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Abstract

We establish smoothing estimates in the framework of hyperbolic Sobolev spaces

for the velocity averaging operator ρ of the solution of the kinetic transport

equation. If the velocity domain is either the unit sphere or the unit ball, then,

for any exponents q and r, we find a characterisation of the exponents β+ and

β−, except possibly for an endpoint case, for which D
β+

+ D
β−
− ρ is bounded from

space-velocity L2
x,v to space-time Lq

tL
r
x. Here, D+ and D− are the classical and

hyperbolic derivative operators, respectively. In fact, we shall provide an argu-

ment which unifies these velocity domains and the velocity averaging estimates

in either case are shown to be equivalent to mixed-norm bounds on the cone

multiplier operator acting on L2. We develop our ideas further in several ways,

including estimates for initial data lying in certain Besov spaces, for which a

key tool in the proof is the sharp �p decoupling theorem recently established by

Bourgain and Demeter. We also show that the level of permissible smoothness

increases significantly if we restrict attention to initial data which are radially

symmetric in the spatial variable.
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Preprint submitted to Journal de Mathématiques Pures et Appliquées March 28, 2018



2010 MSC: 42B37, 35Q35

1. Introduction

In this paper we consider regularity estimates for velocity integrals of the

solution

F (x, v, t) = f(x− tv, v)

of the kinetic transport equation

(∂t + v · ∇)F = 0, F (x, v, 0) = f(x, v),

where (x, v, t) ∈ R
d ×R

d ×R. The regularising effect of velocity integration (or

“velocity averaging”) of the form

ρf(x, t) =

∫
Rd

f(x− tv, v) dμ(v) (1.1)

for various velocity measures μ has received considerable attention in the liter-

ature, where they are often referred to as velocity averaging lemmas (see, for

example, [6], [8], [9], [18], [19], [23], [24], [25], [33], [34], [42], [43]). Inequalities of

this type are extremely rich, capturing diverse phenomena from geometric and

harmonic analysis. This is perhaps most apparent through the interpretation of

the dual operation

ρ∗g(x, v) =
∫
R

g(x+ tv, t) dt (1.2)

as a (space-time) X-ray transform, for which important problems remain wide

open; see, for example, [37] or [53].

For the purposes of this introductory section, we focus our attention on the

(physically-relevant) velocity average

ρf(x, t) =

∫
Sd−1

f(x− tv, v) dσ(v),

where σ is the induced Lebesgue measure on the unit sphere Sd−1. Our estimates

will capture a natural regularising effect of the averaging operator ρ through the

use of hyperbolic Sobolev spaces, and we begin by introducing our results in the

context of initial data in L2(Rd × S
d−1). For example, given any q, r ∈ [2,∞),
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we shall obtain the optimal range of exponents β+ and β− (except possibly an

endpoint case) for which the global space-time estimate

‖Dβ+

+ D
β−
− ρf‖Lq

tL
r
x
≤ C‖f‖L2

x,v
(1.3)

holds. Here, D
β+

+ denotes classical fractional differentiation of order β+ andD
β−
−

denotes the hyperbolic differentiation operator of order β−; these are Fourier5

multiplier operators with multipliers (|ξ|+ |τ |)β+ and ||ξ| − |τ ||β− , respectively.
As far as we are aware, Bournaveas and Perthame [15] were the first to

investigate regularising properties of velocity averages over spheres using hyper-

bolic Sobolev spaces. They obtained (1.3) in the case (q, r) = (2, 2) when

(d, β+, β−) = (3, 1
2 , 0) and (d, β+, β−) = (2, 1

4 ,
1
4 ). Notice that in the two-10

dimensional case, a total of 1
2 -derivative has been gained by the velocity average

through the inclusion of hyperbolic derivatives; it was observed in [15] that such

a gain is not possible by considering classical derivatives alone. These results

were extended to all space dimensions d ≥ 2 in [14] and it was shown that (1.3)

holds whenever (q, r) = (2, 2) and (β+, β−) = (d−1
4 ,−d−3

4 ).15

We now state our first main result which gives an extension of these results

to q, r ∈ [2,∞). In general the total number of derivatives is given by

β+ + β− =
d

r
+

1

q
− d

2
. (1.4)

This restriction is in fact a necessary condition for (1.3) to hold, as can be shown

by a simple scaling argument. Also, it will be useful to write

β∗
+ = min

{
d+ 1

2r
− 1

2
,
d

r
+

1

q
− d+ 1

4

}
.

Theorem 1.1. Let d ≥ 2, q, r ∈ [2,∞) and suppose β+, β− satisfy (1.4).

1. Suppose 1
q ≤ d−1

2 ( 12 − 1
r ). Then (1.3) holds if and only if β+ < β∗

+.

