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Highlights 

 

1. Fusion of MLL to murine Af4 permits faithful modeling of human t(4;11) proB ALL 

2. The species of the cell-of-origin determines the lineage of MLL-Af4 leukemia 

3. MLL-fusion proteins drive differential gene expression via specific genomic targets 

4. MLL-fusion leukemia circumvents CD19-directed therapies through lineage plasticity   

 

Summary 

The t(4;11)(q21;q23) fuses MLL to AF4, the most common MLL-fusion partner. Here we show 

that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus 

permitting efficient transduction of human CD34+ cells and generating a faithful model of 

t(4;11) proB ALL that fully recapitulates the immunophenotypic and molecular aspects of the 

disease. MLL-Af4 induces a B-ALL distinct from MLL-AF9 through differential genomic target 

binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can 

assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such 

incongruity was also observed in t(4;11) patients who evaded CD19-directed therapy by 

undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the 

pathogenesis of MLL-AF4 leukemogenesis. 

 

Significance 

MLL-AF4 is associated with B-ALL and confers poor prognosis. The lack of an accurate model 

has hampered the study of disease pathobiology and therapeutic testing. We overcame previous 

limitations to retroviral production by fusing MLL to murine Af4. Transduced human CD34+ 
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cells develop into a proB ALL faithful to t(4;11) disease, whereas MLL-Af4-transduced murine 

cells develop only AML, demonstrating the species-specificity of the fusion and highlighting the 

complexity of human disease modeling. We find that MLL-fusion leukemia shows genetic 

heterogeneity driven by differential genomic target binding of the different fusion proteins. We 

report lineage plasticity as a new mechanism of resistance to CD19-directed therapy in t(4;11) 

patients thus highlighting the clinic relevance of our model. This model can provide unique 

insight for targeting t(4;11) ALL. 

 

Introduction 

MLL-AF4 accounts for 10% of ALL associating with a unique proB immunophenotype and poor 

prognosis(Marchesi et al., 2011). A better understanding of disease pathogenesis and new 

therapeutic approaches are therefore needed to improve outcome. Much progress has been made 

in understanding MLL-rearranged leukemia and potential therapeutic targets were identified 

using mouse models. However, these models predominantly develop AML but not 

ALL(Krivtsov et al., 2008; Lavau et al., 1997). The chromatin binding capacity of MLL is 

retained in the fusion protein, with the fusion partner protein recruiting the super elongation 

complex (SEC) and other epigenetic regulators and leading to aberrant activation of MLL 

targets, including HOXA genes(Faber et al., 2009). It was assumed that these models would also 

shed light on MLL-fusion ALL, given that a common gene signature was identified among 

different MLL-fusion leukemia samples(Armstrong et al., 2002). However, differential 

sensitivities to target gene and pathway ablation are observed among MLL-fusion leukemia cells 

arguing that the knowledge generated from AML models may not be applicable to ALL(Liu et 

al., 2014). Moreover, although ALL with MLL-rearrangement has been generally considered as a 
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single pathologic entity, substantial fusion partner-specific transcription and epigenetic programs 

have been identified(Stam et al., 2010; Stumpel et al., 2011), although the underlying mechanism 

and biological consequence of this molecular heterogeneity is unclear. Thus, a faithful MLL-AF4 

model is required to examine the mechanisms that mediate the unique features of the disease.  

Until now, it was not possible to produce MLL-AF4 retrovirus with a high enough titer to 

efficiently transduce hematopoietic stem and progenitor cells (HSPC) from mice and humans. 

However, use of a hybrid MLL-Af4 gene overcame these problems and we successfully 

established a faithful model mimicking the distinct immunophenotypic and molecular features of 

the disease. The necessity to express MLL-Af4 in human but not mouse HSPC to recapitulate the 

lymphoid features of t(4;11) leukemia highlights the complexity of accurately modeling human 

disease and has important implications for the development of mouse models of human disease.  

Our MLL-Af4 model will serve as a useful platform for the development of customized 

therapeutic targeting. 

 

Results 

MLL-Af4 produces high titer retrovirus permitting transformation of murine HSPC 

We initially sought to establish a MLL-AF4 leukemia model in the mouse using a retroviral 

transduction approach. However, MLL-AF4 retroviral titers were consistently low, as reported 

by others(Bursen et al., 2010; Yokoyama et al., 2010), and thus inadequate for efficient 

transduction of murine HSPC(Kalberer et al., 2002). Multiple factors can affect viral titer 

production, and some human cDNAs have been found to dramatically decrease viral 

titers(Skalamera et al., 2012). Murine homologs of MLL and its partners have been employed in 

mouse models(Forster et al., 2003; Metzler et al., 2006). Thus, we tested retrovirus containing 
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murine Af4, which is highly conserved with human AF4 (Figure S1E) and observed that virus 

could be produced at high titers. We therefore constructed a hybrid MLL-Af4 retrovirus that 

expressed protein corresponding to that found in t(4;11) leukemia cell lines and obtained 

retroviral titers approximately 30-fold higher than with MLL-AF4 (Figure 1A-C). MLL-Af4 

transduction of murine HSPC resulted in immortalization of the cells, not seen using MLL-AF4 

(Figure 1D). As a control, we transduced murine HSPC with the N-terminus of MLL. Although 

high titer virus was produced, only first round colonies were obtained as the N-terminus of MLL 

by itself was unable to immortalize murine HSPC (Figure 1C and 1D)(Luo et al, 2001). We 

repeated the experiment using MLL-AF4/-Af4 constructs with the transcriptional activation 

domain (TAD, also called pSER) truncated (Figure S1A), which corresponds to an MLL-AF4 

translocation reported in a patient with a MLL to AF4 exon 11 fusion(Okuda et al., 2015; Pane et 

al., 2002). Similar to full-length MLL-Af4, MLL-Af4(560-1210) produced high titer virus and 

immortalized murine HSPC (Figure S1B and S1C). In contrast, MLL-AF4(547-1218) generated 

low titer virus and did not promote tertiary colony formation, suggesting the titer effect is not 

associated with the TAD or the specific breakpoint of AF4. To examine whether the difference in 

retroviral production between MLL-AF4 and MLL-Af4 was a common feature of murine 

homologs of MLL partners, we prepared fusions of MLL to AF9, Af9, ENL, and Enl. Similar 

titers were achieved with these human and murine homologs, indicating the difference in virus 

production is specific to MLL-AF4 (Figure S1D). To assess the leukemogenic potential of MLL-

Af4, HSPC were harvested from mice, stimulated with myeloid or lymphoid cytokines (since 

culture conditions can affect the lineage of the resulting leukemia(Li et al., 1999)), transduced, 

and transplanted into mice. Mice developed acute leukemia with a median latency of 90 days, 

manifesting similar disease phenotype irrespective of culture conditions (Figure 1E, Table S1). 
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Leukemia cells with immature myelomonocytic morphology were observed in bone marrow 

(BM) and peripheral blood (PB) and expressed c-Kit, Gr-1 and Mac1 but not B220 or CD3 

(Figures 1F and 1G). The mice exhibited significant splenomegaly and infiltrating leukemic cells 

were positive for CD11b and negative for B220 (Figure 1G). Secondary transplant of BM cells 

confirmed the malignant nature of the disease (Figure 1E). Thus, murine HSPC expressing MLL-

Af4 induced AML in vivo and, despite the use of lymphoid conditions, no lymphoid leukemia 

was observed. 

 

Human CD34+ HSPC expressing MLL-Af4 initiate proB ALL in vivo 

Murine genetic models of MLL-AF4 leukemia induce primarily AML or lymphoma, and B-ALL 

is rarely seen (Chen et al., 2006; Krivtsov et al., 2008; Metzler et al., 2006). In contrast, MLL-

fusion proteins efficiently induce B-ALL when expressed in human CD34+ cells and 

transplanted into immunodeficient mice(Barabé et al., 2007; Wei et al., 2008). To test whether 

MLL-Af4 induces B-ALL in a human model, we transduced human CD34+ cells and injected 

into NOD/SCID/gamma-/- (NSG) mice. As early as 12 weeks post-transplant, the BM and PB of 

mice showed an expansion of human CD19+ cells variably expressing CD34 and CD10 (Figure  

2A). All animals were leukemic by 22 weeks post-transplant displaying splenomegaly and 

leukemia infiltration into multiple organs (Figures 2A, 2B and S2A). Analysis by flow cytometry 

revealed CD19+CD33-CD34+ lymphoid blasts that were predominantly CD10 negative, 

hallmarks of classic t(4;11) proB ALL (Figures 2A, 2C and S2B)(Burmeister et al., 2009). As 

reported for t(4;11) patients, the lymphoid blasts expressed  the myeloid antigen CD15, although 

expression of CD65 was less evident compared to patient samples (Figure S2C). Expression of 

the MLL-Af4 protein was detected in leukemic blasts at physiological levels comparable to 
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MLL-AF4 in a t(4;11) cell line or patient samples (Figures S2D and S2E). Disease was readily 

transferred to secondary recipients and showed a similar immunophenotype but with a more 

predominant CD34+CD10- compartment (Figures 2D and S2F-I). The disease had high 

penetrance and the phenotype was reproducible in multiple experiments using CD34+ cells from 

either cord blood or adults (Table S2).  

