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Highlights

• We propose a new method for online tracking of articulated human body

poses.

• Our method offers online sequential tracking from one frame to the next.

• Many other methods mutually optimize poses offline over all frames of a

sequence.

• We propose a novel cross-coupled global-local model of articulated human

body pose.

• We propose an adaptive penalty function for optimizing the pose esti-

mates.
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Abstract

This paper addresses the problem of online tracking of articulated human body

poses in dynamic environments. Many previous approaches perform poorly in

realistic applications: often future frames or entire sequences are used anti-

causally to mutually refine the poses in each individual frame, making online

tracking impossible; tracking often relies on strong assumptions about e.g. cloth-

ing styles, body-part colours and constraints on body-part motion ranges, lim-

iting such algorithms to a particular dataset; the use of holistic feature models

limits the ability of optimisation-based matching to distinguish between pose

errors of different body parts. We overcome these problems by proposing a

coupled-layer framework, which uses the previous notions of deformable struc-

ture (DS) puppet models. The underlying idea is to decompose the global pose

candidate in any particular frame into several local parts to obtain a refined

pose. We introduce an adaptive penalty with our model to improve the search-

ing scope for a local part pose, and also to overcome the problem of using fixed

constraints. Since the pose is computed using only current and previous frames,

our method is suitable for online sequential tracking. We have carried out em-

pirical experiments using three different public benchmark datasets, comparing

two variants of our algorithm against four recent state-of-the-art (SOA) meth-

ods from the literature. The results suggest comparatively strong performance

∗Corresponding author
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of our method, regardless of weaker constraints and fewer assumptions about

the scene, and despite the fact that our algorithm is performing online sequen-

tial tracking, whereas the comparison methods perform mutual optimisation

backwards and forwards over all frames of the entire video sequence.

Keywords: human pose tracking, human tracking, video tracking, pose

estimation, coupled-layer model.

1. Introduction1

Human pose estimation and tracking are increasingly popular research areas2

in computer vision, and have been studied for well over 30 years in the liter-3

ature, e.g. [1]. There is growing interest in such algorithms for a variety of4

applications including activity recognition [2], video understanding [3], gesture5

analysis [4], human-robot interaction [5], and others. Significant advances were6

made in recent years, however even state-of-the-art (SOA) methods often rely7

on strong assumptions and constraints in representing human bodies, such as8

visual appearance [4], scale [6], lighting conditions, occlusions, and the ranges9

of motion of limbs and limb-parts. In this work, our goal is to sequentially10

track human body poses in monocular video frames obtained under variable11

conditions, where people move freely and interact with each other. Typical12

examples include videos of TV series or movies, where human appearance is un-13

constrained (e.g. variable background, any colour and type of clothing, no fixed14

scale, etc.). Many recent efforts have been devoted to track and estimate human15

poses from monocular video frames. Even though most of them perform well on16

certain body parts such as torsos and heads, their performance for arms is still17

not convincing. Within this context, we are most closely interested in track-18

ing upper body poses, which include head, torso and arms, and in particular,19

improving the pose accuracy of lower arms. Nevertheless, our approach is not20

constrained for human upper body and can be easily adapted to the entire body.21

Our method is initialised from a single frame, and does not require any prior22

knowledge of the human clothing style, background scene or other conditions.23

3
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A variety of methods have been proposed in recent years to track and es-24

timate the poses of articulated human bodies. However, many methods make25

use of the entire image sequence to mutually refine the poses in each individual26

frame, e.g. [7, 8], rendering them only suitable for offline applications. In con-27

trast, our method relies only on the previous frame information at any point in28

time, with computation only in the temporal direction, enabling online tracking29

applications. Since this reduction in available temporal information affects the30

overall performance, our method makes use of additional information from the31

spatial domain. For estimating articulated human pose, the overall informa-32

tion associated with the target makes the state space too large to compute. In33

this case, we exploit a local-global coupled-layer method, which uses the entire34

human body as a global layer and uses decomposed parts as a local layer (see35

Fig. 1). This type of methodology not only reduces the computational space36

and cost, but also improves the overall accuracy.

(a) Global candidates.

left upper arms head

right lower armstorsoleft lower arms

right upper arms

(b) Local candidates (c) Refined human pose

Figure 1: Proposed coupled-layer model. (a) Different global pose candidates; (b)Local parts

obtained by decomposing the global pose candidates. (c) Recomposed global pose.

37
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In this paper, we present an on-line coupled-layer method using discrete-38

structure puppets [9] for estimating the upper human body pose information.39

Recently published human pose estimation methods predominantly use an eval-40

uation function to evaluate a candidate pose for the entire human body [10, 11].41

However, such methods can become prone to local convergence problems. For42

example, if one candidate pose suggests a correct left arm position, and an43

erroneous right arm position, and an alternative candidate pose is vice versa,44

then both candidates may generate similar evaluation scores. In this paper, we45

address this problem by decomposing the entire body into smaller parts and46

by estimating the pose separately for each of them. Nevertheless, if enough47

constraints are not provided, this decomposition method will also be unreli-48

able, e.g. left and right arms may erroneously swap places and converge on each49

other’s true image locations. To resolve this issue we introduce an adaptive50

penalty policy (Sec. 4.3.3) with our coupled-layer method to improve the scope51

of local parts pose searching. It also assists in tackling variable body scales and52

tuning any propagated erroneous poses.53

The remainder of this paper is organized as follows. The methods that are54

closely related to our work are presented in section 2. The proposed coupled-55

layer model is presented in section 3, where we detail the model and explain56

the relationship between its local and global layers. Section 4 explains the57

tracking and estimation procedure, using the coupled-layer model. Section 558

presents experiments conducted using three different public benchmark datasets,59

where we compare the performance of our method against four other SOA pose60

estimation techniques. In this section, we also investigate the robustness of our61

method to various different levels of initialization error. Section 6 concludes the62

paper and the proposed method.63

2. Related Work64

Numerous human pose estimation techniques, developed for a variety of65

applications, are available in the literature. In this section, we discuss the work66

5
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most closely related to our proposed method.67

The well-known pictorial structures (PS) model, proposed by Fischler and68

Elschlager [12] in 1973, is still drawing significant attention from researchers for69

its efficient tree-based inference algorithm [11, 10, 13, 14, 15]. A key limitation70

of PS, and some extended models, is that the parts are treated as rigid templates71

and are represented as rectangular (or polygonal) regions. Later methods, such72

as contour people [16] and deformable structures (DS) model [9], that are de-73

rived from 3D human models, can better capture the 2D shape as non-rigid,74

deformable parts. However, due to the holistic nature of these models, several75

problems can arise e.g. in the case of rapid part motions or occlusions.76

Several methods from the literature use some kind of hierarchical method-77

ology or coarse-to-fine scheme for inference. For example, Wu and Huang [17]78

used a two-layer model for hand motion tracking, where the palm motion is79

represented in the global model and the fingers motion in the local model. Kuo80

et al. [18] used a two-layer model which searches for the coarse location of the81

human body regions over the image sequence in one layer, and then estimates82

and refines detailed human body part poses over the image sequence in another83

layer. Lee and Nevatia [19] proposed a three-layer model. An alternative strat-84

egy is to model each part separately [20, 21, 22] and impose different constrains85

on different parts [23]. However, these methods estimate and evaluate the en-86

tire body together. Related works such as [24] and [7] focus on individual body87

parts i.e. to treat a single lower arm or an entire limb as an independent part to88

explore a set of poses. However, in such work, the entire video sequence is typi-89

cally used to mutually refine the poses over all images, making them unsuitable90

for online tracking. In contrast, in this paper we propose a local-global coupled91

strategy, in which poses are tracked in an online fashion from one frame to the92

next using a holistic body model for the global layer (Fig. 1(a)), while refining93

poses within each frame using individual body part models as the local layer94

(Fig. 1(b)).95

In some pose estimation methods, optical flow information is exploited as96

a cue, either for body part detection or for frame-to-frame pose propagation.97

6
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Zuffi et al. [8] use both forwards and backwards optical flow to propagate pose.98