2. Suppose 1
q > d−1

2 ( 12 − 1
r ). Then (1.3) holds if β+ < β∗

+ and fails if

β+ > β∗
+.

The statement is given in terms of the parameter β+, providing the upper

threshold on the number of allowable classical derivatives. This in the spirit of

3



the genesis of such estimates, however, β− may be considered the more decisive

parameter since its lower threshold is negative and thus a singularity in the D−

multiplier appears. Thus, we shall also write

β∗
− = max

{
1

q
+

d− 1

2r
− d− 1

2
,−d− 1

4

}

for the lower threshold in β− so that β+ < β∗
+ if and only if β− > β∗

−.20

We will give two different proofs of the sufficiency claims in Theorem 1.1,

one of which relies on duality and Plancherel’s theorem, and another which pro-

ceeds by a direct analysis of the operator ρ. The dual approach is special to the

case of initial data in L2(Rd × S
d−1). Nevertheless, it allows us to highlight a

strikingly clear connection to the cone multiplier operator, a well-known oper-

ator in harmonic analysis, whose full range of bounds on Lebesgue spaces is a

famous open problem. For α > −1, the cone multiplier operator Cα of order α

will be given by

Ĉαg(ξ, τ) =

(
1− τ2

|ξ|2
)α

+

φ(|ξ|)ĝ(ξ, τ)

where φ ∈ C∞
c (R) is supported in [ 12 , 2]. We note that the conventional cone

multiplier operator (first introduced in [48]) is given by the multiplier (1 −
|ξ|2/τ2)α+φ(τ), however we may consider these operators as essentially the same

with regard to their boundedness properties and thus we continue to refer to Cα

as the cone multiplier of order α.25

Theorem 1.2. Let d ≥ 2, q, r ∈ [2,∞) and suppose β+, β− satisfy (1.4). Then

the estimate (1.3) holds if and only if Cβ−+ d−3
4 is L2

t,x → Lq
tL

r
x bounded.

Thus, Cα is the fundamental operator whose mixed-norm bounds for func-

tions in L2
t,x underpin the smoothing estimates (1.3). Even in the case (q, r) =

(2, 2), this gives a new perspective by showing that the bounds established in30

[15] and [14] at (β+, β−) = (d−1
4 , 3−d

4 ) are equivalent to the (elementary) bound-

edness of C0 on L2.

Naturally, we would like to establish a full understanding of the mixed-norm

estimates of Cα for functions in L2. Although the Lp → Lq bounds for this

operator have been extensively studied (see, for example, [10], [22], [29], [30],35

4



[31], [38], [39], [41], [45], [50], [51], [54]) we were not able to find a reference for

the mixed-norm estimates that we need in the present work and thus, in Section

5, we shall include a proof of the following result. Moreover, the argument given

there is the basis of our direct approach to proving Theorem 1.1.

Let

α∗ = α∗(q, r) = max

{
1

q
+

d− 1

2r
− d+ 1

4
,−1

2

}
. (1.5)

Theorem 1.3. Let d ≥ 2 and q, r ∈ [2,∞).40

1. Suppose 1
q ≤ d−1

2 ( 12 − 1
r ). Then Cα is L2

t,x → Lq
tL

r
x bounded if and only if

α > α∗.

2. Suppose 1
q > d−1

2 ( 12 − 1
r ). Then Cα is L2

t,x → Lq
tL

r
x bounded if α > α∗ and

unbounded if α < α∗.

We may say that (q, r) is wave-admissible when 1
q ≤ d−1

2 ( 12 − 1
r ) and q, r ∈45

[2,∞). This is common terminology and, since we consider the case r < ∞,

wave-admissibility is equivalent to the validity of the classical Strichartz esti-

mates Ḣs× Ḣs−1 → Lq
tL

r
x for the solution of the wave equation (∂2

t −Δ)u = 0,

where s = d
2 − d

r − 1
q . These estimates form the basis for our proofs of Theorem

1.1 (via the direct approach and the dual approach), along with an additional50

argument when d = 2 which is necessary due to the fact that q > 2 at the

endpoint Strichartz estimate in two space dimensions, and classical Littlewood–

Paley theory.

Our direct approach to proving the sufficiency claims in Theorem 1.1 has

the merit that it naturally extends beyond the case where the initial data lies55

in L2(Rd × S
d−1). For example, we shall use this approach to establish an

extension of Theorem 1.1 for initial data in certain Besov spaces making use of

the sharp �p decoupling inequality for the cone recently established by Bourgain

and Demeter [11]. In a different direction of development, we shall see that the

direct approach allows us to see an additional gain of regularity if we restrict to60

initial data which are radially symmetric in the spatial variable. This argument

uses the Funk–Hecke theorem, a result from classical harmonic analysis, and
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permits data which are rougher than L2(Rd × S
d−1), with regularity measured

with respect to smoothing in the spherical variable.