 

MLL-Af4 proB ALL recapitulates the molecular aspects of t(4;11) disease   

Recruitment of the SEC and the H3K79 histone methyltransferase DOT1L is critical for MLL-

fusion mediated gene dysregulation and leukemogenesis. Previous work has shown that the 

mouse Af4 protein harbors this conserved capacity to associate with SEC and DOT1L and 

stimulate transcription elongation(Bitoun et al., 2007). Accordingly, MLL-Af4 was able to co-

immunoprecipitate DOT1L as well as SEC components, exemplified by CDK9 and EAF2, in 

proB ALL cells (Figure 3A)(Lin et al., 2010; Simone et al., 2003; Yokoyama et al., 2010). The 

growth of MLL-Af4 cells depended on DOT1L activity and was effectively blocked by a 

DOT1L inhibitor (Figure 3B). To determine whether MLL-Af4 regulates similar gene targets as 

MLL-AF4, we performed ChIP-seq analysis of MLL-Af4 in proB ALL cells using anti-FLAG 

antibody. We compared our results to the ChIP-seq datasets of MLL-AF4 from t(4;11) cell lines 

SEM and RS4;11, in which the binding loci of MLL-AF4 were determined by the coincident 

ChIP-seq signals of MLL N-terminus and AF4 C-terminus(Benito et al., 2015; Wilkinson et al., 

2013). Heatmaps that rank binding sites according to the strength of either MLL-Af4(FLAG) 

(Figure 3C) or MLL(N) (Figure S3A) ChIP-seq signal display a clear correlation between the 

different datasets that are in the range of 70-90% (Figure S3B).  Due to the reduced sensitivity of 

peak-calling algorithms, only 60% of MLL-AF4 peaks in SEM cells were in common with 
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MLL-Af4 peaks, but this is consistent with the overlap observed between MLL-AF4 peaks in 

SEM and RS4;11 cells (Figure S3C) and a large number of MLL-Af4 targets overlapped with 

MLL-AF4 targets in the different cell lines (Figure S3D). Strikingly, at critical MLL-AF4 targets 

such as MEIS1, RUNX1, FLT3, MYC, BCL2 and PROM1(Benito et al., 2015; Guenther et al., 

2008; Wilkinson et al., 2013), the MLL-Af4(FLAG) binding profile is identical to MLL-AF4 in 

both RS4;11 and SEM cells (Figure 3D and S3E). Accordingly, RNA-Seq analysis of 

CD19+CD34+ leukemia cells and control human proB cells purified from the BM of NSG mice 

revealed many MLL-AF4-regulated genes identified in patient samples were also deregulated in 

MLL-Af4 cells (Figure 3E)(Andersson et al., 2015; Stam et al., 2010). GSEA analysis confirmed 

significant enrichment of an MLL-AF4 signature (Figure 3F). This data suggests the MLL-Af4 

protein retains similar biochemical and molecular properties as the native MLL-AF4 protein. 

Expression of MLL-Af4 in human CD34+ cells induces proB ALL that mimics the disease found 

in humans both phenotypically and molecularly. The ability to faithfully recapitulate t(4;11) 

proB ALL using transduction of human HSPC demonstrates that the proper combination of 

species of oncogene and targeting cell can serve as an effective approach to overcome difficulties 

in disease modeling. 

 

Different MLL-fusion proteins cause a different developmental stage block of ALL 

Although MLL-fusion induced leukemia has been considered as a single entity, heterogeneity of 

the disease has been observed(Andersson et al., 2015; Aoki et al., 2015; Stam et al., 2010), 

suggesting each MLL-fusion protein has its unique characteristics. To test this idea, we 

performed a comparative analysis of the B-ALL disease induced by MLL-Af4 or MLL-AF9 

using matched units of human CD34+ cells. Immunophenotypically, the MLL-AF9-mediated B-
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ALL showed variable expression of CD10 and little expression of CD34, suggestive of 

developmental stage differences (Figure 4A). Transcriptional profiling followed by GSEA 

analysis showed the MLL-Af4 leukemia resembled a proB developmental stage while the MLL-

AF9 B-ALL resembled a preB stage (Figures 4B and 4C)(Hystad et al., 2007). A similar 

developmental stage difference can be observed when comparing control proB cells with the 

MLL-AF9 B-ALL but not the MLL-Af4 B-ALL (Figures S4A and S4B). To validate this finding 

using a published dataset, we compared t(4;11) and t(9;11) ALL patient samples and observed 

the same differences in B-cell differentiation stage (Figure 4D). It was reported recently that 

preB cell receptor signaling positive (pre-BCR+) ALL cells rely on different signaling pathways 

compared to pre-BCR(-) ALL cells(Geng et al., 2015). We tested for pre-BCR status by staining 

for immunoglobulin u heavy chain (uHC) in our model B-ALL samples and found positivity on 

MLL-AF9 but not MLL-Af4 B-ALL cells (Figure S4C). BCL6 expression is a surrogate maker 

of pre-BCR signaling(Geng et al., 2015), and in accordance with this fact, the model MLL-AF9 

ALL cells had significantly higher BCL6 expression compared to MLL-Af4, which was also 

seen in patient samples (Figure S4D). These findings again demonstrate the unique molecular 

features driving the differential phenotype of the two MLL-fusion leukemias.  

   

MLL-Af4 drives a gene expression profile distinct from MLL-AF9 through binding to 

different genomic targets 

In addition to immunophenotypic differences, heterogeneous gene expression profiles of MLL-

fusion ALL were also observed. A recent study identified the top 100 genes that best 

discriminate different MLL-fusion B-ALL according to specific translocation partner(Andersson 

et al., 2015). Unsupervised hierarchical clustering based on these 100 genes demonstrated the 
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fidelity of our MLL-Af4 and MLL-AF9 model leukemias, with each leukemia associating 

closely with the respective patient samples (Figures 5A and 5B). In addition, based on the 

expression of genes significantly differentially expressed between our MLL-Af4 and MLL-AF9 

ALL, t(4;11) patient samples clustered closely with MLL-Af4 cells and were readily 

distinguished from other MLL-fusion samples (Figures S5A and S5B). We examined the 

expression profiles for gene families that distinguish MLL-Af4 and MLL-AF9 B-ALL and 

identified the HOXA cluster as significantly differentially expressed (Figure 5C). HOXA9 is 

considered a bona fide downstream target and one of most critical mediators in MLL-fusion 

AML(Faber et al., 2009). However, recent analyses showed that approximately half of t(4;11) 

ALL patients do not have an activated HOXA signature(Stam et al., 2010; Trentin et al., 2009). 

In our model system, MLL-Af4 ALL do not upregulate HOXA genes compared to control proB 

cells, in stark contrast to MLL-AF9 ALL (Figures 5C and 5D).  By comparison, MEIS1, another 

well-known target of MLL-fusions, is equally expressed in both types of leukemia, and RUNX1, 

a key target in t(4;11) leukemogenesis(Wilkinson et al., 2013), is specifically increased only in 

MLL-Af4 ALL (Figure 5D). Given that our ALL cells have matched genetic backgrounds, this 

suggests that the unique fusion protein is the major driving force behind differential gene 

expression. Although the DNA binding properties of the different MLL-fusion proteins remain 

poorly understood, the presumption in the field is that the fusion proteins are targeted to gene 

loci via the DNA binding domains of MLL, and thus have similar DNA binding profiles. 

However, we have shown that MLL-fusion proteins only bind to a subset of wildtype MLL 

targets(Wang et al., 2011), suggesting that the translocation partner genes alter and modify the 

fusion protein’s binding properties. To test whether distinct chromatin binding abilities of 

different MLL-fusions serves as a molecular mechanism driving heterogeneous gene expression, 
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we performed ChIP-qPCR to compare the chromatin occupancy of MLL-Af4 and MLL-AF9 at 

these specific loci. Indeed, chromatin occupancy correlated with gene expression, with no 

binding of MLL-Af4 at the HOXA locus and no MLL-AF9 binding at the RUNX1 locus (Figure 

5E). Several additional differentially-expressed MLL-Af4 and -AF9 genes were also found to 

correlate with specific chromatin binding of the different MLL-fusion proteins (Figure S6). 