The major drawback of this approach is that it cannot be used for online track-99

ing. Additionally, the accuracy of such methods is limited unless applied to a100

particular dataset, because the joint angle space is pre-constrained to match the101

limited range of poses appearing in a particular video sequence. This makes the102

method difficult to adapt to more varied datasets, or real world applications with103

changing or uncertain scenes. Fragkiadaki et al. [25] have used kinematically104

constrained optical flow for segmenting body parts and for propagating segmen-105

tations over time. Cherian et al. [7] made use of the optical flow between current106

and future frames to create loops for passing messages. The messages passed107

within these loops then help to constrain the location of each node. Similar to108

these methods, we also use optical flow in this work for both pose estimation109

and propagation. However, we additionally exploit an adaptive penalty policy110

which automatically constrains the searching space instead of fixing it in ad-111

vance (particular to a given dataset) or using future information (offline mutual112

refining of poses over all frames of a sequence).113

Sometimes occlusions and self-occlusions occur in unconstrained environ-114

ments, and such situations are difficult to handle. In 3D tracking, Cho et al. [26]115

solved this problem by modeling self-occlusion states between two body parts116

utilizing the 3D pose information of each body part (modeled as 3D cylinders).117

However in 2D conditions, it is much harder to obtain depth information for118

helping to detect occlusion states. Chen and Yuille [27] indirectly solved this119

problem using an image dependent pairwise relational term for adjacent body120

parts. In contrast, our work proposes an adaptive penalty policy, which makes121

it possible to predict the possible location of a body part under occlusion, and122

also enables the re-detection and tracking of the body part when it re-appears123

following a period of occlusion.124

A common schema for human pose estimation is, firstly, generating a number125

of pose candidates, then constructing a reliable cost function as well as making126

a non-maximum suppression (NMS) method to find the most likely human pose.127

Sigal and Black [28] used a hierarchical method which need enough plausible128

7
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pose part candidates for belief propagation. Park and Ramanan [15] proposed a129

method to generate a diverse set of N-best candidate poses with small overlaps130

for a still image, depending on a large number of pose hypotheses generated131

using the method of [29]. Later, Cherian [7] decomposed the N-best candidates132

generated by [15] and recomposed them using information from all frames of133

the entire video sequence to find refined poses. Burgos et al. [30] define a134

loss function for the large number of predicted pose candidates, with respect135

to time and space for all frames of the entire sequence, and use the scores of136

the loss function to decide a final pose for each frame. In the work of Zuffi137

et al. [8], the NMS method is also used to generate a good initial estimate138

among numerous pose candidates for each still image. In this schema, the139

NMS method relies on information derived from all frames of the entire video140

sequence, which limits these methods only for offline applications, and also141

requires that the set of candidate poses is large enough to contain “good” poses142

for each frame. In contrast, our method does not rely on large numbers of extra143

pose candidates generated for each image. We only use a small number of whole144

body candidates in our global layer, and after decomposing global candidates145

into local candidates, our method is able to relocate keypoints to get additional146

local candidates and refine them online using only information from only the147

current frame and one previous frame.148

3. Proposed Coupled-Layer Model using DS Puppets149

The DS (deformable structures) puppet model is a 2D articulated human150

body model recently introduced by Zuffi et al. [9], and applied to human pose151

tracking and estimation in [8]. The human’s shape is expressed as a factored152

probability over parts [9]. The DS puppets model is learned from training con-153

tours derived from SCAPE [31] (Shape Completion and Animation of People),154

which is a parametric 3D model of articulated human shape. Our method is also155

based on the DS puppet, however, we decompose it into multiple layers (local156

and global) for estimating the final pose. Hence, we call our model a coupled-157

8
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layer DS puppet model. In our case, we use the model that has been trained158

using SCAPE while the testing is performed using SOA datasets explained in159

detail in Sec.5.1. The performed experiments point towards the generality and160

independence of the model.161

Our coupled-layer model is inspired by the local-global tracker (LGT) [32],162

where a single target object, defined by a simple bounding box, is tracked by163

combining feature models (e.g. colour histograms, motions and shapes) for the164

overall object (global layer) and several small patches (the local layer). Each165

layer is used to help constrain (and thereby robustify) updates for the other166

layer. Our proposed articulated pose estimation method adopts a similar phi-167

losophy. As shown in Fig. 1, for a certain frame t, our method operates in168

three successive stages: procure global layer puppet, handle individual local169

layer parts and estimate refined global pose. The local layer contains groups of170

every upper body part and each group is comprised of several pose candidates.171

The process to initialise and select best pose candidates is detailed in Sec. 4.172

The global layer has nine keypoints to generate the entire human upper body,173

and in the similar fashion to local layer it has its own global pose candidates. In174

each frame, the entire global upper body poses are decomposed into local body175

parts, from which the local layer refines each part separately and filters out bad176

candidates. The refined local parts are re-combined into global layer candidates177

for further processing within the global layer.178

In Sec. 3.1 and Sec. 3.2 we describe the composition of local and global179

layers, respectively and in Sec. 3.3 we provide an overview of the local-global180

coupled-layer puppet model.181

3.1. Local Layer182

The local layer L in the tth frame is composed of 6 parts as follows:183

Lt = {Ht, Tt, UA
r
t , UA

l
t, LA

r
t , LA

l
t}, (1)

where, H and T denote head and torso, UAr and UAl stand for right and left184

upper arms, LAr and LAl represent right and left lower arms, respectively (see185

9
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face

neck
head

Right shoulder

Right elbow

left shoulder

left elbow

Right elbow

Right wrist

Right elbow

Right elbow

torso right upper arm left upper arm right lower arm left lower arm

belly

neck

Right
shoulder

left
shoulder

(a) Local parts with their keypoints k
(j)
i , described in Eq.(2). For torso, k

(j)
i includes

four keypoints while for other parts, k
(j)
i includes two keypoints.

face shoulder neck

bellywrist

elbow

LEFT RIGHT

MALE FEMALE

(b) Global poses with their keypoints

Figure 2: Illustration of the keypoints in local and global layers. (a) Keypoints of each part

present in the local layer of a female puppet. (b) Keypoint locations of the global upper body

male and female puppets. It can be seen that every part has two keypoints, some of them

also belong to other parts (e.g. neck, left/right elbows).

