Rg) (Fig. 5 (b)). Accompanying 

with the variation of electrons, a contrastive change of the potential barrier as well as 

space-charge layer are compared in Fig. 5 (c), which is the essence of a semiconductor gas 

sensor. In brief, the change of resistance is definitely dependent on the sensing material, the 

chemisorbed oxygen and the tested gas. In our case, the relatively strong interaction between 

the toluene molecules and the surface oxygen species of ZnFe2O4 is the plausible reason for 

the excellent sensing performance. 

Taken together, these results indicate that the ZnFe2O4 nanospheres are a promising gas 

sensing material in detecting low concentration toluene gas in the environment. The good 

sensing performance is attributed to its native nature, and in particular the high surface area 

which enables a large exposure of surface atoms to provide more active sites for the 

absorption of gas molecules and hence facilitate the surface reactions. Very recently, the 

detection of ppb-level toluene was realized with Pt-functionalized SnO2-ZnO core-shell 

nanowires [9]. Hence, more works are highly desired to further improve the performance of 

ZnFe2O4 nanospheres based sensor by coupling with other sensing materials, doping with 

approated elements, or functionalizing with noble nanoparticles. 



4. Conclusions 

In summary, ZnFe2O4 nanospheres with 7-16 nm in diameter was prepared by a one-pot 

solverthermal route using benzyl alcohol as solvent. The native nature and in particular the 

large specific surface area, 87.40 m2/g, were favorable for the gas sensing performance. 

Gas-sensing measurements indicated that the ZnFe2O4 nanospheres based sensor exhibits a 

high response and excellent selectivity to the detection of low-ppm-level toluene gas, with a 

response of 1.41 and 9.98 at 1 and 100 ppm, respectively. A good linearity was achieved 

within the range of 1-100 ppm. The excellent detection performance, in addition with the 

simple preparation approach, makes the as-synthesized ZnFe2O4 nanospheres a promising 

material for toluene gas detection at a low concentration.  
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Fig. 1 XRD Rietveld refined patterns (calculated pattern (black) and difference curve (blue)) 

with the experimental data (Red) of ZnFe2O4 nanospheres. The olive short vertical bars stand 

for the positions of the Bragg reflections. 



 

 

 

Fig. 2 Low-magnification (a) and high-magnification (b) TEM images of ZnFe2O4 

nanospheres. The HRTEM image of an individual ZnFe2O4 nanosphere (c) and the 

corresponding SAED pattern (d). 



 

 

 

Fig. 3 (a) The dynamic resistance of ZnFe2O4 based sensor to toluene gas within the 

concentration range of 1-100 ppm. (b) The relationship between the gas response and toluene 

concentration. (c) The typical response and recovery time of ZnFe2O4 sensor to 100 ppm 

toluene gas. (d) Reproducibility of ZnFe2O4 sensor on successive exposure to 100 ppm 

toluene gas with 5 cycles. (All the tests were operated at 300 °C.) 



 

 

Fig. 4 Selectivity of the ZnFe2O4 based sensor to various gases with a concentration of 100 

ppm at 300 oC. 



 

 

 

Fig. 5 Schematic diagram of the mechanism for toluene gas sensing in air (a) and toluene (b) 

with a contrastive change (c).  

 


