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On the Innocence and Determinacy of Plural

Quantification0

SALVATORE FLORIO

Kansas State University

ØYSTEIN LINNEBO

University of Oslo

Plural logic is widely assumed to have two important virtues: ontological innocence

and determinacy. It is claimed to be innocent in the sense that it incurs no ontological

commitments beyond those already incurred by the first-order quantifiers. It is claimed

to be determinate in the sense that it is immune to the threat of non-standard (Henkin)

interpretations that confronts higher-order logics on their more traditional, set-based se-

mantics. We challenge both claims. Our challenge is based on a Henkin-style semantics

for plural logic that does not resort to sets or set-like objects to interpret plural vari-

ables, but adopts the view that a plural variable has many objects as its values. Using

this semantics, we also articulate a generalized notion of ontological commitment which

enables us to develop some ideas of earlier critics of the alleged ontological innocence

of plural logic.

1 Introduction

Plural logic is a form of higher-order logic which adds to first-order logic the plural quan-

tifiers ∃xx and ∀xx, interpreted respectively as ‘there are some things xx such that . . . ’ and

‘whenever there are some things xx, then . . . ’. This logic has recently become an important

component of the philosopher’s toolkit. Interest in it is motivated in large part by two alleged

virtues: ontological innocence and expressive power.
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It is commonly assumed that plural logic is ontologically innocent in the sense that plural

quantifiers do not incur ontological commitments beyond those incurred by the first-order

quantifiers. This alleged virtue of plural logic is supported by an alternative approach to

semantics for higher-order logic. Instead of letting the values of the higher-order variables

be sets constructed from objects in the ordinary first-order domain, we help ourselves to

higher-order resources in the metatheory and use these resources to represent the values of

the higher-order variables of the object language. On the semantics for plural logic due to

Boolos (1985)—which many philosophers now regard as its canonical semantics—the value

of a plural variable is not a set (or any kind of set-like object) whose members are drawn

from the ordinary, first-order domain. Rather, a plural variable has many values from this

ordinary domain and thus ranges plurally over this domain. Of course, in ascribing to a

plural variable many values, Boolos’s semantics makes essential use of the plural resources

of the metalanguage—this is why henceforth we will refer to it as plurality-based semantics.

In a nutshell, on the traditional set-based semantics, a higher-order variable ranges in an

ordinary way over a special domain reserved for variables of its type, whereas on the new

kind of higher-order semantics, a higher-order variable ranges in a special, higher-order way

over the ordinary domain.1

The second alleged virtue of plural logic is expressive power. To see this point, consider

first the case of second-order logic with its two kinds of traditional set-based semantics. In

standard semantics, the second-order quantifiers range over the full powerset of the first-order

domain, whereas in Henkin semantics the second-order quantifiers may range over a subset

of this powerset. This gives rise to an interesting debate about semantic determinacy.2 Does

our linguistic practice single out, relative to a given domain, the interpretation given by the

standard semantics as the correct one? An important aspect of this question is that it is only

on the standard semantics that second-order logic can truly be said to offer more expressive

power than first-order logic. For second-oder logic on the Henkin semantics may be regarded

as a version of first-order logic, namely a first-order system with two sorts of quantifiers. As

such, it has all the main metalogical features of first-order logic: it is complete, compact, and

has the Löwenheim-Skolem property. But, for the same reason, it fails with respect to the

main accomplishments of second-order logic with the standard semantics. Chiefly, it does

not discriminate between importantly different classes of structures, such as countable and

uncountable ones, and it fails to ensure the categoricity of arithmetic and analysis, and the
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quasi-categoricity of set theory.

In this respect, plural logic on the plurality-based semantics (as well as higher-order logic

on the novel kind of semantics) is thought to provide a significant improvement over second-

order logic on the set-based semantics. Indeed, one finds many claims to the effect that plural

logic, on the plurality-based semantics, is immune to the threat of non-standard (Henkin) in-

terpretations that confronts higher-order logics on their more traditional, set-based semantics.

Nearly all writers who have embraced plural logic on the plurality-based semantics ascribe

to this system metalogical properties which presuppose that the semantics is standard rather

than Henkin, but without flagging this as a substantive presupposition as one would do as a

matter of routine in the case of systems with a set-based semantics.3

A striking feature of the literature on this novel kind of semantics for higher-order logic is

the near-absence of debate about the semantic determinacy of higher-order quantification thus

interpreted.4 Indeed, on the higher-order approach, the only interpretation of the higher-order

quantifiers that has been articulated is the standard one. No analogue of Henkin semantics

has been developed. The following diagram sums up the current situation:

kind of semantics standard Henkin

set-based A. Tarski L. Henkin

higher-order (e.g. plurality-based)5 G. Boolos —

The apparent absence of a plurality-based Henkin semantics has no doubt influenced the en-

suing debate. It has encouraged the thought that plural logic on the plurality-based semantics

is immune from non-standard interpretation, and thus the thought that plural logic does better

than higher-order logic on the set-based semantics in securing a gain in expressive power.

As appealing as this common picture of plural logic may be, we believe that it is far

too optimistic. Our aim in this article is to develop an alternative picture, one in which

both alleged virtues of plural logic—ontological innocence and expressive power—are much

less significant than they are made out to be. We argue that set-based and plurality-based

semantics are on a par with respect to worries about indeterminacy. Moreover, we articulate a

generalized notion of ontological commitment according to which plural logic is not, after all,

innocent. This provides, for the first time, a precise development of some ideas adumbrated

by Parsons (1990: section 6), Hazen (1993), Shapiro (1993), and Linnebo (2003). Our focus
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is on plural logic, though much of what we say would apply, mutatis mutandis, to second-

and higher-order logics which quantify into predicate position.