Fig. 1(b)). These six parts are the main body parts of the upper human body186

and contain vital human body pose information. For simplicity and sequential187

calculation, hereafter we maintain the same order for parts given in Eq.(1)188

throughout this work. Each individual part Pi (i = 1 · · · 6 with 1 for head, 2 for189

torso and so on as in Eq.(1)) is specified by three elements:190

Pi = {k(j)
i , s

(j)
i ,modeli}j=1:Ni

, (2)

where, Ni is the number of candidates of part i, k
(j)
i is the keypoints location191

of the jth candidate in part i, see Fig. 2(a). For torso, k
(j)
i includes four key-192

points while for other parts, k
(j)
i includes two keypoints. s

(j)
i is the scale of this193

10
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local layer candidate, which is inherited from the scale of global layer (scale194

computation is demonstrated in Sec. 3.2 and illustrated in Fig. 3) and modeli195

is the model of part i used to calculate the part candidate closed contour C(j)
i .196

This model has been obtained through the principal component analysis (PCA)-197

based method proposed by [9]. It contains a vector mi representing the mean198

contour and keypoints of part i, and a matrix Bi containing the eigenvectors199

of the training data corresponding to the dominant eigenvalues, for each gender200

separately. For the reason that females and males require different models, the201

principal components are trained separately for both genders.202

The relationship among k
(j)
i , s

(j)
i , C(j)

i and modeli is shown in Eq.(3):203


 C(j)

i

k
(j)
i , s

(j)
i


 = Biz

(j)
i + mi, (3)

where, zi is a vector of linear shape coefficient. Given k
(j)
i and s

(j)
i , we can204

calculate z
(j)
i according to Eq.(3). With fixed z

(j)
i , the contour C(j)

i of the jth205

local candidate can be calculated.206

3.2. Global Layer207

The global layer G is able to estimate the shape and scale of the entire upper208

body and to connect the selected candidates of each part from the local layer in209

order to estimate the overall human body pose. Each global candidate in layer210

G has 9 keypoints K (shown in Fig. 2(b)) as follows:211

K = {belly, face, neck, rsh, re, rw, lsh, le, lw}, (4)

where rsh/lsh mean right/left shoulders, re/le mean right/left elbows, and212

rw/lw mean right /left wrists. The global contour GC of the qth candidate in213

tth frame is given by:214

GC(q)
t =

⋃

i={i|i⊂Lt}
C(q)
i . (5)

Each scale s
(q)
i used to calculate C(q)

i is of the same value with scale, which is215

described later in this section. Similar to the layer L, different models for males216

11
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and females are used in this layer as shown in Fig. 2(b). Each global layer pose217

candidate has a probability p(GC(q)
t |πDS) according to the DS puppet defined218

in [8] (πDS refers to DS model parameters), which represents the probability of219

a global model instance.220

Here, we exploit a method to estimate the global model scale using defined221

keypoints K. We find that the most invariant relative distance dc of the key-222

points is:223

dc = d(neck,face) + d(neck,lsh) + d(neck,rsh). (6)

Eq. (6) gives the sum of the Euclidean distances between neck and head,224

and neck and left/right shoulders. In this context, we use “Transfer Learning”225

[33] to obtain a relationship between dc and scale. This has been accomplished226

using 50 static images for each gender that are obtained from online image227

databases containing arbitrary human poses (with varying scale). For each228

image, we define a set of keypoints to calculate the dc value (see Fig. 3(a)) and229

a corresponding scale value. Now, the obtained dc and scale values will guide us230

in estimating a linear relationship as shown in Fig. 3(b). Since males and females231

require different body models, separate male and female sequences are used for232

training. Consequently, a global body puppet contour has been obtained in the233

first frame from Eq.(5) using nine keypoints, as shown in Fig. 3(c).234

3.3. Overview of the Proposed Coupled-layer Model235

A schematic overview of the proposed coupled-layer model is depicted in236

Fig. 4. In order to estimate the human body pose in frame t + 1, initially we237

propagate several best entire pose candidates estimated in frame t to frame t+1238

according to optical flow (illustrated in Fig. 4 step1) which will be described in239

Sec. 4.2. Then we use a flexible mixtures of parts (FMP) method [10], which is240

a human pose estimation method for monocular still images, to generate several241

extra entire human pose candidates for frame t+ 1 (Fig. 4 step2). This step is242

performed to provide more options when locating torsos. At this point, we have243

propagated candidates and initialised candidates (from FMP) in the global layer244

as shown in Fig. 1(a), and in the next step (Fig. 4 step3) we decompose them into245

12
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(b) Estimated linear relationship between scale and dc.

small body medial body large body

female

male

(c) Suitable scale obtained from the relationship shown in (b).

Figure 3: (a) Sample images used for scale computation, first two show female body keypoints

and the next two show male body keypoints. (b) and (c) Illustration of scale and global

puppet estimation. (b) Relationship between dc and scale, dots represent training samples.

(c) Obtained initial frame global body puppets with different scales, dots represent keypoints.

local layer candidates (see Fig. 1(b)) for further processing. To refine these local246

layer candidates, we use a method described in Sec. 4.4 to generate additional247

relocated local part candidates when necessary (Fig. 4 step4). After this step, a248

cost function defined in Sec. 4.3 is used to select best local part candidates, which249

13
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frame t

frame t+1

initialised entire

candidates

propagated entire

candidates

Global layer decompose

recompose

relocated part

candidates

propagated part

candidates

Local layer

initialised part

candidates

Coupled-layer model

final entire pose candidates

1

6
2

4

3

5

Figure 4: A schematic overview of coupled-layer DS puppet model for the frame t+ 1. There

are several steps: 1) propagate several best global human pose candidates from frame t to

frame t+ 1; 2) generate several entire pose candidates using FMP method for the frame t+ 1;

3) decompose all the global layer candidates into local part candidates; 4) generate some

relocated local part candidates when necessary; 5) recompose selected local parts into global

candidates; 6) get final best entire human pose candidates for frame t+ 1.

are later recomposed into global entire human pose candidates (Fig. 4 step5).250

Then we evaluate the recombined global candidates (Sec. 4.1), and choose the251

best candidates to propagate to frame t + 2 for future pose estimation (Fig. 4252

step6). The best candidate is selected as the overall result of frame t + 1 (see253