These results demonstrate that differential target region recognition of MLL-fusion proteins 

contributes to distinct gene expression profiles. 

 

MLL-Af4 myeloid cells retain lymphoid lineage potential 

While the tight association of t(4;11) with proB-cell ALL is well known, the explanation for this 

pathologic phenotype, i.e. a specific target cell type versus a distinct epigenetic reprogramming 

activity leading towards a B-cell fate, has been unclear. We and others have previously shown 

that human CD34+ cells expressing MLL-AF9 generate AML in immunodeficient mice after 

priming in myeloid culture conditions (Barabé et al., 2007; Goyama et al., 2015; Wei et al., 

2008). Surprisingly, myeloid cultures expressing MLL-Af4 retained a population of 

CD19+CD33- cells not present in paired MLL-AF9 cultures (Figure S7A). When cells were 

transferred to B-lymphoid promoting conditions, CD19+CD33- cells rapidly expanded in MLL-

Af4 but not MLL-AF9 cultures (Figure 6A). Similarly, upon injection into NSG mice, the MLL-

Af4 myeloid cells reproducibly induced human B-ALL with a CD34+CD10- proB cell 

phenotype, while the MLL-AF9 cells invariably gave CD33+CD19- AML (Figures 6B and 

S7B). B-ALL also developed upon injection of MLL-Af4 myeloid cultures containing no 

detectable CD19+ cells (Figures S7C and S7D). Moreover, sorted CD33+CD19- MLL-Af4 cells 

reproducibly generated CD33-CD19+ B-lymphoid cells under B-cell growth conditions (Figure 
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6C), indicating the CD33+CD19- MLL-Af4 cells harbor latent B-cell potential refractory to 

myeloid priming. MLL-Af4 cells derived from adult CD34+ cells showed identical lymphoid 

persistence as CD34+ cells obtained from cord blood (data not shown), in contrast to data 

showing MLL leukemia lineage is ontogenically determined, with AML resulting from adult-

origin and ALL from fetal-origin HSPC(Horton et al., 2013), These results suggest that lymphoid 

preference is an MLL-Af4 intrinsic property that overrides the lineage instruction from the 

microenvironment and the influence of cell-of-origin. RNA-Seq analysis of sorted CD33+CD19- 

cells from four sets of genetically matched MLL-Af4 or MLL-AF9 myeloid cultures showed 

uniform upregulation of key B-lymphoid genes and a decrease in specific myeloid genes in 

MLL-Af4 cells compared to matched MLL-AF9 cells, demonstrating that MLL-Af4 transduced 

cells maintain an active lymphoid program responsible for the B-cell bias of human disease 

(Figures 6D and S7E).  

 

t(4;11) ALL acquires resistance to CD19-targeted therapy by myeloid differentiation 

A recent treatment advance in relapsed B-ALL employs a bispecific antibody, blinatumomab, 

that specifically targets CD19 on B cells(Topp et al., 2011). In a pediatric patient with refractory 

t(4:11) proB ALL treated with blinatumomab, t(4;11) AML relapse was observed  (Figures 7A 

and 7B)(Rayes et al., 2016). These t(4;11) myeloid cells promoted B-ALL in NSG mice, even 

when using sorted CD33+CD19- cells (Figure 7C). A marker chromosome indicated the B-ALL 

cells that expanded in the mouse were clonally related to the initial myelomonocytic cells (data 

not shown). QPCR analysis of this AML in comparison to standard AML samples showed 

significant upregulation of some of the same B-cell genes identified in the MLL-Af4 cells 

(Figure 7D). Thus similar to the effects seen with the MLL-Af4 myeloid cultures, a persistent 
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lymphoid program resistant to environmental induction and resulting in potent B-lymphoid 

preference is associated with the t(4;11) fusion protein, showing the utility of our MLL-Af4 

model system as applied to clinical disease. We also identified an adult patient with t(4;11) proB 

ALL treated with blinatumomab who relapsed with morphologic, cytochemical, and 

immunophenotypic evidence of differentiation towards the monocytic lineage (Figures 7E-7G). 

This phenotypic flexibility represents a novel escape mechanism from CD19-targeted treatment 

for patients with t(4:11) ALL, and has also been reported recently in t(4;11) patients receiving 

chimeric antigen receptor T-cell (CAR-T) therapies directed against CD19(Gardner et al., 2016). 

Therapeutic strategies may need to be customized for this poor prognosis leukemia showing 

phenotypic plasticity with transcriptional lymphoid persistence under selective pressure of 

CD19-directed therapy. Our model accurately recapitulates both a de novo ALL stage and a 

refractory ‘AML’ stage, enabling studies to proceed that may reveal new insights into molecular 

mechanisms and permit development of novel therapies. 

 

Discussion 

Chromosomal rearrangements involving 11q23 replace the C-terminus of MLL with more than 

79 different fusion partner proteins(Meyer et al., 2013) raising the question of the molecular 

mechanism of action of the different fusion partners and their relevance for leukemia biology. As 

MLL-AF4 is the most frequently observed MLL-fusion protein, significant efforts have been 

devoted to generating a suitable mouse model that recapitulates the full spectrum of human 

disease and generates a proB ALL (Bueno et al., 2012; Bursen et al., 2010; Chen et al., 2006; 

Krivtsov et al., 2008; Metzler et al., 2006; Montes et al., 2011). The inability to generate a 

faithful model of MLL-AF4 leukemia has led to the hypotheses that MLL-AF4 is unable to 
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transform cells without cooperating oncogenes, that an alternative cell of origin is needed, or that 

the reciprocal fusion is the true driver of leukemogenesis(Bursen et al., 2010; Menendez et al., 

2009; Tamai et al., 2011). Our results demonstrate that, at least for MLL-Af4 driven B-ALL, 

prehematopoietic mesodermal or hemangioblast precursors are not required as initiating cells and 

the reciprocal AF4-MLL-fusion is dispensable. Whether these observations hold true in t(4;11) 

patients remains to be determined. 

We and others have previously observed very low retroviral titers from producer cells expressing 

MLL-AF4 which precluded the analysis of its effects on virally transduced murine and human 

HSPCs(Bursen et al., 2010; Montes et al., 2011; Yokoyama et al., 2010). Experiments from 

several labs have shown that the titer obtained is critical to the efficiency of retroviral infection 

rather than the number of target cells, with only high titer retrovirus capable of efficient gene 

transfer into cells (Bodine et al., 1990; Haas et al., 2000; Morgan et al., 1995). Although the 

mouse and human AF4 proteins are highly conserved, distinct species-related differences in the 

viral titer are achieved using mouse Af4 and human AF4 cDNAs. This effect is specific to AF4 

as we did not observe differences in retroviral titer between the human and murine homologs of 

AF9 or ENL. Truncation of the TAD/pSER domain of AF4 did not rescue the low titers of 

retrovirus observed with MLL-AF4, indicating that these sequences do not inhibit the production 

of retrovirus. Although the smaller size of the MLL-AF4(560-1210) cDNA would be predicted to 

permit higher packaging efficiency, we observed only a minimal increase in titer with this 

construct, indicating that size is not the cause of the low retroviral titers generated with MLL-

AF4.. The reason for low viral titer production by retroviral vectors containing human AF4 is not 

clear. Certain human cDNA sequences have been found to have significant effects on retroviral 

titer formation(Skalamera et al., 2012). For some cDNAs, the mechanism that prevents virus 
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production has been identified. In the case of human IL-1 receptor antagonist protein, a cryptic 

splice acceptor sequence was found to be present in the middle of its coding region resulting in 

the deletion of the packaging signal sequence and the removal of some coding sequences that 

lead to low viral titer and a low level of the transgene product (Lee et al., 2007). For other 

cDNAs, the mechanisms that affect titer are unclear but have been mapped. For example, the 

positioning of the v-src gene relative to the tk gene in a retroviral vector was found to give a 30-

fold difference in retroviral titer (Tarpley et al. 1984). Other factors have been reported including 

inhibitory sequences affecting nucleic acid sequence-dependent steps in virus production, 

inappropriate signals present in some sequences that inhibit virus production, and potential toxic 

effects of the gene sequence on producer cells (Swift et al., 2001). Inspired by these 

observations, we fused human MLL to murine Af4 and achieved a significant increase in 

retroviral titer thus permitting efficient transduction of HSPC.   