Our pursuit of the mentioned aims uses as its main tool a semantics for plural logic that

fills the gap in the above diagram. Accordingly, the first part of the article is devoted to

the development and defense of a plurality-based Henkin semantics. (Technical details are

relegated to an appendix.) In the second part of the paper, we reconsider the alleged virtues

of plural logic in light of the new semantics. The resulting picture is one in which the role of

plural logic as a philosophical tool appears substantially diminished.

2 A plurality-based Henkin semantics

As announced, our first step is to construct a plurality-based Henkin semantics for plural logic

and thus populate the empty quadrant in the above diagram. Although from a technical stand-

point this is largely a straightforward adaptation of the familiar set-based Henkin semantics,

arguing for its philosophical legitimacy is all but straightforward. Once the resources needed

to develop a plurality-based Henkin semantics are identified, they must be shown to be in

good standing vis-à-vis the resources used to develop the plurality-based standard semantics.

We adopt an object language that expands the usual language of first-order logic with

countably many plural terms, constants (aa, bb, ..., aa1, aa2, ..., bb1, bb2,...) and variables

(vv,vv0,vv1, ...), plural quantifiers binding plural variables, and a distinguished relation of

plural membership, ≺, which will be treated as logical.6 The recursive clauses defining a

well-formed formula are the obvious ones.

As with the set-based semantics, our plurality-based Henkin models consist of a domain

for the first-order quantifiers, a representation of the range of the plural quantifiers, and an

interpretation function that specifies the semantic values of the non-logical terminology of

the language. The crucial difference is that, in our case, the first-order domain, the range of

the plural quantifiers, and the interpretation functions will not be set-theoretic objects.

A domain dd for the first-order quantifiers will consists of some things—any things in

the domain of the metatheory. Next, to represent the range of the plural quantifiers, we need

a ‘collection’ D of pluralities. We will think of D as a plural property, i.e. a property (such

as that of cooperating) that is instantiated jointly by many things. The notion of property we

invoke is an abundant one. (An alternative interpretation of D will be mentioned below.) The
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pluralities ‘in’ D will be exactly those that instantiate D. We require that the two domains be

connected in the following way: for every xx such that D(xx) (i.e. xx instantiate D), xx are

among dd. In symbols:

∀xx(D(xx)→∀x(x≺ xx → x≺ dd)).7

Finally, it is extremely convenient to assume that the metatheory is equipped with a pairing

operation so that an interpretation function can consist of some ordered pairs ii specifying the

semantic value or values of each non-logical item in the vocabulary of the object language. In

particular, the first coordinate of each pair will be an item from the non-logical vocabulary of

the object language (i.e. a singular term, a plural term, or a singular predicate), whereas the

second coordinate or coordinates will be the semantic value or values of the first coordinate

relative to the given interpretation. A variable assignment, covering both singular and plural

variables, can be constructed in analogy with an interpretation, i.e. as some ordered pairs

specifying the thing or things assigned to each variable. A more precise formulation of the

semantics is provided in Appendix A.

As is well known, the standard deductive system for second-order logic is sound and

complete with respect to set-based Henkin semantics. As one would expect, this result carries

over to the case of plurality-based Henkin semantics for plural logic. A completeness proof

is given in Appendix B.

Two aspects of our semantics deserve to be highlighted. First, as in Boolos’s semantics,

plural quantifiers in our plurality-based Henkin semantics do not range over any special kind

of set-like objects. Rather, they range plurally over things in the domain of the first-order

quantifiers. Second, the formulation of the semantics requires expressive resources that go

beyond those of plural logic. The variable D, used to represent the non-standard interpreta-

tions for the plural quantifiers, introduces a form of third-order quantification. As presented

above, D stands for a plural property. An alternative is to take D to stand for a ‘superplural-

ity’, that is, a ‘plurality of pluralities’ or, more precisely, some things articulated into distinct

subpluralities, such as: Russell and Whitehead, and Hilbert and Bernays, or: these things,

those things, and these other things.8 Either interpretation of D might raise worries about the

legitimacy of the additional expressive resources required by our semantics. So let us address

this issue next.
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3 The legitimacy of ascending one level

Boolos’s plurality-based semantics does not require expressive resources beyond those of

plural logic. When describing standard interpretations of the object language, there is no need

to invoke a variable D. This is only needed if we wish to ‘select’ a non-standard range for

the plural quantifiers. In Boolos’s semantics, a sentence of the form ∃vv ϕ is true in a model

of the language just in case some things among those in the first-order domain satisfy the

formula ϕ . The formulation of this clause relies only on plural logic. In our plurality-based

Henkin semantics, we want to impose the additional requirement that the things satisfying

the formula also be among the pluralities represented by D.

The expressive economy of the plurality-based standard semantics may be thought to con-

stitute an important advantage of that semantics over our Henkin alternative, especially when

coupled with some skepticism about the legitimacy of expressive resources going beyond

plural logic. However, we believe that this advantage of the plurality-based standard seman-

tics over our Henkin alternative is not significant. For, as we will now argue, the additional

expressive resources required by our semantics are available, and they are needed anyway for

independent semantic reasons.

It is relatively straightforward to develop a formal system of third-order quantification

suitable to develop the plurality-based Henkin semantics (see, e.g., Rayo 2006). Thus the

expressive resources under discussion are available at least in the sense of belonging to the

inventory of possible semantic mechanisms. Moreover, there is evidence from natural lan-

guage that such resources are available also in the stronger sense of being actually in use. On

the one hand, familiar arguments for the presence in natural language of quantification into

predicate position extend to quantification into predicate position of plural predicates. For

singular predicates, a treatment of simple examples such as ‘John is everything we wanted

him to be’ seems to require variable binding of predicate positions (Higginbotham 1998,

251, but see also Rayo and Yablo 2001). The same conclusion vis-à-vis plural predicates

is suggested by analogous examples involving plural predication, such as ‘John and Mary

are everything we wanted them to be’. This vindicates the interpretation of D in terms of

plural properties introduced above. On the other hand, it has been argued that natural lan-

guages such as English contain superplural expressions (see Oliver and Smiley 2004, 2005,

2013; and Linnebo and Nicolas 2008), which provides at least prima facie support for the
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superplural interpretation of D.