Fig. 1(c)).254

4. Inference255

4.1. Body Pose Initialization256

Our method does not use any posterior information (unlike [8] which uses257

forwards and backwards temporal propagation), and the available knowledge258

about each part is limited. To resolve this problem, some researchers have259

assumed prior knowledge such as the colour of the tracked person’s clothes [8] or260

a predetermined start pose, and others, e.g. [34], assume a manual initialization261

at the first frame (similar to conventions of the mainstream target tracking262
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literature). In this work we follow the latter approach by defining the puppet263

manually in the first frame of the video sequence. This is accomplished by264

selecting nine keypoints of a human body (e.g. belly button, neck, face, etc.265

that are defined in Eq.(4)), and then Eq.(5) is used to obtain the initial global266

pose (Fig. 3(c)).267

People often wear coloured clothes (either with long or short sleeves) and this268

colour information can be used for recognition and tracking. In our method,269

we extract colour histograms hc(i) for each local part i from the first frame,270

handling self-occlusion from lower arms to upper arms, and then to torso and271

head. The RGB image frames are transformed into the CIE L*a*b* colour space,272

and the pixels which have very small Lightness values (L < 0.3) are ignored.273

The two colour dimensions (a and b) and 20 × 20 bins are used to calculate274

the colour histograms hc(i). Later, this information is used for matching in the275

local layer (as presented in Sec. 4.3.1).276

4.2. Global Layer Pose Tracking277

Due to the possibility of erroneous hand-initialised poses (or, in future ap-278

plications, erroneous automatic detections) in the first frame, we perturb the279

initialised pose to obtain several global pose candidates. As discussed in Sec. 3.3,280

after processing each frame, we get several global pose candidates for propaga-281

tion. We calculate the score of each global layer candidate, based on which the282

best candidates for propagation are selected. In our method, the best 8 can-283

didates are selected for propagating to the next frame. The score for any qth284

global candidate in the tth frame is computed as follows:285

score
(q)
t = ψ

(q)
t + φ

(q)
t = λψp(It|GC(q)

t ) + λφp(GC(q)
t |πDS), (7)

where the coefficients λψ >> λφ for the reason that the magnitude of φ
(q)
t is286

larger than ψ
(q)
t . The first term ψ

(q)
t = p(It|GC(q)

t ) contains the image likelihood287

(i.e. colour and contour likelihood) for the entire puppet, It is the tth frame of288

video sequence, and GC(q)
t is the qth whole puppet candidate contour for the289

current frame. The second term in Eq. (7), φ
(q)
t (defined in [8]) represents the290
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probability of a DS model instance. We assume that the set of best poses in291

frame t are approximately correct, and we then track the whole body poses from292

frame t to t+1 using the optical flow of each part region of frame t. The optical293

flow images are computed using the method proposed by Liu [35]. Next, we294

calculate an affine matrix A
(q)
i (an affine motion model proposed by [8]) for each295

individual part i within the candidate q, which is used to estimate displacements296

of keypoints K. Because some keypoints may lie at the intersection region of two297

different parts, the final displacement for such keypoints is approximated by the298

mean of that found for each part. The keypoint displacements are calculated as299

vp
(q)
k =

1

Nk

∑

i={i|k⊂part i}
ṽp

(q)
k,i , in which ṽp

(q)
k,i = A

(q)
i k̃

(q)
i , (8)

where k̃
(q)
i is the regularized keypoints1 location in part i of the qth entire upper300

body candidate. ṽp
(q)
k,i is the displacements of the keypoints k in part i of the qth301

global candidate according to the optical flow. Nk = 1 if the keypoint k belongs302

to only one part (e.g. head and belly button); otherwise Nk = 2 (e.g. shoulder303

and elbow), as illustrated in Fig. 2.304

In addition to the propagated candidates from the previous frame, in order305

to improve accuracy in estimating the torso and head locations, we use the FMP306

method [10] to add a few additional candidates to the propagated candidates,307

as shown in Fig. 4 step2.308

4.3. Local Layer Pose Estimation309

After generating a set of global upper body pose candidates, we need to310

decompose them into local layer parts, in order to refine each part separately.311

Each local layer candidate acquires a scale s
(j)
i from the scale of the related312

global layer candidate. We refine each local layer part in the same sequence as313

defined in Eq. (1).314

1k̃
(q)
i are used along with the affine matrix A

(q)
i to fit an affine motion model to the optical

flow matrix within each body part.
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A cost function p(It+1|C(j)
i ) is used to evaluate every candidate of each part315

in the local layer separately:316

p(It+1|C(j)
i ) = λ1pct(It+1|C(j)

i ) + λ2pcl(It+1|C(j)
i ) + λ3pp(It+1, It|C(j)

i )

+λ4pf (It+1, It|C(j)
i ) + λ5ph(It+1, It|C(j)

i ).
(9)

The cost function considers five factors. In the first two terms we consider im-317

age likelihood, where we use contour pct(It+1|C(j)
i ) and colour pcl(It+1|C(j)

i ).318

The next term is our adaptive penalty pp(It+1, It|C(j)
i ), automatically adapts319

constraint terms while estimating limb locations (in contrast to [8] which limits320

joint angles to match the motion range of a particular dataset, or [25] which321

imposes a-priori kinematic constraints). The remaining two parts relate to mo-322

tion likelihood, which are motion cue pf (It+1, It|C(j)
i ) and hand motion offset323

ph(It+1, It|C(j)
i ). Because of the magnitude of the five terms, the selection of324

corresponding parameters should be λ3 < 0 < λ4 < λ5 ≤ λ2 < λ1. Fig. 5325

illustrates various scores of different part candidates given by the cost function.326

It is evident that the highest score provides the best candidate.327

(a) score=-15.888

(d) score=-13.120

(b) score=-9.719

(f) score=-22.752

(c) score=-20.230

(e) score=-12.237

Figure 5: Illustration of the discriminative power of the cost function.

4.3.1. Image likelihood328

Firstly, we describe how to calculate contour likelihood pct(It+1|C(j)
i ). The329

scale of human bodies varies greatly within different video sequences, as shown330
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in Fig. 3(c). To make the contour-based likelihood more robust, similar to [8],331

we use a three-level pyramid to apply a histogram of oriented gradients (HOG)332

descriptor: at the contour, inside the contour, and outside the contour, in order333

to obtain a feature vector hi(It+1|C(j)
i ). Next, a support vector machine (SVM)334

classifier is applied to this feature vector to compute pct(It+1|C(j)
i ).335

pct(It+1|C(j)
i ) =

1

1 + exp
(
ai svm

(
hi(It+1|C(j)

i

))
+ bi)

, (10)

where the function svm(·) means the output of the SVM, ai and bi are scalar336

parameters [36]. The SVM is trained on a collected dataset (217 images) with337

annotations as shown in [9].338

Next, the colour histograms hc(i) previously computed for individual parts339

(Sec. 4.1) are now used to generate a colour probability map Mc(i) (considering340

self-occlusion) for each part, as illustrated using an instance of a lower arm341

part in Fig. 6. We handle the self-occlusion by masking other parts in an order342

from lower arms to upper arms, and then to torso and head. We use the first343

propagated puppet of frame t+1 to handle the self-occlusion, in case that the344

masked parts would not influence the evaluation of part i. By checking the value345

of each pixel within C(j)
i in Mc(i), we calculate the mean value of these pixels346

as colour-based likelihood pcl(It+1|C(j)
i ).347

4.3.2. Motion likelihood348

We compute a motion image Ft+1, i.e. optical flow from frame t to frame349

t+1, as shown in Fig. 6. When handling the motion image for each part, we350

consider the self-occlusions among parts in a similar way with the method used351

in Sec.4.3.1, but we also mask the other parts regions of the puppet from frame352

t, because the Ft+1 is calculated using both frame t and t+1.353

The motion image Ft+1 is masked for each part candidate, and a flow region354

region
(j)
i for part i in the jth candidate can be computed. Then, the motion-355

based likelihood pf (It+1, It|C(j)
i ) is calculated as the mean value of pixels within356

this region.357

pf (It+1, It|C(j)
i ) = 1

N

∑
(x,y)⊂region(j)

i
Ft+1(x, y), (11)
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colour probability map

of the left lower arm

pixels within the area

of left lower arm

previous frame t

current frame t+1

magnitude of the

optical flow

torso area considering

self-occlusions

Figure 6: Illustration of the colour probability map and the optical flow magnitude. The

images of frame t and t+1 are on the left. The upper middle image shows the magnitude

of the optical flow from frame t to t+1, and the upper right image shows the magnitude of

optical flow for torso area considering self-occlusions. The lower middle image reveals the

colour probability for the colour of left lower arm area, and the lower right image shows the

colour probability map pixels within the area of left lower arm.