While MLL-Af4 efficiently transformed murine HSPC and induced leukemia, mice developed 

only AML. Strikingly, AML is the primary phenotype observed in Mll-AF4 knock-in mice, 

indicating that the MLL-Af4 fusion results in a similar phenotype to Mll-AF4 when expressed in 

murine HSPCs(Kristov et al., 2008). Similarly, mouse models of E2A-PBX1, a fusion 

oncoprotein associated exclusively with human preB ALL, have also resulted in the unexpected 

generation of myeloid leukemia. (Kamps and Baltimore, 1993). In stark contrast, expression of 

MLL-Af4 in human CD34+ cells faithfully recapitulates the proB ALL observed in patients with 

the t(4:11) as shown by immunophenotype, chromatin targeting of the fusion,  nuclear complex 

formation and gene expression signatures. The factors that mediate myeloid lineage preference 

of E2A-PBX1 and MLL-Af4 in murine cells remain unknown, highlighting the limitation of 

using mouse cells for modeling human disease.   
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Proteins that are frequently part of MLL translocations were identified as components of the SEC 

(Lin et al., 2010) and are involved in complex interactions with the H3K79 histone 

methyltransferase DOT1L (Yokoyama et al., 2010). Aberrant transcriptional elongation and 

H3K79 methylation lead to aberrant activation of common target genes such as HOXA and 

MEIS1 and are considered a general mechanism of MLL-fusion mediated leukemogenesis. 

Indeed, a shared transcriptional signature with HOXA upregulation has been identified for MLL-

fusion leukemia irrespective of fusion partner or lineage(Armstrong et al., 2002). However, 

biological differences observed when studying subtypes of MLL-fusion leukemia raise questions 

regarding these findings. For instance, FLT3, which is regarded as a general MLL-fusion target, 

is required for MLL-ENL but not MLL-AF9 AML (Kamezaki et al., 2014). The necessity of 

HOXA activation has also been challenged, as it was shown that Hoxa9 is dispensable for 

leukemia development in murine MLL-AF9 and MLL-GAS7 AML models (Kumar et al., 2004; 

So et al., 2004). Moreover, 50% of t(4;11) ALL patients do not show HOXA gene activation, and 

low HOXA gene expression is actually associated with a poor prognosis(Stam et al., 2010; 

Trentin et al., 2009). Instead, it has been suggested that MLL-fusions can activate alternative 

pathways for leukemia development, such as RUNX1(Wilkinson et al., 2013). Our data show that 

MLL-Af4 ALL cells do not have increased HOXA expression relative to normal proB cells, but 

that MLL-Af4 does bind to the RUNX1 promoter and activates expression (Figures 5C-E). These 

results indicate that at least for one set of MLL-fusion ALL, activation of HOXA is not required 

for leukemogenesis.  

Although a common gene expression signature was identified for MLL-fusion leukemia, 

significant fusion partner transcriptome and DNA methylome heterogeneity has been found 
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(Andersson et al., 2015; Stam et al., 2010; Stumpel et al., 2011).  The mechanisms accounting 

for this heterogeneity are not fully understood partly due to difficulties of working with limited 

numbers of leukemia cells and the confounding complex genetic backgrounds in patient samples. 

We show here that fusion proteins are truly instructive since matched MLL-Af4 and MLL-AF9 

ALL cells with the same genetic background can recapitulate the fusion partner specific gene 

signature derived from patient samples (Figures 5A and 5B). In addition, the signature generated 

from our model leukemia can be utilized to classify patient samples (Figure S5).  Importantly, 

we demonstrate that diverse target recognition of different fusion proteins is one molecular 

mechanism controlling differential gene regulation (Figure 5E and S6) implicating the fusion 

partners in this function, potentially through recruitment of distinct protein partners as reported 

previously(Lin et al., 2010). Therefore, our data questions the idea that all MLL-fusion proteins 

work in a similar fashion by dysregulating the same pathways and demonstrates that MLL-fusion 

leukemia represents a heterogeneous disease. 

The instructive role of the fusion partner in lineage determination of the disease has been 

reported previously(Barabé et al., 2007; Drynan et al., 2005; Wei et al., 2008). Here we show 

that even within the same lineage, different MLL-fusion partner proteins enforce a block at 

distinct stages of differentiation whereby MLL-Af4 ALL cells display a proB immunophenotype 

and MLL-AF9 ALL cells resemble a later preB stage (Figures 4, S4A and S4B). Moreover, 

MLL-AF9 cells express both surface and cytoplasmic uHC, suggesting they have active pre-

BCR signaling (Figure S4C).  A recent report showed that pre-BCR+ ALL is a distinct subtype 

from pre-BCR(-) ALL, relying on a different signaling pathway and showing a selective 

sensitivity to pre-BCR tyrosine kinase inhibitors(Geng et al., 2015). Our data show that MLL-

AF4 and MLL-AF9 leukemia may also depend on diverse signaling pathways adding weight to 
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the idea that therapeutic targets identified in one MLL subtype may not be applicable to others 

and customized therapies may need to be established for each disease. 

In patients, MLL-AF4 is almost exclusively associated with B-ALL, while MLL-AF9 is more 

common in AML(Meyer et al., 2013). In line with the instructive role of the fusion partner, this 

different lineage association is also recapitulated in our comparative studies, reflected by the fact 

that MLL-Af4 cells are resistant to environmental myeloid redirection and maintain a 

persistently active lymphoid program (Figures 6 and S7). While MLL-AF9 cells acquire a stable 

myeloid fate after myeloid priming and give rise to AML, MLL-Af4 cells return to a lymphoid 

fate once the environmental pressure is released. Strikingly, this assumed myeloid status appears 

to be a novel mechanism for t(4;11) disease to escape from blinatumomab therapy (Figure 7), 

and possibly for the development of resistance to other CD19-directed immunotherapies, such as 

CAR-T therapy(Gardner et al., 2016). Clinically, how these myeloid cells with lymphoid 

potential respond to traditional AML therapy compared to conventional AML cells is unknown. 

Our MLL-Af4 myeloid cultures will be useful to evaluate drug sensitivity for eliminating 

resistant disease. 

In summary, our results and correlating observations in patients demonstrate that MLL-fusion 

disease is not a single genetic entity. Although different MLL-fusion proteins share some 

common properties, each has its own genetic and biologic features associated with particular 

fusion partner proteins. These differences could potentially impact response to therapy. Our 

MLL-Af4 model will be a valuable tool to study this most prevalent and poor prognosis MLL-

fusion leukemia. 
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Experimental Procedures 
 
Cells and culture 

Patient samples were acquired following informed consent in accordance with the Declaration of 

Helsinki and under protocols approved by the institutional review board. Human umbilical cord 

blood cells (CB) or adult PB progenitor cells (PBPC) were obtained by the Translational Trials 

Support Laboratory at CCHMC under an approved protocol. CD34+ cells were enriched using 

CD34+ selection kit (Miltenyi). Details of culture conditions are in Supplemental Experimental 

Procedures.  

Retroviral production 

AF4, Af4, AF9, Af9, ENL, and Enl cDNAs were ligated to 5’ MLL and cloned in the MSCV 

retroviral vector.  An in-frame FLAG tag was inserted between MLL residue 1404 (in exon 11) 

and the beginning of the partner protein sequence. Retrovirus for transduction of murine cells 

was packaged in Phoenix cells as described(Luo et al., 2001). Viral titers were determined by 

infection of Rat1A cells with Phoenix retroviral supernatants followed by selection in G418. 

Virus for human cell transduction was produced using 293T cells transfected with MSCV-MLL-

fusion vectors, together with envelope RD114 and the gag-pol M57 constructs in 10 cm plates. 

24 h after transfection, the retroviral supernatant were collected every 12h for 3 collections. 

Mouse transplantation 

Transplantation was performed using both myeloid and lymphoid conditions. For the myeloid 

reconstitution assays, 6 week old C57/BL6 mice were pretreated with 5- fluorouracil at 150 

mg/kg by intravenous injection and BM cells were harvested 5 days later. Lin- cells were 

selected using columns (Miltenyi) and cultured in RPMI media containing β-mercaptoethanol 

0.05mM, 10% FBS supplemented with 100 ng/ml SCF, 10 ng/ml IL-3, and 10 ng/ml IL-6 (R&D 
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Systems, Minneapolis, MN). For the lymphoid conditions, Lin- BM cells were harvested from 6 

week old C57/BL6 mice without 5- fluorouracil pretreatment. Lin- BM cells were cultured in 

100 ng/ml SCF, 10 ng/ml IL-7, 10 ng/ml IL-6, and Flt-3 ligand 10 ng/ml (R&D Systems) (Li et 

al, 1999). Reconstitution of sub-lethally irradiated C57BL/6 mice with transduced progenitors 

was performed as described previously (Luo et al., 2001). Further details of transduction, 

transplantation and histological analysis are in Supplemental Experimental Procedures.  