The reason why the expressive resources required by our semantics are needed anyway

has to do with absolute generality. An attractive feature of the plurality-based standard se-

mantics is that it allows us to capture models whose first-order domain of quantification

contains absolutely everything. By means of the plural resources available in the metalan-

guage, one can define models in which the first-order quantifiers range over all things. But,

if quantification over absolutely everything is possible, developing a model theory for plu-

ral logic requires the introduction of a new non-logical predicate. Specifically, it requires

the introduction of a plural predicate functioning as a satisfaction predicate (see Rayo and

Uzquiano 1999). However, once the original language of plural logic has been expanded to

include plural predicates, ascending one level further becomes unavoidable. For it is now

known that a model theory for the language expanded to include plural predicates will re-

quire a language that is one level higher than plural logic.9 So, if one wants to do justice to

the possibility of quantifying over absolutely everything, semantic considerations push the

expressive resources up one level.

As we have already remarked, this higher-order quantification can be understood either as

quantification over plural properties or as superplural quantification. In either case, semantic

reflection will eventually lead the proponent of the plurality-based standard semantics to

embrace the expressive resources needed to formulate the plurality-based Henkin semantics.

Since the additional resources needed to formulate our Henkin semantics are available and

needed anyway for independent semantic reasons, we conclude that the expressive economy

of plurality-based standard semantics does not constitute a significant advantage over our

plurality-based Henkin semantics.

4 Does ontological innocence ensure determinacy?

The previous two sections establish that there exist plurality-based yet non-standard inter-

pretations of a plural language. This is significant. For it is commonplace to maintain that

plural logic on the plurality-based semantics is determinate. The view goes back at least to

Boolos’s famous argument that plural logic is non-firstorderizable. The argument is based

on plural logic’s alleged ability to distinguish standard from non-standard models of arith-

metic (Boolos 1984a, Boolos 1984b, and Boolos 1985). But of course, if our plurality-based
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non-standard interpretations are admitted, then plural logic is no better equipped to make

such distinctions that, say, a first-order set theory. More generally, it is often held that, when

formulated with the help of plural quantification, arithmetic and analysis are categorical, and

set theory is quasi-categorical (see, for example, Hossack 2000, 439-41; Rayo and Uzquiano

1999, 315-18; McKay 2006, 139-43). Moreover, Yi holds that ‘a system of logic that does

justice to plurals [...] cannot be axiomatizable’ (Yi 2006, 256-57). The same view is endorsed

by Oliver and Smiley (Oliver and Smiley 2013, 236-39). To be perfectly clear: we are not

claiming that all these authors deny or fail to recognize the existence of plurality-based non-

standard interpretations. Our claim is that their remarks are potentially misleading because

they suggest that the only plurality-based interpretation is the standard one.

It might be responded that, while we have shown that plurality-based non-standard inter-

pretations exist, they can safely be set aside as unintended or illegitimate. Doing so would

restore the determinacy of plural logic, which the views just referenced all presuppose. The

key question, it seems to us, is whether this response is any better than the analogous response

for traditional set-based interpretations. That is, does plural logic on a plurality-based seman-

tics have a better claim to determinacy than plural logic on a set-based semantics? Let Plural

Robustness be the view that this question should be answered in the affirmative. A defense

of Plural Robustness would have to show that the plurality-based standard interpretations are

in better standing vis-à-vis their (plurality-based) Henkin rivals than the set-based standard

interpretations are vis-à-vis their (set-based) Henkin rivals. Our aim in this section is to artic-

ulate and reject a natural defense of Plural Robustness. In the next section, we argue that the

two forms of standard semantics are equally well (or poorly) placed against their respective

Henkin rivals and that Plural Robustness should therefore be rejected.

Plural Robustness has considerable initial plausibility, as is brought out nicely in the

following passage by Keith Hossack.

The singularist [a proponent of a set-based semantics] cannot solve the prob-

lem of indeterminacy, but the pluralist [a proponent of a plurality-based seman-

tics] can. [...] Plural set theory has no non-standard models, so the indetermi-

nacy problem does not arise for pluralism. [...] [P]lural variables range plurally

over the very same particulars that the singular variables range over individually.

Therefore the pluralist does not confront an independent problem of identifying

what the plural variables range over. [...] Plural sentences therefore provide
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the missing additional constraint we were seeking on admissible interpretations.

This is why the pluralist [a proponent of a plurality-based semantics] is able to

solve the indeterminacy problem, though the singularist cannot do so. (Hossack

2000, 440–41, our emphasis)

As we understand it, the argument has as its point of departure the other virtue that plural logic

is widely believed to enjoy, namely ontological innocence. According to this view—which

we call Plural Innocence—plural quantification does not incur ontological commitments to

entities beyond those in the first-order domain. In particular, plural quantification is not re-

ducible to singular quantification over sets or mereological sums, nor does it involve reference

to such entities. Rather, plural variables range plurally over objects in the ordinary, singular

domain. And the use of such variables incurs ontological commitments only to objects in this

ordinary domain, not to any sets or sums of such objects.

Of course, Plural Innocence is not uncontroversial (see Resnik 1988, Parsons 1990, Hazen

1993, and Linnebo 2003); we too take issue with it below. But if the thesis is false, so is an

essential premise of the argument we wish to reject, and we are done. In the remainder of

this section we therefore proceed on the assumption that the thesis is true.