where, N is the total number of pixels within region
(j)
i , It+1 and It are images358

corresponding to the frames t + 1 and t, respectively, and C(j)
i is the index of359

the jth local candidate of part i defined in Eq.(3).360

Hands (the distal regions of left/right lower arm parts) tend to be more361

flexible and move faster than other parts, and so should not have the same362

penalty as other parts. We therefore add the motion-based item only for lower363

arms (i ⊂ {LArt , LAlt}) to offset some of the penalty. We generate a hand motion364

map Ht+1 = fh(It+1, It) for each frame by using a hand filter [6] over optical365

flow gradient magnitude. Masking Ht+1 to get pixels within the hand region366

Mask
(j)
i , and the mean value of these pixels is used to build ph(It+1, It|C(j)

i ):367

ph(It+1, It|C(j)
i ) = 1

N

∑
(x,y)⊂Mask

(j)
i
Ht+1(x, y). (12)

4.3.3. Adaptive penalty368

In general, estimating the pose for each part separately may lead to low369

efficiency and unexpected failures. To overcome this problem, we introduce an370
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adaptive penalty function. We start by computing the displacement value vp
(q)
k371

of each keypoint (denoted by k) in the qth global candidate during propagation372

(see Eq.(8)), and record the maximum and minimum values as boundaries. Then373

we choose a movement vck (between the maximum and minimum) of keypoint374

k as:375

vck = min
16q6Nq

(vp
(q)
k ) + λv( max

16q6Nq

(vp
(q)
k )− min

16q6Nq

(vp
(q)
k )), (13)

where, λv is a fixed coefficient, and λv ∈ (0, 1). We also set keypoint movement376

v
(j)
k,i to be the displacement of k in the jth local candidate of part i from It to377

It+1, and the difference between vck and v
(j)
k,i is denoted by ve

(j)
k . We define the378

coarse penalty term as follows:379

p̃p(It+1, It|C(j)
i ) =

∑

k={k|k⊂part i}
(||ve(j)k ||2), (14)

where It+1 and It refers to images in frames t+ 1 and t, respectively, and C(j)
i380

means the index of the jth local candidate of part i defined in Eq.3.381

Human lower arms sometimes move fast, and human body parts frequently382

self-occlude or may be occluded by other objects. Consider a situation when a383

local part location in frame t is erroneous due to an occlusion, and the occluded384

body part re-appears in the next frame. In this case the penalty term in Eq.(14)385

may cause problems when the local part needs to correct its pose by rapidly386

jumping from the wrong (old) location to the new location of the reappeared387

part. Our global layer overcomes this problem.388

In the global layer, the score, score
(1)
1 (calculated using Eq.(7)) is recorded389

when manually initialising the puppet in the first frame, and score
(1)
t+1 is cal-390

culated after propagating from frame t to frame t + 1. Additionally, we set a391

threshold for penalty as Dp = dc
2 , where dc is defined in Eq.(6). Then revisiting392

the local layer, we define our adaptive penalty as follows:393

pp(It+1, It|C(j)i ) =





( 1
ω·Dp

) · p̃p(It+1, It|C(j)i ), if p̃p(It+1, It|C(j)i ) 6 Dp

1
ω , otherwise

,

(15)
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where, ω =





score11−score1t+1

|score11|
, ω > δ

δ , otherwise

, Dp = dc
2 , δ is a small positive value394

which is set to be 0.1, and p̃p(It+1, It|C(j)i ) is the coarse penalty term defined in395

Eq.(14).396

4.4. From Decomposition to Recomposition397

After refining local parts, the next step in our method is to recombine all398

local parts to form a global refined pose. Previously, Yang and Ramanan [10]399

used a tree model-based method for calculating over all parts iteratively to400

get the best configuration for the position and type of each root. Later, they401

generate multiple detections in each image. By tracking the argmax indices,402

they find the location and type of each part in each maximal configuration.403

Our selection for the best part candidates is different from such methods and is404

explained below.405

As mentioned earlier, we follow the same order mentioned in Eq. (1) for406

pose computation and now for re-composition we follow the reverse order i.e. to407

calculate from lower arms to torso and head. The hand colour and motion maps408

can be used to sample the possible wrist locations. However, if the sampled409

wrist is too far from the elbow (further than the predefined lower arm length410

threshold), the elbow needs be relocated to make sure the lengths of both upper411

and lower arm are within the required range. In this process, we search for a412

new elbow location along the detected lower arm direction, while ensuring that413

the lower arm length meets the length constraint. This process also results in414

new upper arm candidates.415

From all the sampled, propagated and initialised results, the cost function416

defined in Eq.(9) is used to obtain a best set of lower arm candidates Nla. Next,417

relocated elbows from the previous step result in new upper arm candidates.418

From all relocated, propagated and initialised upper arms, the best set of upper419

arm candidates Nua are also selected using Eq.(9).420

Once we have both upper and lower arm candidates, the next step is to find421

the complete right and left arms by connecting Nua and Nla. Each upper and422
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RightLeft

(a) (b)

head

torso

(c) (d)

Figure 7: (a) Left and right arm candidates with upper (p1) and lower (p2) elbow points. (b)

Connected new elbow point p0. (c) Head and torso candidates with neck (p1 and p2) points.

(d) Connected new neck point p0.

lower arm candidate contains an elbow point (i.e. p1 and p2 in Fig. 7(a)). The423

process is performed in two steps. Initially, the upper and lower arm candidates424

are classified into pairs with the smallest Euclidean distance dp between p1 and425

p2 to represent various complete arms (Fig. 7(a) shows one pair for left side and426

one for right side as examples). In the process of pairing, each half arm (lower427

or upper) can be used more than once to ensure every half arm could find its428

nearest other half. Secondly, a final elbow location p0 is obtained using Eq.(16).429

The threshold τ in Eq.(16) is used to judge whether or not the two parts are430

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

too far away from each other.431

p0 =





p1+p2
2 , if dp < τ

p1 + 1
10 · dp , otherwise ,

(16)

where, τ = τ0 ·scale, and τ0 is a threshold of pixel distance which is set in Table.2432

of Sec.5.2.1. p0 is the new connecting joint point, as illustrated in Fig. 7(b) and433

(d).434

(a) (b) (c)

Figure 8: The procedure of connecting local part candidates to obtain a refined global pose.