Xenograft transplantation 

500K CD34+cells were used for each transduction. CD34+ cells were pre-stimulated in IMDM 

with 10%FBS, SCF, FLT3L, and TPO (100ng/mL) for 24 h. Retronectin-coated plates were 

preloaded three times with 3mL retroviral supernatant by centrifuging at 2200rpm and 10°C for 

25 min. Stimulated cells were cultured in the presence of 3mL retroviral supernatant on virus-

loaded plates (Takara) overnight, 3mL fresh retroviral supernatant was replaced, and cells were 

cultured for another 6 h. To induce acute leukemia in NSG mice, 6- to 12-week-old mice were 

conditioned with 30mg/kg busulfan (Sigma) through intraperitoneal injection 24 h before 

transplantation, 100-150K MLL-Af4 or -AF9 transduced cells were transplanted through 

intrafemoral injection immediately after transduction. Mice were sacrificed when signs of illness 

were observed. Organs were homogenized and processed for flow cytometry or fixed in 10% 

formalin for histopathologic analysis. In serial transplantation, 1M BM cells were injected 

through tail vein.  Further details of transplantation are in Supplemental Experimental 

Procedures.  

Chromatin immunoprecipitation (ChIP) 

MLL-Af4 and -AF9 ALL cells were harvested from mice BM and spleen and subjected for ChIP. 

The ChIP assay was performed as described previously (Ptasinska et al., 2014). Details of 



22 
 

protocols used for ChIP-qPCR, ChIP-seq and data analyses are in Supplemental Experimental 

Procedures.  

RNA isolation and RNA sequencing 

Human CD45+ CD19+ cells were sorted from BM of 6 individual MLL-Af4 (3 PBPC based and 

3 CB based, generated by 2 independent transduction) and 3 individual MLL-AF9 (CB based, 

generated by one transductions) leukemic mice. For control proB cells, non-transduced CD34+ 

CB cells were transplanted into NSG mice, human CD45+CD19+CD34+ proB cells were sorted 

from BM of 3 mice 8 weeks later. For myeloid-primed culture study, CD33+CD19- cells were 

sorted from 4 pairs of MLL-Af4 and -AF9 clones (2 PBPC based and 2 CB based, generated by 

4 independent transductions) that had been cultured in myeloid conditions for 6-8 weeks. Patient 

samples were similarly sorted. Total RNA was isolated from sorted cells using RNeasy Mini Kit 

(Qiagen). 

For RNA sequencing, the integrity of RNA was analyzed by Bioanalyzer (Agilent). RNA from 

each individual mouse was processed separately without pooling.  Details of protocols used for 

RT-PCR, RNA sequencing and data analyses are in Supplemental Experimental Procedures.  

Data access 

RNA-Seq and ChIP-seq datasets are deposited to GEO as GSE76978 and GSE84116, 

respectively. 
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Figure Legends 

Figure 1. Stably expressed MLL-Af4 in mouse HSPCs induces AML.  

(A)Schematic of conserved domains contained within the MLL-AF4 and -Af4 fusion proteins. 

(B) Western blot analysis showed MLL-Af4 expression in transduced Phoenix cells and MLL-

AF4 expression in human t(4;11) cell lines (RS4;11 and SEM ). Non-t(4;11) cell lines (U937 and 

REH) are negative control. anti-MLL antibody detects both wild type N-terminal MLL and 

fusion proteins.  

(C) Comparison of retroviral titers of N-terminal MLL, MLL-AF4, and MLL-Af4. Result 

represents mean +- SD (n=3). 

(D) Methylcellulose colony-forming assay of mouse HSPCs transduced with N-terminal MLL, 

MLL-AF4, and MLL-Af4. Results represents mean +- SD (n=3). 
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(E) Kaplan-Meier survival curves of mice transplanted with mouse HSPCs expressing MLL-AF4 

or -Af4 using lymphoid (AF4 n=10; Af4 n=10) or myeloid conditions (AF4 n=10; Af4 n=10), 

and secondary transplantation of MLL-Af4 leukemic cells (n=5). Results were confirmed in 

independent experiments. 

(F) Immunophenotype of MLL-Af4 leukemias by flow cytometry. 

(G) Morphologic and immunohistochemical characterization of MLL-Af4 leukemias showed the 

immature myelomonocytic leukemic blast cells. Immunohistochemical staining of CD11b and 

B220 was done on spleen. Scale bar =10 um (PB and BM) and 50 um (spleen). 

See also Figure S1 and Table S1. 

 

Figure 2. Human CD34+ cells expressing MLL-Af4 initiate proB ALL in NSG mice. 

(A) Flow cytometry analysis of BM and PB. 

(B) Paraffin sections of spleen, liver and lung analyzed by hematoxylin and eosin staining (HE) 

or immunohistochemistry with human Ki67 showed infiltration of leukemic cells. Scale bar = 50 

um. 

(C) Wright-Giemsa-stained PB and BM cytospins showed the presence of malignant lymphoid 

blast cells. Scale bar = 10 um. 

(D) Kaplan-Meier curve of leukemia-free recipient mice. One representative experiment is 

shown. 

See also Figure S2 and Table S2. 

 

Figure 3. MLL-Af4 proB ALL recapitulates t(4;11) disease at molecular level. 
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(A) Immunoprecipitation with FLAG antibody was performed in nuclear extracts of MLL-Af4 

leukemic cells or control RS4;11 cells. The precipitates were immunoblotted with the antibodies 

against DOT1L, SEC components CDK9 and EAF2, or RPA70 as negative control. 

(B) Growth curve of human CD34+ cells expressing MLL-Af4 in liquid culture upon treatment 

of DOT1L inhibitor EPZ-5676. Cells expressing leukemia oncogene MLL-AF9 and AML1-ETO 

were used as positive and negative controls for dependence on DOT1L activity, respectively. 

 (C)  Heatmap showing the ChIP-seq signal of MLL-Af4 (FLAG), SEM MLL(N) & AF4(C) and 

RS4;11 MLL(N) & AF4(C) at all MLL-Af4 peaks, sorted by MLL-Af4 (FLAG) ChIP-seq signal. 

Arrow represents the centre of MLL-Af4 peaks. Window shows +/- 4kb from the peak centre. 

Scale bar represents log2 tags/bp/107. 

(D) Example ChIP-seq tracks showing MLL-Af4 (FLAG), SEM MLL(N) & AF4(C) and RS4;11 

MLL(N) & AF4(C) binding at MEIS1 (top) and RUNX1 (bottom). 

(E) Fold-change ranked heatmap showed significantly differentially expressed MLL-AF4 

activating (pink) and repressing (green) signature genes between MLL-Af4 leukemic cells and 

control proB cells. The signature genes were derived from Stam dataset by comparing MLL-AF4 

patients to non-MLL rearranged ALL patients. 

 (F) GSEA showed that the MA4 activating/repressing signature derived from two published 

datasets was significantly enriched in MLL-Af4 and control proB cells, respectively. 

See also Figure S3. 

 

Figure 4. MLL-Af4 and MLL-AF9 lead to block at distinct B cell development stage. 

(A) Flow cytometry analysis of MLL-Af4 and MLL-AF9 ALL. 
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(B) GSEA result of MLL-Af4 vs -AF9 showing proB gene signature was enriched in MLL-Af4, 

and preB gene signature was enriched in MLL-AF9 cells. 

(C and D) Fold-change ranked heatmap showing significantly differentially expressed proB 

(pink) and preB (green) signature genes between homemade (C) and patient (D) MLL-Af4/AF4 

and -AF9 ALL. Patient samples were from Andersson dataset. 

See also Figure S4. 

 

Figure 5. MLL-Af4 promotes distinct gene expression profiles via differential DNA 

binding.  

(A and B) Principal component analysis (A) and unsupervised hierarchical clustering (B) of 

homemade MLL-Af4 and -AF9 leukemia together with MLL-fusion ALL patient samples based 

on the expression of a 100-gene discriminator from Andersson et al. 

(C) Heatmap of HOXA gene expression of MLL-AF9, MLL-Af4 and control proB cells. 