It would be very natural to think that Plural Innocence supports Plural Robustness. Since

the plural quantifiers do not range over any kind of ‘plural objects’, such as the subsets of

the first-order domain, we do not—as Hossack puts it—‘confront an independent problem of

identifying what the plural variables range over.’ Plural quantifiers just range plurally over the

very same domain that the singular quantifiers range over. This is unlike second-order logic

with set-based semantics, where the standard interpretation requires one to single out a range

for the second-order quantifiers that contains all the subsets of the first-order domain. The

possibility of failing to single out such a range gives rise to the possibility of non-standard

interpretations in the set-based semantics. Since Plural Innocence ensures that no new range

of entities needs to be singled out for the plural quantifiers to range over, this thesis renders

plural logic on the plurality-based semantics immune to non-standard interpretation, or at

least more immune than plural logic on the set-based semantics.

However, we contend that our plurality-based Henkin semantics is just as innocent as

Boolos’s plurality-based semantics. On both semantics, plural variables range plurally over

objects in the ordinary, first-order domain. The only difference is that, on our semantics, the

range of the plural variables can be so restricted as to make room for general interpretations
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in addition to the standard one.

In fact, this notion of ontological innocence can be understood in a less and in a more

demanding way. In the less demanding way what is required is, as specified above, the

ontological innocence of the plural quantifiers. Then our claim that plural quantification is

innocent on the plurality-based Henkin semantics is incontrovertible. Since the semantics is

plurality-based, the plural quantifiers do not range over special kinds of objects. They range

plurally over the objects in the first-order domain. This is the sense of ontological innocence

operative in the argument from Plural Innocence to Plural Robustness spelled out above.

However, one might also want innocence in a more demanding form which includes the

resources employed by the semantic theory itself. (For instance, the plurality-based semantics

uses a pairing operation which is not ontologically innocent.) Our semantics may possess

a high degree of innocence even in this more demanding sense. For there are arguments,

akin to the one developed by Boolos himself, for the ontological innocence of the third-

order quantification that binds the variable D. This is fairly straightforward in the case of the

‘superplural’ interpretation of D. As for the official interpretation of D as a plural property,

one may argue for its innocence along the lines of Rayo and Yablo 2001 (see also Wright

2007). Moreover, in the more demanding sense of innocence the two semantics appear to be

on equal footing. As argued above, an appeal to higher-order resources is unavoidable when

the defender of the plurality-based standard semantics attempts to articulate a semantics for

a language containing plural predicates (as she will have to do when doing the semantics for

her own metalanguage). So, when seen from this perspective, the semantic machinery of the

plurality-based standard semantics is no more innocent than that of its Henkin competitor.

We conclude that, no matter which understanding of Plural Innocence is assumed, the

plurality-based Henkin semantics has as good of a claim to innocence as the standard se-

mantics. This shows that Plural Innocence does not support Plural Robustness. For there is

an innocent semantic option, namely the plurality-based Henkin semantics, for which Plural

Robustness fails. This poses a challenge for defenders of Plural Robustness. If their claim is

not supported by Plural Innocence, then what, if anything, does support it?
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5 The semantic determinacy of plural quantification

The question of semantic determinacy, we recall, is whether the unique correct interpreta-

tion of our quantificational practice is the one associated with the standard interpretations.

We contend that plural logic with the traditional set-based semantics and plural logic with

plurality-based semantics are on a par with regard to semantic determinacy.

Two remarks about this parity thesis—as we shall call it—are in order. First, our con-

tention is that the determinacy claims concerning set-based semantics stand or fall with the

corresponding determinacy claim concerning plurality-based semantics. We do not take a

stand on whether they stand together or fall together. Second, the parity thesis includes, but

goes beyond, the claim that Plural Robustness is false. If Plural Robustness is false, then no

additional assurance of determinacy is gained by switching from a set-based to a plurality-

based semantics. Our parity thesis consists of this claim and its converse.

We submit that the parity thesis has a great deal of plausibility whenever the domain of

quantification is set-sized, e.g. for higher-order quantification over the natural numbers or the

reals. Assume that the domain is a set D, and let dd be its elements. (We will indicate this

relationship by writing D = {dd}.) In the case of the set-based semantics, we need to single

out a special object—the standard interpretation—from a large pool of other objects—the

Henkin interpretations. In the case of the plurality-based semantics, we need to single out a

special way of ranging over the domain dd—the standard way—from a large pool of other

ways of ranging over dd—the Henkin ways. But why should it be any easier—or harder—to

single out an object from a pool of objects than to single out a way from an isomorphic pool

of ways? Since the two tasks are isomorphic, whatever can be said in one case, carries over

to the other.

While these considerations capture the gist of our argument, some work remains to be

done if we are to establish the parity thesis in full generality, i.e. independently of the

assumption that the domains of the plurality-based semantics are set-sized. Consider first

the possibility that plural logic is determinate on the plurality-based semantics while being

indeterminate on the set-based semantics. If plural logic is determinate on the plurality-based

semantics, this means that no plurality-based Henkin interpretation whatsoever can be cor-

rect. A fortiori, no plurality-based Henkin interpretation can be countenanced in which the

elements dd of the domain form a set D. But this is incompatible with the idea that set-based
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Henkin interpretations are legitimate, since the legitimacy of an interpretation would then de-

pend entirely on the way in which the interpretation is described. Henkin interpretations with

set-sized domains would be legimate when described set-theoretically but illegitimate when

described with the help of higher-order resources. So we must conclude that plural logic on

the set-based semantics is determinate too, and thus Plural Robustness is false.