Head and torso pair sets, and torso and left/right upper arm pair sets are435

selected in the same way. The procedure for connecting local part candidates436

is shown in Fig. 8. In each case the two parts are connected by calculating new437

left/right shoulders and new necks, respectively using Eq.(16). When calculating438

new necks, the points p1, p2 and p0 are defined as in Fig. 7(c) and (d); when439

calculating new shoulders, p1 refers to the shoulder point on the torso while p2440

refers to the point on the upper arm, and p0 refers to the calculated new shoulder441

point for the connected torso - upper arm pair. Note that, before calculating442

new shoulders, heads are already connected with torsoes and left/right lower443

arms are already connected with upper arms, as shown in Fig. 8(b). Once new444

shoulders are calculated, the entire bodies are obtained, as shown in Fig 8(c).445

Next, we return to the global level Gt+1 and use Eq.(7) to obtain several best446

puppet bodies for propagation to the next frame t + 2 (as illustrated in Fig. 4447

step1 and discussed in Sec. 4.2). The best global pose candidate is selected as448

the final pose for the current frame t+ 1.449
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Algorithm 1 Local-Global Coupled-Layer Upper Body Pose Tracker.

1: Choose K.

2: Generate global human pose GC.

3: Perturb GC to get Np global candidates.

4: for t = 2, 3, 4... do . t means frame index.

5: Propagate Np GCs to frame t, and generate Ni GCs using FMP.

6: Decompose each GC into P C(j)
i s. . P is the number of parts in Lt.

7: In LArt and LAlt, search for new rws and lws, and adjust res and les,

which lead to new LArt , LA
l
t, UA

r
t and UAlt.

8: for i = 1 to P do

9: Select best C(j)
i s using Eq.(9).

10: end for

11: Make UArt and LArt , UA
l
t and LAlt, Ht and Tt into pairs.

12: Connect each pair using p0.

13: Connect arms to torsos by calculating p0 of rsh and lsh, to get GCs.

14: Select best Np GCs using Eq.(7).

15: end for

4.5. Implementation Analysis450

We implement the above presented method in Matlab running on a Win-451

dows 7 machine with 3.4 GHz Intel i5 CPU. The key steps are summarised in452

Algorithm.1. Since the method is online, its complexity depends on the number453

of candidates N and number of parts P to process in the current image. In its454

current form of implementation, the corresponding asymptotic time complexity455

is computed to be of O(PN), where N = Np+Ni. Currently, it takes 4 seconds456

to process an image and estimate the pose.457

5. Experiments458

5.1. Datasets Description and Evaluation Methodology459

Three different public benchmark datasets have been used for evaluation460

experiments. The VideoPose2.0-training dataset (we didn’t use this dataset for461
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(b) VideoPose-2(a) VideoPose-1 (c) WildPose

Figure 9: Sample frames of our experimental datasets. (a) Frames from VideoPose2.0-training

dataset, (b) frames from VideoPose2.0-testing dataset, and (c) frames from Pose in the Wild

dataset.

training - only for testing) and VideoPose2.0-testing dataset, which contain 26462

clips and 18 clips respectively (each clip has about 30 frames), are obtained463

from two popular TV series “Friends” and “Lost” [6]. Our experiments use464

all sequences of the VideoPose2.0-training dataset, referred to as VideoPose-465

1, see Fig. 9(a), and VideoPose2.0-testing dataset, referred to as VideoPose-2,466

see Fig. 9(b). Additionally, we use Pose in the Wild dataset [7], a challenging467

dataset which has 30 sequences extracted from the Hollywood movies “Forrest468

Gump”, “The Terminal”, and “Cast Away”. Each sequence has about 30 frames469

with widely changing or deforming body poses. We refer to this dataset as470

WildPose, see Fig. 9(c).471

Some well known work, such as [7], evaluate and report their results by472

recording the percentage of keypoints that lie within a threshold number of pix-473

els erroro from the ground truth. However human images in different video474

sequences have different scales, which makes it unfair and unmeaningful to475

use a constant number of pixels to evaluate the estimation error, as shown in476

Fig. 10(a). Therefore, similar to the other SOA methods e.g. [8], we introduce477

a normalized set of threshold number of pixels (pixels error) errorr as follows:478

errorr = erroro × scale, (17)
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(a) a set of threshold numbers of pixels

(b) a set of normalized threshold numbers of pixels, calculated by Eq.(17)

Figure 10: Un-normalized and normalized threshold number of pixels. Six circles stand for six

thresholds, from inside to outside which has 15, 20, 25, 30, 35, 40 pixels radius, respectively.

(a) Un-normalized thresholds are too small for the left (large scale) figure but too large for

the right (small scale) figure. (b) Normalized thresholds are much more meaningful for frames

of different scales.

where, scale is illustrated by Fig. 3 in Sec. 3.2. This yields more meaningful eval-479

uation results, as demonstrated in Fig. 10(b). For each frame in every sequence,480

the scale in Eq.(17) is stored with the ground truth for repeating experiments,481

and each method reported in Fig. 11 is evaluated in the same way using Eq.(17).482

Fig. 11 plots the elbow and wrist accuracy of each method, averaged over all483

frames of all sequences of the respective dataset. The reported elbow/wrist484

accuracy is the mean accuracy value of the left and right elbow/wrist. The485

horizontal axis in Fig. 11 is the pixels error erroro used in Eq.(17).486

5.2. Discussion of Human Pose Estimation Results487

In this subsection, we first compare two variants of our method (i.e. with488

and without the adaptive penalty term) against four SOA methods, as described489
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in Sec. 5.2.1. Then in Sec. 5.2.2, we evaluate the robustness of our proposed490

method.491

5.2.1. Comparison experiments492

Here we present an experimental evaluation of our coupled-layer method493

where we compare two different versions of our method against the SOA methods494

of Zuffi et al. [8], Sapp et al. [6], Cherian et al. [7], as well as Park and Ramanan495

[15]. The adaptive motion penalty is a critical part of our proposed method. To496

demonstrate its significance, two different runs are performed with each dataset:497

one with the penalty and the other without.498

To perform these comparisons, we used the source code provided by Zuffi et499

al. [8] and Cherian et al. [7] for their methods to carry out the experiments on500

all datasets. When using the same datasets as used in the comparison papers,501

we use parameters as reported by the authors; while for different datasets, we502

used modified parameters that are chosen using the same methodology proposed503

by the corresponding work. For the methods of Sapp et al. [6] and Park and504

Ramanan [15], due to the lack of access to their source code, we compare our505

method against their previously published results with the same public datasets.506

Note that these comparisons are non-trivial. The problem of “detecting”507

a human (and its pose) in a single image, is a separate and distinct computer508

vision problem to that of sequentially tracking a human from one frame to the509

next. However, many published studies combine both these computer vision510

problems/methods in a single work, so that the two techniques (detection and511

tracking) can become confounding factors for evaluating the performance of512

either. The compared methods are not “online” in that they apply a moderately513

weak (noisy) pose detector to all frames over an entire video sequence, and then514

mutually optimise the poses, backwards and forwards, across all frames to satisfy515

smoothness and mutual compatibility constraints. In contrast, our method is516

“online” in the sense that it only makes use of information from the preceding517

frame, to estimate the pose in the current frame. Since our method relies on518

no prior knowledge except the estimated pose at the previous frame, it would519

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

not be fair or meaningful to initialise using a weak or noisy pose detector at520

the first frame, and we therefore hand-initialise our tracker in the first frame.521