(D) Differential activation of reported MLL-fusion targets between MLL-AF9 and MLL-Af4 

cells compared to proB cells. Expression data was derived from RNAseq, normalized by 

mean=0, variance=1. 

(E) ChIP-qPCR analysis showed that MLL-Af4 and -AF9 have distinct chromatin occupancy at 

target gene loci correlating with gene expression in (D). IVL loci was used as negative control. 

The result represents mean and SD, n=2 biological replicates. 

See also Figure S5 and S6. 

 

Figure 6. MLL-Af4 maintains lymphoid potential after myeloid priming.  
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(A) CD33 and CD19 expression of MLL-Af4 and -AF9 cells in B-cell culture condition after 

initial priming in myeloid condition for 5 weeks. 

(B) Flow cytometry of leukemia initiated by MLL-Af4 or -AF9 myeloid-primed cells in NSG 

mice. 

(C) Flow cytometry analysis and Wright-Giemsa staining of CD33+CD19- sorted MLL-Af4 

cells before and after lymphoid culture switch. Scale bar = 10 um. 

(D) Heatmap showed increased expression of lymphoid genes and decreased expression of 

myeloid genes in CD33+CD19- cells expressing MLL-Af4 compared to those expressing MLL-

AF9. All genes shown achieved a significance of p≤0.05 with fold change≥1.5. 

See also Figure S7. 

 

Figure 7. Phenotypic flexibility of t(4;11) ALL contributes to resistance to CD19-taregeted 

therapy. 

(A) Schematic of lineage progression of the pediatric t(4;11) patient sample. 

(B) Wright-Giemsa-staining of BM of pediatric t(4;11) patient with relapse AML. Scale bar=10 

um. 

(C) CD33/CD19 expression of leukemia cells from NSG mice reconstituted with the pediatric 

t(4;11) relapse AML sample. 

(D) qPCR results of selected lineage genes in CD33+CD19- sorted cells for t(4;11) AML and 

cytogenetically normal AML. n=3 technical replicates, error bars represent SD. 

(E) Immunophenotype comparison of the adult t(4;11) patient sample before and after  

blinatumomab treatment. 
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(F) Wright-Giemsa-staining of BM of the adult t(4;11) patient before and after  blinatumomab 

treatment. Scale bar=10 um. 

(G) Alpha-naphthyl-butyrate and CD33 staining of the adult t(4;11) patient sample relapsing 

from blinatumomab treatment. Scale bar= 50 um. 
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Supplemental Information 
 
Figure S1 
 

 



Figure S1, related to Figure 1. MLL-Af4 allows high retroviral titers.  

(A) Schematic of conserved domains contained within the MLL-AF4 and -Af4 fusion proteins 

that truncate the Transcriptional Activation/Serine Rich domain of AF4 (TAD/pSER).  

(B) Comparison of retroviral titers of MLL-AF4(560-1210) and MLL-Af4(547-1218). Results 

represent mean +- SD (n=3).  

(C) Methylcellulose colony-forming assay of mouse HSPCs transduced MLL-AF4(560-1210) 

and MLL-Af4(547-1218). Results represent mean +- SE (n=3). 

(D) Comparison of retroviral titers of MLL-Af9, MLL-AF9, MLL-Enl, and MLL-ENL. Results 

represent mean +- SD (n=3). 

(E) Amino acid alignment of the mouse Af4 and human AF4 residues included in the MLL-Af4 

and MLL-AF4 fusion constructs. Identical amino acid residues are indicated as black boxes and 

conservative changes are indicated as gray boxes. The bracket indicates the TAD/pSER domain.  

  



Figure S2 

 

  



Figure S2, related to Figure 2. Characterizing MLL-Af4 leukemic mice.  

(A) Splenomegaly was consistently found in NSG mice reconstituted with MLL-Af4 cells.  

(B) Flow cytometry analysis of spleen and liver confirmed the infiltration of the leukemic cells 

with proB-ALL phenotype.  

(C)Flow cytometry analysis of CD15 and CD65 expression on CD19+ MLL-Af4 leukemic cells 

and t(4;11) patient xenografts. Two representative experiments are shown.   

(D) Results of RT-PCR confirmed the expression of MLL-Af4 in leukemic cells. 9 individual 

mice from 3 independent experiments are shown. Human cells without transduction were used as 

negative control. 

(E) Immunoblot analysis showed the expression of MLL-Af4 protein in leukemic cells was 

comparable to MLL-AF4 expression in t(4;11) cell line (RS4;11) and patient samples. Human 

cells expressing MLL-AF9 were used as control. 

(F) Flow cytometry analysis showed the disease of secondary leukemic mice had the same proB-

ALL phenotype.  

(G) Compared to disease of primary mice, the CD34+CD10- compartment increased in 

secondary disease. Two representative experiments are shown. 

(H) Summary of cell surface marker expression in leukemic mice shown in (G). 

  



Figure S3 

 



Figure S3, related to Figure 3. MLL-Af4 occupies the corresponding genome regions as 

MLL-AF4. 

(A) Heat-map showing the ChIP-seq signal of SEM MLL(N) & AF4(C), RS4;11 MLL(N) & 

AF4(C) and MLL-Af4 (FLAG) at all SEM MLL-AF4 peaks, sorted by SEM MLL(N) ChIP-seq 

signal. Arrow represents the centre of SEM MLL-AF4 peaks. Window shows +/- 4kb from the 

peak centre. Scale bar represents log2 tags/bp/107. 

(B) Heat-map representing Pearson correlation between read coverage of SEM MLL(N) & 

AF4(C), MLL-Af4 (FLAG) and RS411 MLL(N) & AF4(C), at all SEM MLL-AF4 peaks. Scale 

bar represents the correlation coefficient. 

(C) Venn diagrams showing the overlap of MLL-Af4 peaks with SEM MLL-AF4 peaks (top) 

and SEM MLL-AF4 peaks with RS4;11 MLL-AF4 peaks (bottom). Overlap was defined as an 

exact intersection between peaks with no gap allowed. 

(D) Venn diagram showing the overlap of gene targets bound by MLL-Af4, SEM MLL-AF4 or 

RS4;11 MLL-AF4 at the promoter (TSS +/- 2kb) 

(E) Example ChIP-seq track showing MLL-Af4 (FLAG), SEM MLL(N) & AF4(C) and RS4;11 

MLL(N) & AF4(C) ChIP-seq at FLT3, BCL2, MYC and PROM1. 



Figure S4 

 

  



Figure S4, related to Figure 4. MLL-Af4 and MLL-AF9 B ALL cells are blocked at 

different developmental stages.  

(A) Fold-change ranked heatmaps showed significantly differentially expressed proB (pink) and 

preB (green) signature genes in proB vs MLL-AF9, and MLL-Af4 vs proB comparisons.  

(B) GSEA result of proB vs MLL-AF9 comparisons show proB gene signature was enriched in 

control proB cells, and preB gene signature was enriched in MLL-AF9 cells. Less significant 

enrichment was achieved in MLL-Af4 vs proB comparison.  

(C) Flow cytometry staining for surface (s) and cytoplasmic (cy) uHC of MLL-Af4 and -AF9 

ALL. Two independent experiments are shown. 

(D) RNAseq or microarray analysis comparing BCL6 expression of MLL-AF9 cells versus 

MLL-Af4/AF4 cells in model system and patient samples in Andersson dataset (t(4;11) n=24, 

t(9;11) n=6) and Stam dataset (t(4;11) n=29, t(9;11) n=8, Probeset=203140_at). The p values 

were calculated by two-tailed t-test.   

  



Figure S5 

 

  



Figure S5, related to Figure 5. MLL-Af4 gene expression profile recapitulates t(4;11) 

specific molecular signature.  

(A and B) PCA (A) and unsupervised hierarchical clustering (B) of homemade MLL-Af4 and -

AF9 leukemia together with MLL-fusion ALL patient samples in Andersson dataset showed 

MLL-Af4 leukemia clustered tightly with MA4 patient samples. The analysis was based on the 

expression of 430 genes which were most significantly differential expressed between 

homemade MLL-Af4 and -AF9 leukemic cells (Table S7). 

  



Figure S6 

 

  



Figure S6, related to Figure 5. Differential gene expression associated with differential 

DNA binding between MLL-Af4 and -AF9. 

(A) Heatmap of selected genes specifically expressed in MLL-Af4 or -AF9 ALL and comparison 

with control proB cell expression. 

(B) ChIP-qPCR analysis showed that MLL-Af4 and -AF9 have corresponding chromatin 

occupancy at their specific target gene loci. IVL loci was used as negative control. The result 

represents mean and SD, n=3 biological replicates. 