We now consider the converse. Might plural logic be determinate on the set-based se-

mantics but not on the plurality-based semantics? We believe the answer is negative. The

determinacy of plural logic on the set-based semantics rules out non-standard (i.e. Henkin)

interpretations whenever the domain is set-sized. So, if plural logic admits non-standard in-

terpretations on the plurality-based semantics, such interpretations could only arise when the

domain is too large to form a set. As a result, the type of interpretation legitimate for the

plural quantifiers would vary depending on the size of the domain. That is, the interpreta-

tion of the plural quantifiers would be standard whenever the domain forms a set but may

be non-standard when the domain is too big to form a set. Why should that be so? If plural

quantifiers are to be treated as logical, this asymmetry would be implausible. Thus it appears

that if plural logic is determinate on the set-based semantics, it must also be determinate on

the plurality-based semantics.

6 The metaphysical determinacy of plural quantification

We now briefly examine a different determinacy question pertaining to plural and other forms

of higher-order quantification. This question is metaphysical and challenges a presupposition

of the semantic determinacy question discussed above. Consider a domain D = {dd}. Is

there a determinate maximal set of subsets of D or a determinate maximal property of be-

ing a subplurality of dd? Where the semantic question asks whether our practice uniquely

singles out as correct a maximal interpretation of the plural and higher-order quantifiers, the

metaphysical question asks whether the sort of thing we are attempting to uniquely single out

even exists.

The metaphysical question is interesting in part because it might provide an argument in

favor of the plurality-based semantics against the set-based semantics. Specifically, might

metaphysical determinacy hold in the case of pluralities but fail in the case of sets? We

think not, since metaphysical determinacy in the case of pluralities supports metaphysical
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determinacy in the case of sets. Assume that there is a determinate and maximal property of

being a subplurality of the things dd that serve as our domain. This provides strong support

for the existence of a determinate maximal set of subsets of D. For every subplurality aa of

dd, consider the corresponding set A = {aa}. (This is legitimate by Separation, because dd

form a set D.) Now we wish to collect together all these sets A into a single set, which would

give us the desired determinate and maximal set of subsets of D. Does such a set exist? We

believe an affirmative answer follows from our assumption that the range of sets that we wish

to collect into a set is determinate. Once it is granted that a range of objects is determinate, it

is hard to see why these objects should not form a set. Indeed, skepticism about the existence

of a determinate powerset of a given infinite set (such as the set of natural numbers) has

typically resulted from the denial that there is a determinate notion of arbitrary subset of the

given infinite set (see Dummett 1963 and Weyl 1918).

We turn lastly to the converse claim—that metaphysical determinacy in the case of sets

supports metaphysical determinacy in the case of pluralities. Recall that we are restricting

ourselves to the case where the domain dd forms a set D. Assume that D has a powerset

℘(D). Then, by comprehension for plural properties using℘(D) as a parameter, we have that

there is a property that applies exactly to those things that form a set in ℘(D). In symbols:

∃P ∀xx (P(xx) ↔ ∃y (y ∈℘(D) & y = {xx})).

This is the property of being a subplurality of dd. In sum, on the assumption that the domain

forms a set, there is good reason to believe that the assumptions of metaphysical determinacy

underlying the two competing semantics—the set-based one and the plurality-based one—are

on a par.

This leaves open whether there is a determinate and maximal property of being a subplu-

tality of the domain dd when dd do not form a set. But any trouble here would only serve

to limit the advantage that the plurality-based semantics is commonly taken to enjoy over its

set-based rival.

7 A generalized notion of ontological commitment

Let us finally consider the debate about the ontological commitments of plural logic. Ac-

cording to Boolos and followers, plural languages appear to be ontologically innocent. For
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instance, when I say that I had a bowl of Cheerios for breakfast, I am talking exclusively

about the Cheerios, not about a set of them, their sum, or any kind of ‘plural entity’. Call this

the narrow notion of ontological commitment. It will be made precise below. We have seen

how to develop a semantics for a plural object language in a plural metalanguage in which

the semantic values of a plural variable is one or more objects from the ordinary first-order

domain. This semantics preserves the appearance that the use of plural quantifiers incurs no

new commitments to sets, sums, or any kind of ‘plural entities’ (Boolos 1985).

The opposite side responds by disputing the prima facie case for the ontological inno-

cence of plural quantification. For instance, commenting on Boolos’s example ‘there are

some sets which are all and only the non-self-membered sets’, Charles Parsons writes:

in a context of this kind a quantifier like ‘there are some sets’ is saying that

there is a plurality of some kind. Cantor’s notion of ‘multiplicity’ and Russell’s

of ‘class as many’ were more explicit versions of this intuitive notion, both at-

tempting to allow that pluralities might fail to constitute sets. (Parsons 1990,

326)

(See also Hazen 1993, Shapiro 1993 and Linnebo 2003, as well as Resnik 1988 for a more

‘singularizing’ version of the view.) The semantics developed in a plural metalanguage cuts

both ways. Both parties to the debate can agree that if the use of the plural quantifiers in the

metalanguage is innocent, then so is their use in the object language. One party will assert the

antecedent, while the other will deny the consequent. Thus there are two internally coherent

views on the matter, and we appear to have reached a standoff.

The best way to make progress, it seems to us, is by considering two alternative construals

of the notion of ontological commitment. If the notion is understood in the narrow sense (i.e.

as concerned exclusively with the existence of objects), and if an object is understood as the

value of a singular first-order variable, then the plurality-based semantics does indeed show

that plural logic is ontologically innocent. For this semantics does not use singular first-order

variables to ascribe values to the plural variables of the object language; rather, this ascription

is made by means of plural variables of the metalanguage.