To ensure a persuasive comparison, we use the same hand-initialised poses in522

the first frame of each sequence when we evaluate the methods of Zuffi et al. [8]523

and Cherian et al. [7] (the results are shown in Fig. 11). We suggest that the524

compared methods represent the best of the available SOA methods for human525

pose estimation in video sequences, and it is therefore useful and sensible to526

show comparison of these “offline” methods against our own “online” method527

in this paper. We believe that our use of identical hand-initialised poses for the528

first frame of all compared methods, makes for a fair comparison. Additionally,529

we note that: i) we have observed that the use (or not) of hand-initialised530

ground-truth for the first frame of the compared techniques makes very little531

difference to their performance (unsurprising, since the compared methods rely532

on separate detections in all frames); ii) in the next section we investigate the533

sensitivity of our proposed method to varying levels of noise in the initial pose534

estimate, and find it to be relatively robust against such perturbations.535

The first row in Fig. 11 shows the experimental results of all methods tested536

on the VideoPose2.0-training dataset. Results of Fig. 11(a) suggest that the pro-537

posed coupled-layer method with adaptive penalty provides significantly better538

elbow localization accuracy than [7] and [8], by 16% and 18% respectively at 15539

pixels error, and this superiority is maintained until 40 pixels error. Fig. 11(b)540

shows that the wrist accuracy of our method is around 20% better than [7] and541

[8] over all pixels error thresholds. One possible explanation for the lower per-542

formance of Zuffi et al. [8] on this dataset, is that they assume the lower arm to543

be of skin colour, e.g. people wear semi-sleeve shirts. However only 54% clips544

in this dataset comply with this condition. Cherian et al. [7] have high require-545

ments of the candidates, but the method they used to obtain pose candidates546

requires that some frames in the video sequences provide easy to detect poses.547

In the VideoPose2.0-training dataset, people sometimes wear loose clothes with548

long sleeves and self occlusion often occurs, which limits the accuracy of pose549

candidates and could be a possible factor to explain the lower accuracy of [7].550
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Figure 11: Performance comparison of the proposed method, with and without adaptive

penalty, versus other SOA methods.

Fig 11(c) shows that our method clearly outperforms the SOA work of [8, 6]551

and [7] on elbow accuracy tested on the VideoPose2.0-testing dataset. From552

Fig. 11(d) we can see that performance accuracy is better than [8, 6, 7] by more553

than 20% at 15 pixels error. Then as pixels error is increased, Zuffi et al. method554

[8] improves comparatively. This is mainly due to the fact that all the poses are555
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iteratively propagated and refined (forwards and backwards) within the entire556

video sequence, even if this results in losing the correct pose in many frames.557

However, this is the major advantage of our method, where a misjudged wrist558

pose in one frame can be corrected directly in the next frame using the proposed559

adaptive penalty.560

The WildPose dataset is very different from the VideoPose2.0 dataset. It561

contains more difficult outdoor scenes, with cluttered backgrounds, larger and562

faster movements of the tracked person, and rapid camera motion. The hu-563

man poses are closer to those of real world scenarios. Our proposed method,564

with adaptive penalty term, significantly outperforms the comparison methods565

[7, 15] and [8] at all pixels error tolerances, on both elbow and wrist metrics, as566

presented in Fig. 11(e) and (f). This suggests that such offline learning-based567

methods, requiring the entire video sequence to be mutually refined over all568

poses in all frames, perform poorly in these challenging conditions compared to569

the more highly constrained conditions of the VideoPose2.0 data. The perfor-570

mance of [8] is especially poor, likely due to their use of stronger assumptions571

and constraints (e.g. upper arm and torso should be of similar colour).572

Table 1: Comparison of shoulder accuracy data

Datasets and Methods
Shoulder accuracy at x pixels error (%)

x=15 x=20 x=25 x=30 x=35 x=40

VideoPose-1

ours 65.9 79.6 87.6 91.5 93.2 94.0

[8] 22.8 35.8 48.5 61.6 68.3 72.1

[7] 63.8 68.6 71.2 72.6 73.8 74.9

VideoPose-2

ours 69.2 82.2 88.8 91.4 93.4 95.0

[8] 30.4 58.9 79.1 90.1 95.8 96.5

[7] 63.7 72.1 75.5 77.5 78.3 79.1

WildPose

ours 56.0 71.0 81.5 87.7 91.1 93.4

[8] 34.9 49.9 63.7 74.2 79.7 84.0

[7] 66.3 76.1 79.9 81.8 83.5 84.7

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Torso locations are most likely to represent overall human position, which573

is, in turn, the foundation for estimating articulated human pose. Here we574

also compare our shoulder accuracy (see Table.1) with the SOA methods of [8]575

and [7]. Table.1 reveals that our method significantly outperforms other SOA576

methods in terms of accuracy of torsos.577

without

penalty

with

penalty

(a)

(b) (c)

(d) (e)

Figure 12: Performance analysis of using adaptive penalty. From the same frame with pose

(a), poses (b) and (c) are achieved with penalty term, while poses (d) and (e) are achieved

without penalty term. It can be clearly seen that the estimation performance is better using

the penalty term.

Additionally, note that the advantage of using the adaptive penalty term578

with our coupled-layer method is clearly noticeable in all experiments of Fig. 11.579

Fig. 12 shows some examples to illustrate how the adaptive penalty term is able580

to improve pose tracking accuracy.581

The parameter values used to test the method and their corresponding se-582

lection criteria are summarized in Table.2. Among these parameters, only τ0 in583

Eq.(16) has been hand selected (constant) for the sake of implementation con-584

venience. However, we vary its value and test our method on the VideoPose2.0-585

testing dataset in order to find the sensitivity of method to τ0. Fig. 13 illustrates586

the resulting tracking accuracy for various τ0 values. These results demonstrate587

that our proposed method is not sensitive to varying the value of τ0. The values588
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Table 2: List of the parameters used in the experiments and corresponding selection criteria.

Equation Coefficients Selection

global candidates score

Eq.(7)
λψ=1, λφ=0.03 λψ >> λφ

local part candidates

score Eq.(9)

λ1=4, λ2=1, λ3=-0.6,

λ4=0.5, λ5=1

λ4 < λ5 ≤ λ2 < λ1,

{λ1, λ2, λ4, λ5} ∈ R>0,

λ3 ∈ R<0

global layer keypoint

movement Eq.(13)
λv=2/3 0 < λv < 1

relocate new keypoint

Eq.(16)
τ0=20.

τ0 < 25, not sensitive,

see Fig. 13
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Figure 13: Proposed method is not sensitive to varying values of τ0. (a) elbow accuracy when

varying τ0; (b) wrist accuracy while varying τ0.

of the parameters reported in Table.2 are fixed for all our experiments i.e., for589

all the sequences of all three datasets.590
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Figure 14: Results of using Gaussian noise to perturb the hand-initialised pose for the first

frame of every video sequence. The amplitude of Gaussian noise ranges from 1 to 10 pixels.

The unit ’pn’ in legend means pixel noise, which refers to the amplitude of Gaussian noise.