 

  



Figure S7 

 

  



Figure S7, related to Figure 6. MLL-Af4 cells keep an active lymphoid program under 

myeloid condition.  

(A)Percentage of CD33-CD19+ cells in MLL-Af4 and -AF9 cultures primed in myeloid 

conditions for 5 weeks. Five independent experiments are shown.  

(B) Leukemia initiated by myeloid-primed MLL-Af4 cells had proB immunophenotype. Two 

independent experiments are shown.  

(C and D) A particular MLL-Af4 myeloid culture without detectable CD33-CD19+ cells gave 

rise to CD19+ B cells both in-vitro (C) and in NSG mice (D).  

(E) Dataset enrichment analysis by L-Path showed B cell signature is associated with 

CD33+CD19- cells expressing MLL-Af4 cells compared to those expressing MLL-AF9. 

Datasets enriched in genes upregulated or downregulated by MLL-Af4 were colored red and 

green, respectively.  

  



Table S1. Hemogram of representative leukemic	C57BL/6 mice. 

Myeloid Conditions 

  Spleen g WBC  x103 RBC   x106 Hgb  g/dL Hct  % Plt  x103 
1 0.58 20 4.4 9.2 28 368 
2 0.70 28 4.9 8.4 25 416 
3 0.32 4 5.6 10.0 30 112 
4 0.88 44 5.8 8.4 29 250 
5 0.58 15 4.5 8.8 28 384 
6 0.76 26 4.1 9.8 29 187 

Avg 0.64 23 4.9 9.1 28 286 
±SD 0.19 13 0.7 0.7 2 122 

 
Lymphoid Conditions  

  Spleen g WBC  x103 RBC   x106 Hgb  g/dL Hct  % Plt   x103 
1 0.95 85 4.0 8.4 25 636 
2 0.24 9 5.7 7.8 25 494 
3 0.70 21 4.1 9.4 28 384 
4 0.79 68 6.1 9.2 28 300 
5 0.61 11 4.6 8.7 28 468 
6 1.05 49 5.9 9.2 32 372 

Avg 0.72 41 5.1 8.8 28 442 
±SD 0.29 32 0.9 0.6 3 118 

 
Secondary Transplant  

  Spleen g WBC  x103 RBC   x106 Hgb  g/dL Hct  % Plt   x103 
1 0.67 36 4.4 10.8 30 240 
2 0.64 40 3.6 8.6 27 210 
3 0.77 10 4.4 8.9 26 268 

Avg 0.69 28 4.1 9.4 28 239 
±SD 0.07 16 0.4 1.2 2 29 

  

  



Table S2. Summary of MLL-Af4 xenograft experiments. 

Experiment No. 1 2 3 4 

CD34+ source CB PBPC CB CB 

Primary mice (#ALL/#Total) 4/4 3/3 3/3 3/3 

# of primary mice used for 
 secondary transplantation 2 2 3 - 

Secondary mice (#ALL/#Total) 7/7 5/5 7/7 - 

# of secondary mice used for 
 tertiary transplantation 2 2 - - 

Tertiary mice 
(#ALL/#Total) 4/4 5/5 - - 

 

Table S3. QPCR primers. 

Table S4. MLL-AF4 ALL signature from patient dataset. 

Table S5. proB and preB signature. 

Table S6. Andersson 100-gene. 

Table S7. Differential signature genes between homemade ALL of MLL-Af4 and MLL-

AF9. 

 

Supplemental Experimental Procedures 

Myeloid culture and B cell assay 

To prime cells into myeloid lineage, MLL-Af4 and -AF9  transduced cells were cultured in 

IMDM with 10% fetal bovine serum (FBS) and supplemented with SCF, IL-3, IL-6, FLT3L, and 

TPO (10ng/mL). For B cell assay, myeloid-primed cells were transferred on to MS-5 stroma 

cells, maintained in aMEM with 10% FBS and supplemented with SCF, FLT3L, and IL-7 

(10ng/mL). Half of the media/cells were removed and replaced with fresh media weekly.   



Flow cytometry and Cell Sorting 

Cells from mouse tissues were incubated with nonspecific binding blocker (anti-mouse/human 

CD16/CD32 Fc g receptor; BD) before staining. Antibodies (all BD unless noted) used were PE-

CD10 (HI10a), APC- and PE-CD33 (WM53), PECy5-CD34 (581), V450-human CD45 (HI30), 

APCCy7-mouse CD45 (30-F11), PE-CD13 (WM15), PECy7-CD19 (5J25C1), PE-CD65(VIM8), 

FITC-CD15 (MMA), VioBlue-CD19 (6D5, Miltenyi), FITC-and BV421- uHC (H15101 Caltag 

Laboratories; MHM88, Biolegend),  FITC- c-Kit and PE-CD11b, Gr-1, CD3, or B220 antibodies 

(eBioscience).  Intracellular staining was performed using Cytofix/Cytoperm kit (BD). Cells 

were analyzed on FACSCanto flow cytometer (BD) or sorted on FACSAria (BD) or MoFlo XDP 

(Beckman Coulter), and the data was analyzed with FloJo software (TreeStar). 

Methylcellulose colony-forming assays 

Infection of lineage-depleted (Lin-) BM cells obtained from C57BL6 mice five days after 5-

fluorouracil treatment and culture of the transduced progenitor cells in methylcellulose were 

performed as previously described (Luo et al, 2001). 30,000 cells were used for each 

transduction. The BM progenitor cells were centrifuged in retroviral supernatant at 2500g for 4 

hours at 33oC (spinoculation). The cells were incubated in fresh media with appropriate growth 

factors for 20 hours and spinoculation was repeated. Transformation capability of MLL-fusion 

constructs were examined in duplicate in at least 2 independent methylcellulose colony-forming 

assays. 

Mouse bone marrow transduction and transplantation 

The BM progenitor cells were centrifuged in retroviral supernatant at 2500g for 4 hours at 33oC. 

For each mouse, 30,000 Lin- cells were spinoculated separately, and the transduced cells were 



not pooled prior to transplant. The cells were incubated in fresh media with appropriate growth 

factors for 20 hours and spinoculation was repeated. Each mouse was transplanted by 

intravenous injection with transduced Lin- BM cells. For histological analysis, tissues were fixed 

in formalin, sectioned, and stained with hematoxylin and eosin. For immunohistochemical 

analysis, tissues were snap frozen in Tissue-Tek O.C.T. compound (Sikura), sectioned, and 

stained with antibodies to CD11b and B220. All experiments were performed in accordance with 

U of Chicago institutional guidelines. 

Xenograft transplantation of cultured cells and patient samples 

For cell line experiments, MLL-Af4 or -AF9 cells were primed in myeloid conditions for 4-8 

weeks, and then 0.5-1M cells were injected through tail vein. For patient sample study, 1M 

t(4;11) AML cells were injected through tail vein.  Each experiment was performed at least in 

three independent replicates. All experiments were performed in accordance with CCHMC 

institutional guidelines. 

Western blotting 

Nuclear lysates were obtained using NE-PER nuclear extraction kit (Thermo Scientific). Protein 

samples were run on 6% or 4-15% polyacrylamide gels and transferred overnight at 4°C to a 

nitrocellulose membrane. The primary antibodies used were anti-Flag (Cell Signalling 

Technology #2368 and Sigma M2), anti-Lamin B2 (Cell Signalling Technology #12255), anti-

MLL (Bethyl A300-086A) and anti-Actin (NeoMarker ACTN05).  The secondary antibodies 

were HRP-linked goat anti-rabbit IgG and anti-mouse IgG at 1:1000 (Cell Signaling Technology 

#7074, #7076), the signal of which was developed through ECL reaction; or goat anti-rabbit 



IRDye 800RD and goat anti-mouse IRDye 680RD (Odyssey) at 1:10000, where the signal was 

visualized by fluorescent illumination (Odyssey CLx). 

Immunoprecipitation 

The crude nuclear pellet was lysed in 300-lysis buffer (40 mM Hepes pH 7.9, 300 mM NaCl, 1 

mM EDTA, 1% Triton, 0.1% IGEPAL, 0.5 mM sodium orthovanadate, 50 mM sodium fluoride, 

protease inhibitor cocktail). The lysate was centrifuged at high speed. The clarified lysate was 

processed directly as described below or incubated with ethidium bromide (100 µg/mL) to check 

whether the interaction is mediated via DNA. For the purification of protein with FLAG tag, the 

clarified lysate was incubated in 1.5 mL tubes with 25 µL anti-FLAG M2 agarose (Sigma) beads 

overnight, washed four times with 300-lysis buffer with 15 min rotation at 4°C, and eluted with 

3XFLAG peptide (Sigma) for 1 h on ice. The bound protein complex was resolved on an 8%–

16% SDS-PAGE gel and were immunoblotted with following antibodies: anti-	RPA70 (Cell 

Signaling Technology #2267), anti-CDK9 (Cell Signaling Technology #2316), anti-DOT1L 

(Bethyl A300-953A) and anti-EAF2 (Simone et al., 2003). 