However, there is a broad notion of ontological commitment. According to this notion,

ontological commitment is tied to the presence of existential quantifiers of any logical cate-

gory in a sentence’s truth conditions. If this notion is operative, then even the plurality-based
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semantics shows that plural locutions incur additional ontological commitments. The re-

sulting view is an analogue of that espoused by Frege when he held that quantification into

predicate position incurs its own distinctive kind of commitment, not to objects but rather to

(what he called) concepts.

But before a meaningful debate can take place about which notion of commitment is

more interesting and appropriate, both notions need to be clearly articulated. We will now

show that our plurality-based Henkin semantics is precisely the tool that we need in order to

articulate the more inclusive notion.

Let us begin with the narrow notion, which ties ontological commitment to the values of

singular first-order variables. Here is one of Quine’s more helpful statements of the view.

The ontology to which an (interpreted) theory is committed comprises all and

only the objects over which the bound variables of the theory have to be construed

as ranging in order that the statements affirmed in the theory be true. (Quine

1951, 11)

This suggests the following precise definition. A theory T is committed to κ objects each of

which ϕs if and only if any model of T contains at least κ objects satisfying the formula ϕ .

In light of our work in earlier sections, it becomes straightforward to extend this criterion

of commitment to plural variables. In both cases, the formulation of the criterion relies on

the use of quantifiers that are assumed to be antecedently understood in the metatheory. A

theory T is committed to κ pluralities which ϕ if and only if any plurality-based Henkin

model of T has a range of the plural quantifiers D containing at least κ pluralities satisfying

the formula ϕ . (Of course, the proper way to talk about many pluralities is by means of plural

properties or ‘super-pluralities’, as discussed above.)10 It is important to note that the appeal

to plurality-based Henkin models is essential. If we had instead appealed to Boolos-style

plurality-based standard models, then the ontological commitment of any theory involving

plural quantifiers would be trivially determined by the ontological commitments of the first-

order quantifiers of the theory. For any theory would incur commitments to all and only the

pluralities based on the objects to which the theory is committed. By contrast, the definition

of commitment to pluralities that we have proposed has the desirable feature that a theory’s

commitment to pluralities can add information over and above its commitment to objects.

The value of this information is most easily appreciated when it is denied that there is a
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single maximal interpretation of the plural quantifiers, that is, when the metaphysical determi-

nacy of these quantifiers is denied. When this is denied, there can be no hope of determining

the theory’s commitments to pluralities directly on the basis of its commitments to objects.

Instead, one must assess the commitments to pluralities independently, using the generalized

Quinean criterion set out above. In order to illustrate this point and, more generally, the value

of our notion of commitment to pluralities, let us consider a puzzle due to Hazen (1993, 135).

Consider the scheme of plural comprehension:

∃xϕ(x) → ∃xx ∀x (x≺ xx↔ ϕ(x)).

Which instances of the scheme should we accept? The traditionalist (whose position is en-

shrined in the standard semantics for plural logic) accepts all instances—with the obvious

and uncontroversial proviso that ϕ(x) not contain xx free. According to the predicativist,

however, we should only accept the instances that are predicative in the sense that ϕ(x) does

not to contain any bound plural variable. As Hazen observes, there is a clear and intuitive

sense in which the predicativist is committed to fewer pluralities than the traditionalist. Thus,

if a notion of commitment is to be worth its salt, it must capture this sense. And this is exactly

what our broad notion of ontological commitment enables us to do. Using this notion, we

can maintain that the traditionalist, but not the predicativist, takes on commitments to im-

predicatively defined pluralities. By contrast, if had we assumed the plurality-based standard

semantics, this conclusion would not have been available.

Our notion of commitment to pluralities is also useful when the metaphysical determi-

nacy of plural quantification is granted. When this is granted, there is a notion of commit-

ment to pluralities—namely the one associated with the maximal interpretation of the plu-

ral quantifiers—according to which these commitments supervene on the commitments to

objects. Once the commitments to objects of a theory have been determined, so have the

commitments to pluralities associated with the maximal interpretation. It must therefore be

conceded that there is no further question concerning the theory’s commitments to plurali-

ties. However, the supervenience of one parameter on certain others does not mean that there

is no genuine and theoretically interesting question as to the value of this parameter! In our

case, even if the commitments to pluralities of a theory are uniquely determined by its com-

mitments to objects, we want to know how many, and what kind of, pluralities the theory is

committed to. Even if one believes in the metaphysical determinacy of plural quantification,
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one may have views about how strong, or mathematically rich, one’s notion of subplurality is

(e.g. Shapiro 1993 and Parsons 2013). The notion of commitment to pluralities that we have

articulated allows such views to be expressed.

An example might be helpful. Assume that the commitments to objects of a theory in-

volve an omega-sequence, which we may think of as the natural numbers. If metaphysical

determinacy holds, then there is a sense in which the commitments to pluralities are deter-

mined by the commitments to objects. Even so, we can ask which pluralities the theory is

committed to. Different answers are possible. For instance, one theorist—who believes the

axiom of constructibility, V = L—may answer that the only subpluralities of the ‘natural

numbers’ to which the theory is committed are the ones that are constructible (in the sense

that they correspond to sets in the constructible hierarchy L). Another theorist—who rejects

the axiom of constructibility—may disagree and insist that the commitments to pluralities go

beyond the constructible ones.

It may be objected to the broad notion of commitment that the commitments associated

with plural and higher-order quantifiers is not a form of ontological commitment but perhaps,

following Quine, of ideological commitment. We see little point in quarreling over terminol-

ogy. A more interesting question is whether ideological commitments in this sense give rise

to fewer philosophical problems, or whether they are philosophically less substantive, than

ontological commitments narrowly understood. It is far from obvious that this is so. Indeed,

it seems to us that questions involving the broad notion of commitment can be just as in-

teresting and problematic as those involving the narrow ones. How are we to understand the

values of different sorts of variables—in extensional or intensional terms? Which such values

are there and which comprehension axioms should we therefore accept? How do we trace a

value from one context (e.g. time or possible world) to another?