5.2.2. Robustness experiments591

To investigate the robustness of our method to varying levels of noise in the592

initial pose estimates at the first frame, we add noise to perturb these manu-593

ally initialised poses, and use these perturbed poses to initialise our method.594

We perturb the ground-truth (manually initialised) poses by applying Gaussian595
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Table 3: Robustness for Initialization

Datasets

and Joint Points

Accuracy with n pixels amplitude

Gaussian noise (%)

n=0 n=4 n=7 n=10 average

VideoPose-1

sh 91.5 91.0 90.6 89.2 90.5

el 75.9 76.5 76.8 76.0 76.7

wr 75.8 74.6 72.4 74.2 74.0

VideoPose-2

sh 91.4 92.3 92.0 92.3 92.2

el 89.9 90.7 87.2 85.3 88.7

wr 74.7 71.0 71.4 72.5 72.2

WildPose

sh 87.7 86.8 85.6 85.3 85.6

el 83.0 81.3 79.0 80.5 81.0

wr 69.4 68.0 66.7 65.6 67.1

In this table, sh means shoulders, el means elbows, and wr means wrists. average

means the average accuracy value among n ranges from 1 to 10.

noise, with amplitudes varying from 1 pixel to 10 pixels. We perturb the first596

frame pose for VideoPose2.0-testing dataset, VideoPose2.0-testing dataset and597

Pose in the Wild dataset separately. Fig. 14 shows the accuracy results for both598

elbow and wrist of each dataset, and Table.3 shows instance accuracy of shoul-599

ders, elbows and wrist for different amplitudes of Gaussian noise at 30 pixels600

error. The average accuracy of joint points among adding Gaussian noise from601

1 to 10 pixels is also shown in Table.3. It can be seen that the added noise in602

the initial frame does not noticeably affect performance. This suggests that our603

method is robust to noisy initial pose estimates in the first frame. This phe-604

nomenon further supports the validity of the previous section which compares605

the performance of our tracker against SOA methods which rely on separate606

detections at each frame (see previous discussion of this).607

Furthermore, we also demonstrate our method using the automatic initial-608

ization technique shown in [10]. We perform this test using the VideoPose2.0-609
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Figure 15: Samples of automatic initialization in the first frame. (a) and (b) show samples of

acceptable auto-initialization; (c) and (d) show wrong auto-initialization, which cannot give

correct information to the system.

(a) Implemented with acceptable automatic initializations

(b) Implemented with bad automatic initializations

Figure 16: Results of our proposed method with automatic initialization in the first frame. (a)

shows result obtained by implementing with acceptable auto-initialization; (b) shows result

obtained by implementing with wrong auto-initialization.

testing dataset, where the human body pose in the first frame has been auto-610

matically initialised. The dataset contains 18 clips, out of which the automatic611

initialization was acceptably successful for 12 clips and performed poorly for612

the rest, as shown in Fig. 15. Obtained accuracies in both cases are shown in613

Fig. 16. As expected, the results show that the proposed pose tracker works614
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reasonably well in the case of effective initialization. In contrast, in cases where615

the automatic initialization failed, then successive tracking has difficulty in re-616

covering from the very large initial errors. This is due to the fact that the617

proposed method does not rely on any prior knowledge, while the automatic618

initialization fails to give correct target information.619

(a)

(c) (d)

(b)

Figure 17: Pose error variance and average error of the joints of left/right elbows and left/right

wrists.

Additionally, we also test our proposed method on a video file containing 200620

frames to check the existence of drift while tracking. The pose error variance621

has been computed over entire sequence and is shown in Fig. 17. The obtained622

results clearly suggest that the error does not accumulate over time and hence,623

the method does not suffer from drift. Moreover, it is evident that the method624

is able to robustly converge on good poses in new frames following large errors625

in previous frames.626

5.3. Visual Comparisons of Performance627

Fig. 18 shows example visualisations of our method’s results in comparison628

with the methods of [7] and [8] testing on the VideoPose2.0-training dataset,629

while Fig. 19 shows results for the VideoPose2.0-testing dataset. Fig. 20 shows630

results for the Pose in the Wild dataset. To compare with [7], we use the631

keypoints of our coupled-layer DS puppet model to draw stick poses, in order632
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that poses are presented in the same way as [7]. In each comparison pair set,633

the first row represents the results of our method and the second row shows634

results for the comparison methods. Several instances can be seen where our635

method correctly estimates a pose while [7] and [8] generate substantial pose636

errors. Also check the provided supplementary video for better understanding637

of the results.638

The second row of the first pair set in Fig. 18(a) shows that the person’s lower639

arm jumps to a poor pose estimate (second and fourth columns), this problem640

is caused by a higher image likelihood of colour and contour when using Zuffi641

et al. ’s method. In contrast, our proposed method overcomes this problem by642

exploiting an adaptive penalty term. The second row of the third pair set in643

Fig. 18(a) shows significant errors and erratic pose changes for Zuffi et al. . This644

is likely caused by the method of Zuffi et al. using a cost function for the entire645

body to evaluate each pose. In contrast, our proposed method evaluates the pose646

of each body part separately and then connects them according to a distance647

rule, which makes the resulting pose estimate more robust. The inaccuracy of648

Zuffi et al. in the second row of the third pair set in Fig. 19(a) is caused by649

the assumption that lower arms, in addition to hands, are always skin coloured.650

The second pair set in Fig. 20(a) illustrates the superiority of our method in651

calculating scale. When humans move from far to near ranges, our proposed652

method can robustly detect the scale change, whereas the method of [8] cannot.653

The method of Cherian et al. requires a large quantity of human pose candi-654

dates, and then uses the the entire video sequence to mutually refine them. This655

method is able to improve the overall estimation accuracy level, but sacrifices656

making full use of the image likelihood of each frame.657

6. Conclusion658

We have proposed a novel coupled-layer method for online human pose track-659

ing, which demonstrates state-of-the-art adaptability, precision and robustness660

over a variety of video sequences. Global holistic models struggle to handle the661
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Figure 18: Example images comparing our results (using adaptive penalty) with the methods

of Zuffi et al. [8] (sub-figure(a)) and Cherian et al. [7] (sub-figure(b)) on VideoPose2.0-training

dataset. Each sub-figure has three pair sets, and in each pair set, the first row reveals sample

results of our method, and the second row reveals the compared method.
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Figure 19: Sample results compared our results (using adaptive penalty) with the methods of

Zuffi et al. [8] (sub-figure(a)) and Cherian et al. [7] (sub-figure(b)) on VideoPose2.0-testing

dataset. Each sub-figure has three pair sets, and in each pair set, the first row reveals sample

results of our method, and the second row reveals the compared method.
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Figure 20: Sample results comparing our method (using adaptive penalty) with the methods

of Zuffi et al. [8] (sub-figure(a)) and Cherian et al. [7] (sub-figure(b)) on Pose in the Wild

dataset. Each sub-figure has three pair sets, and in each pair set, the first row reveals sample

results of our method, and the second row reveals the compared method.
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complexity of highly articulated objects, whereas parts-based methods lead to662

pose errors if not sufficiently constrained. Our coupled layer model combines663

elements of each approach to outperform previous methods. We also incorpo-664

rated an adaptive motion penalty which can correct the pose of a human body665

part which has drifted from the previous frame. Our method relies only on the666

present and previous frames (except the first frame), and so is suitable for online667

sequential tracking. However, it still outperforms offline methods which rely on668

mutually optimising poses at all frames over the entire video sequence.669
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