Chromatin immunoprecipitation (ChIP) 

Dynabeads protein G (Invitrogen) pre–incubated with BSA and antibody against Flag (Sigma, 

M2) were used for IP. The immunoprecipitated DNA was purified using Agencourt AMPure 

magnetic beads (Beckman Coulter) according to the manufacturer’s instructions, and analyzed 

by qPCR using SYBR Green technology (Applied Biosystems). The chromatin enrichment of 

each gene locus was calculated by standard curve method, normalized to 1% input. Relative 

enrichment values were normalized to a negative control region of the genome (IVL gene 

promoter). Primers are listed in Table S3. 



ChIP library preparation.  

DNA libraries for sequencing were prepared from approximately 10 ng DNA from ChIP samples 

using the KAPA Hyper (KR096100) library preparation kit according to the manufacturer’s 

instructions (Kapa Biosystems). 

ChIP data analysis 

-Alignment 

SEM and RS4;11 ChIP-seq fastq files were obtained from previously published datasets 

(GSE74812 and GSE38403, respectively). 

Sequence reads in fastq format were mapped onto the reference human genome version hg38, 

Genome Reference Consortium GRCh38. The Illumina reads were aligned to the human genome 

using Bowtie2(Langmead and Salzberg, 2012). Reads that were uniquely aligned to 

chromosomal positions were retained and duplicate reads were removed from the aligned data 

using Picard tools (http://broadinstitute.github.io/picard/). Tag densities were generated from 

mapped bam files using the HOMER (http://homer.salk.edu/homer/index.html) 

“makeTagDirectory” command. Bedgraphs for displayed in the UCSC Genome Browser were 

generated using the HOMER “makeUCSCfile” command. 

-Peak calling 

FLAG-MLL-Af4 

Regions of enrichment (peaks) of ChIP sequencing data were identified using DFilter 

software(Kumar et al., 2013) with recommended parameters (-bs=100 -ks=50 –refine).  

SEM and RS4;11 



Peaks were called using the HOMER findPeaks command (-style factor) and normalized to the 

respective input ChIP-seq tracks. Peaks of MLLN and AF4C were overlapped using bedtools 

(http://bedtools.readthedocs.org/en/latest/) “intersect” to generate MLL-AF4 peak sets. 

Peak overlaps were defined by an exact intersection with no gaps tolerated. Gene annotations 

were performed using in-house scripts. Peaks were defined as binding to the promoter of a gene 

if located +/- 2kb within the transcription start site (TSS). 

-Heat-maps 

The MLL-Af4 and SEM MLL-AF4 peak files were sorted by MLL-Af4 (FLAG) or SEM 

MLL(N) ChIP-seq reads, respectively, under each peak. The sorted peak files were used with the 

HOMER “annotatePeaks” command alongside the tag directories of ChIP-seq tracks, to 

determine signal at these peaks. Heat-map matrices were visualized using Java TreeView 

(http://jtreeview.sourceforge.net/). 

-Correlation matrix 

ChIP-seq read coverage at SEM MLL-AF4 peaks was determined using deepTools 

(http://deeptools.readthedocs.io/en/latest/ ) “multiBamCoverage BED-file”. The output 

compressed numpy array (.npz) was plotted as a heat-map using deepTools “plotCorrelation” 

with the Pearson correlation method. 

RT-PCR  

RNA was reversed transcribed using MuLV Reverse Transcriptase and random hexamers 

(Applied Biosystems). The cDNA was then subject to qPCR using SYBR Green technology 



(Roche). Expression level was calculated by ∆∆Ct method, normalized to GAPDH. Primers are 

listed in Table S3. 

RNA sequencing 

1 ug total RNA was used for poly(A) RNA selection, followed by cDNA synthesis using PrepX 

mRNA Library kit (WaferGen) and Apollo 324 NGS automatic library prep system. Sample-

specific index was added to the adaptor-ligated cDNA by PCR with index-specific primers for 13 

cycles. The cluster generation of indexed libraries was carried out on cBot system (Illumina) 

using Illumina’s TruSeq SR Cluster kit v3, and then sequenced on Illumina HiSeq system using 

TruSeq SBS kit to generate single-end 50 cycle reads. 20-50 million reads were generated for 

each sample.  

Analysis of RNA sequencing data 

-Alignment and identification of differentially expressed genes 

Sequence reads were aligned to the human reference genome using the TopHat aligner, and reads 

aligning to each known transcript were counted using Bioconductor packages for next-generation 

sequencing data analysis(Huber et al., 2015). Transcript expression levels were estimated as 

reads per kilobase of transcript per million mapped reads (RPKM). For lymphoid leukemia 

study, RPKM data were imported into Qlucore Omics Explorer 3.1 software (Qlucore) for 

further analysis. To identify differentially expressed genes between MLL-Af4 and MLL-AF9 

myeloid cells, the analysis was performed in edgeR Bioconductor package using generalized 

linear model likelihood ratio test for paired samples(Robinson et al., 2010), with a cutoff of 

FDR≤0.1 and fold change ≥1.5.  



-Pathway enrichment analysis 

To obtain MLL-AF4 patient gene signature, expression data from Stam et al. were downloaded 

from GEO database (GSE19475), expression data from Andersson et al. were obtained from Dr. 

Andersson (Andersson et al., 2015; Stam et al., 2010), and then imported into Qlucore.  By 

comparing MA4 patients to non-MLL-fusion patients, significant differential genes were 

selected by built-in statistical functions (P≤0.05, FDR≤0.1, fold change ≥2) and defined as MA4 

signature (Table S4). The expression of MA4 signature genes was evaluated in MLL-Af4 

leukemic cells compared to control proB cells, the significant differentially expressed genes 

between two groups (P≤0.05) were ranked according to fold change as a heatmap and colored 

depending on whether they are upregulated (pink) or downregulated (green) in MA4 patients. 

GSEA analysis was performed as described(Subramanian et al., 2005). The same approach was 

used to evaluate B cell developmental stage specific genes association with MLL-Af4 and -AF9 

leukemic cells. The proB and preB signatures were derived from Hystad et al (Table S5) (Hystad 

et al., 2007).  For myeloid cell studies, the pathway enrichment analysis was performed 

separately for upregulated and downregulated genes using the LRpath methodology with the 

gene lists from the MSigDB database(Sartor et al., 2009). 

-Cluster analysis 

In order to test the similarity of MLL-Af4 gene expression to those of MA4 patients relative to 

patients with other MLL-fusions, the RPKM data of our MLL-Af4, -AF9 and control proB 

samples plus the  Andersson dataset were  imported into Qlucore.  The batch effect of different 

datasets was corrected automatically by using “Eliminated Factor” function of the software. 

After correction, built-in principal component analysis and unsupervised  hierarchical clustering 



were performed based on the expression of a 100-gene discriminator derived by Andersson et al 

(Table S6), which best associates patient samples according to MLL-fusion partners. In addition, 

to test whether the gene signature derived from our model can be used to discriminate patient 

samples, the significant differentially expressed genes (P≤0.05, FDR≤0.1, fold change ≥1.5) 

between MLL-Af4 and MLL-AF9 CD45+ CD19+ leukemic cells were determined. To avoid 

batch effects that could skew the data, the comparison was performed using genes not having 

consistent significant variation between the two datasets irrespective of MLL fusions (~70% of 

total genes). A list of 430 genes was generated for cluster analysis (Table S7). 

Supplemental References 

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., 
Gatto, L., Girke, T., et al. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. 
Nat Methods 12, 115-121. 
 
Kumar, V., Muratani, M., Rayan, N. A., Kraus, P., Lufkin, T., Ng, H. H., and Prabhakar, S. (2013). 
Uniform, optimal signal processing of mapped deep-sequencing data. Nat Biotechnol 31, 615-622. 

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 
357-359. 

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. 

Sartor, M. A., Leikauf, G. D., and Medvedovic, M. (2009). LRpath: A logistic regression approach for 
identifying enriched biological groups in gene expression data. Bioinformatics 25, 211-217. 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., 
Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005). Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 
102, 15545-15550. 

 

 

	

	

	