In light of these considerations, we are inclined to agree with Parsons when he writes that,

on the narrow notion,

ontological commitment may just not have the significance that both nominalists

and many of their opponents attribute to it, or that Boolos seems to attribute to it

in the case of proper classes. That might be a victory for the Innocence Thesis,

but it would be a Pyrrhic victory. (Parsons 2013, 173)

Thus, if Parsons is right, then either Plural Innocence is false, or else it is true but not nearly
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as interesting as one might have thought.

Our primary goal in this section has been less to adjudicate in this debate than to prepare

the ground for a precise and well informed debate. We have done so by using our plurality-

based Henkin semantics to provide a clear articulation of a generalized notion of commitment

that is associated with the former horn. Still, on the picture emerging from our discussion,

the role of plural logic as a philosophical tool appears substantially diminished. As we have

shown, plural logic is not immune from the threat of non-standard interpretations and does

not secure a gain in expressive power. Moreover, there is a precise and interesting sense in

which plural logic may be said to be committing. Whether this commitment is ontological or

ideological, it is a full-fledged commitment nonetheless.

Appendices

A Henkin semantics

Let us provide a more precise formulation of the semantics for plural logic outlined in sec-

tion 2. Some pairs ii form an interpretation relative to a domain dd and a plural property D
if

(i) for every singular constant c, there is a unique x such that (c,x)≺ ii, and x≺ dd;

(ii) for every plural constant cc, there is at least one x such that (cc,x) ≺ ii, and for all xx

such that

∀y(y≺ xx↔ (cc,y)≺ ii),

it holds that D(xx);

(iii) for every predicate Sn and object x, if (Sn,x) ≺ ii, then x is an n-tuple of things from

the domain dd.

The second condition captures the idea that, in any interpretation ii, a plural constant cc

denotes some things that instantiate D, specifically those appearing as second coordinates of

pairs whose first coordinate is cc.
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The characterization of a variable assignment mirrors that of an interpretation. That is,

some ordered pairs ss form a variable assignment relative to dd and D if

(i) for every singular variable v, there is a unique x such that (v,x)≺ ss, and x≺ dd;

(ii) for every plural constant vv, there is at least one x such that (vv,x) ≺ ss, and for all xx

such that

∀y(y≺ xx↔ (cc,y)≺ ss),

it holds that D(xx).

Here too the second condition captures the idea that a plural variable vv is assigned some

things that instantiate D, specifically those appearing in the assignment as second coordi-

nates of pairs whose first coordinate is vv. Variants of variable assignments ss(v/x) and

ss(vv/xx) are, as usual, assignments just like ss, with the possible exception that they assign,

respectively, x to v and xx to vv.

A model of the object language is given by the domain dd and D, plus an interpretation ii

relative to dd and D. Given how these three components have been characterized, a model is

not an object or the value of a single higher-order variable. However, such components can

be ‘merged’ so as to be represented by a single variable I, whose value is a plural property (or,

alternatively, a superplurality) that codes the three components.11 Quantifying over models

then amounts to quantifying over plural properties (or superpluralities). For convenience,

however, we speak of a model as a triple and represent it as (dd, D, ii).

Before defining the notion of satisfaction, let us introduce some additional notation. For

any model (dd, D, ii) and any non-logical expression E, let JEK(dd,D,ii),ss—but, in fact, we

will write JEKii,ss leaving the domains implicit—indicate the semantic value or values of the

expression E relative to the model (dd,D, ii) and to the variable assignment ss. That is,

(ia) for any singular constant c, JcKii,ss is the unique x such that (c,x)≺ ii;

(ib) for any singular variable v, JvKii,ss is the unique x such that (v,x)≺ ss;

(iia) for any plural constant cc, JccKii,ss are the things xx such that

∀y(y≺ xx↔ (cc,y)≺ ii);
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(iib) for any plural variable vv, JvvKii,ss are the things xx such that

∀y(y≺ xx↔ (vv,y)≺ ss);

(iii) for any predicate Sn, JSnKii,ss are the n-tuples xx, if any, such that

∀y(y≺ xx↔ (Sn,y)≺ ii).

Satisfaction is characterized inductively. In the Henkin semantics, A model (dd, D, ii)

satisfies a formula ϕ with a variable assignment ss relative to dd and D, written (dd,D, ii) �H

ϕ [ss], just in case

(i) if ϕ is t = s, then JtKii,ss = JtKii,ss;

(ii) if ϕ is Sn(t1, ..., tn), then JSnKii,ss is non-empty and (Jt1Kii,ss,...,JtnKii,ss)≺ JSnKii,ss;

(iii) if ϕ is ∃v ψ , then there is x among dd such that (dd,D, ii) �H ψ [ss(v/x)];

(iv) if ϕ is ∃vv ψ , then there are xx such that D(xx) and (dd,D, ii) �H ψ [ss(vv/xx)];

(v) the clauses for the logical connectives are the obvious ones.

We say that a model (dd, D, ii) is faithful if it satisfies every instance of the plural compre-

hension schema:

∃vϕ(v) → ∃vv ∀v(v≺ vv↔ ϕ(v)).

Logical consequence is defined with respect to faithful models only. A sentence σ is a

consequence of a set of sentences Γ in the Henkin semantics (Γ �H σ ) if, for every faithful

model (dd, D, ii), (dd,D, ii) �H γ for every member γ of Γ only if (dd,D, ii) �H σ .

B Completeness of the Henkin semantics

Here we describe a standard proof system S for plural logic and we prove that it is sound

and complete with respect to the plurality-based Henkin semantics formulated above. Just

as the object language of plural logic expands the standard language of first-order logic,

its proof system extends that of (classical) first-order logic. In addition to introduction and
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elimination rules for the logical connectives and singular quantifiers, we have introduction

and elimination rules for the plural quantifiers, plus every instance of plural comprehension.

The introduction and elimination rules for the plural quantifiers mirror those of the singular

quantifiers. Let us use the symbol ` to denote the relation of provability is S.

We want to show that S is (sound and) complete with respect to the plurality-based Henkin

semantics. That is, we want to show that, for any sentence σ and set of sentences Γ, Γ�H σ (if

and) only if Γ ` σ . The shortest and most elegant way of proving this is through a squeezing

argument.

First, it is a routine exercise to verify that S is sound with respect to the plurality-based

Henkin semantics, i.e.,

(1) if Γ ` σ , then Γ �H σ .

Now consider the familiar set-based Henkin semantics for second-order logic.12 It is

relatively straightforward to adapt this semantics to the object language introduced above. A

model is given by a triple (d1,d2, I), where d1 is a set, d2 is a set of non-empty subsets of

d1—the range of the plural quantifiers—and I is interpretation function from the non-logical

vocabulary of the language to elements of d1 (for singular terms), elements of d2 (for plural

terms), and possibly empty sets of n-tuples from d1 (for singular n-ary predicates). Plural

membership (‘is one of’) is systematically interpreted as set-theoretic membership. Let us

use the symbol �h for the resulting relation of logical consequence when confined to faithful

models, namely, those which satisfy every instance of plural comprehension. So Γ �h σ

means that σ is a logical consequence of Γ in the set-based Henkin semantics. In other

words, for every faithful model (d1,d2, I), if (d1,d2, I) �h γ for every member γ of Γ, then

(d1,d2, I) �h σ .

It is evident that every set-theoretic model just described corresponds to a plurality-based

Henkin model. Take any model (d1,d2, I). Then its corresponding plurality-based model

(dd,D, ii) is one in which dd are the elements of d1, D is the property of being a plurality that

forms a set in d2, and ii is an interpretation function that matches I.13 This correspondence

establishes the following:

(2) If Γ �H σ , then Γ �h σ .

Finally, the standard proof of completeness of second-order logic with respect to the set-

based Henkin semantics can be run, mutatis mutandis, for the proof system S of plural logic
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with respect to the set-based Henkin semantics outlined in the paragraph just above. This

gives us that

(3) If Γ �h σ , then Γ ` σ .

Putting together (1), (2), and (3), we obtain the result we wanted to prove:

(4) Γ �H σ (if and) only if Γ ` σ .

So S is complete with respect to the plurality-based Henkin semantics. Therefore, as captured

by S, plural logic on the plurality-based Henkin semantics is complete, hence compact and

axiomatizable.
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1For this alternative approach to the semantics of higher-order logic, see Boolos 1985, Rayo and Uzquiano

1999, Rayo and Yablo 2001, and Williamson 2003. Defenses of the innocence of plural logic are put forth,

among others, by Boolos (1984b; 1985), Yi (1999; 2002; 2005; 2006), Hossack (2000), Oliver and Smiley

(2001; 2013), Rayo (2002), and McKay (2006).
2See Shapiro 1991, chapter 8. A notable consequence of the view that second-order quantification is deter-

minate is the thesis famously held by Kreisel and others that the Continuum Hypothesis is either true or false

(for discussion, see Weston 1976).
3 See, for instance, Yi 1999, 2006; Rayo and Uzquiano 1999; Hossack 2000; McKay 2006; and Oliver and

Smiley 2013.
4Rayo and Yablo 2001 provides a rare exception.
5As explained above, a ‘plurality-based’ semantics for a system is a special case of a higher-order semantics.

A semantics for plural logic can thus be either set-based, as in the traditional approach, or plurality-based, as in

the novel approach initiated by Boolos.
6This is the language known as PFO. See Rayo 2002 and Linnebo 2003. Our semantics could be extended to

PFO+, i.e. to the extension of PFO by means of plural predicates. However, to avoid unnecessary complications,

we focus here on PFO.
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7Hereafter we abbreviate ∀x(x≺ xx → x≺ dd) as xx4 dd.
8See Lewis 1991, Hazen 1993, Oliver and Smiley 2005, Rayo 2006, and Linnebo and Nicolas 2008.
9More details about the result are provided in Rayo and Uzquiano 1999, Rayo 2006, and Yi 2006, Ap-

pendix 1. Linnebo and Rayo 2012 extends the result into the transfinite.
10In a perfectly analogous way, we can define a notion of ontological commitment incurred by quantification

into predicate position.
11Here is one way of doing it. For any things xx and object y, let yxx be the ordered pairs obtained by pairing

y with each x in xx. Also, let xx≈ yy abbreviate ∀z(z≺ xx↔ z≺ yy). Then, given dd, D, and ii, there is I such

that for all yy, I(yy) if and only if one of the following holds:

(1) yy≈ add;

(2) there are zz such D(zz) and yy≈ zz;

(3) yy≈ bii;

where a and b are any two distinct objects. The plural property (or superplurality) I so characterized can be

used as a surrogate for the triple (dd, D, ii).
12See, for instance, Shapiro 1991 and Enderton 2002.
13Specifically, if I(t) = x, then (t,x) ≺ ii. If I(aa) = {xx}, then ∀y((aa,y) ≺ ii↔ y ≺ xx). And, for any

n-tuple (x1, ...,xn), (Sn,(x1, ...,xn))≺ ii if and only if (x1, ...,xn) ∈ I(Sn).
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