Both approaches readily allow us to understand velocity averages over dif-65

ferent sets V . The case where V is the closed unit ball Bd−1 (equipped with

the Lebesgue measure) has also featured prominently in the literature on ve-

locity averages. As will become clear in Section 4, our dual approach will be

used to see that the analogous estimate to (1.3) on B
d−1 is equivalent to the

L2
t,x → Lq

tL
r
x boundedness of Cβ−+ d−1

4 (and thus the analogue of Theorem 1.170

holds with β∗
+ raised by 1

2 ). In this sense, we can view the cases of the sphere

and the unit ball as equivalent with a unified treatment. Our direct approach

may also be used to obtain bounds over more general velocity domains and we

illuminate this point at the end of Section 6.1.

The present work is a contribution to a large body of work on velocity aver-75

ages in the context of kinetic equations. The papers [15] and [14] already cited

above have the most direct connection to our work. For comprehensive accounts

of the original motivation for studying regularising properties of velocity aver-

ages, along with extensive summaries of the prior results, we refer the reader to

the excellent surveys of Bouchut [7] and Perthame [46].80

2. Overview and organisation

We have intentionally stated only a sample of our results in the introductory

section. The current section provides a more detailed overview of our main

contributions and allows us to clarify the structure.

Section 385

We establish some notation and record some observations which will be used

frequently throughout the paper.

Section 4

We present our dual approach to smoothing estimates for ρ with L2 initial

data, beginning by allowing for the velocity domain and multiplier to be non-90
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specific, then establishing a duality principle between such estimates and certain

Fourier multiplier estimates. This culminates with a proof of a generalisation

of Theorem 1.2 which includes both S
d−1 and B

d−1 as the velocity domain as

special cases; see Theorem 4.3.

Section 595

We prove Theorem 1.3 based on the duality principle from Section 4, thus

giving a proof of Theorem 1.1. Using Theorem 4.3, we shall in fact simultane-

ously give a proof of the analogue of Theorem 1.1 for B
d−1; see Theorem 4.4.

We also establish certain weak type estimates for Cα in the critical case α = α∗.

Section 6100

We present our direct approach to smoothing estimates for ρ. The natural

setting for the argument is for initial data in an Lp-based Besov space and ini-

tially we illustrate how such estimates crucially depend on Lp
x,v → Lq

tL
r
x bounds

for Ck ◦ ρ, where Ck is a Fourier multiplier operator supported in a 2−k neigh-

bourhood of the truncated cone. In particular, the range of β− is completely105

determined by the bound on this operator. When p = 2 our argument leads

to a direct proof of Theorem 1.1, and for general p ≥ 2, based on the sharp

�p decoupling theorem of Bourgain and Demeter [11], we establish smoothing

estimates for initial data in the Besov space Ḃs
p,2 (see Theorem 6.5).

Section 7110

We present several further results and contextual remarks. As is clear from

our discussion to this point, a feature of this paper is the exposing of links

with contemporary aspects of harmonic analysis, and in particular the modern

theory of Fourier multipliers and the restriction theory of the Fourier transform.

Additional discussion along these lines appears in Section 7, where, for example,115

the affine-invariant endpoint multilinear Kakeya inequality (see [13] and [16]) is

viewed as a null-form estimate for a certain multilinear variant of ρ.

In a different direction, we use our direct approach in Section 6 to identify

an improving effect obtainable by restricting to initial data which are assumed

7



to possess some symmetry; in particular, radially symmetric with respect to the120

spatial variable, and independence with respect to the velocity variable. We are

also able to use our duality principle to identify the optimal constant and fully

address the existence and characterisation of extremisers for the estimate (1.3)

whenever (q, r) = (2, 2) (see Theorem 7.6). Optimal constants and extremisers

are also identified when restricting to initial data which are radial in the spatial125

variable (see Theorem 7.7).

3. Notation and preliminaries

3.1. Notation

For space-time functions defined on R
d+1 we consistently use the letter g,

and for space-velocity functions defined on R
d×V , we consistently use the letter130

f . If a function is defined on R
d we use the letter h.

From now on, in the Lebesgue space notation, we shall usually drop the

explicit reference to the underlying measure space (for example, L2
x,v will simply

be written L2 where possible). All norms are global and so there should be no

confusion.135

Regarding constants, we write A � B or B � A to mean A ≤ CB, where C

is a constant which is allowed to depend on d and any exponents which are used

to define the relevant function space in use, and A ∼ B means both A � B and

B � A hold.

We introduce the Littlewood–Paley projection operators (Pj)j∈Z given by

P̂jh(ξ) = ϕ(2−j |ξ|)ĥ(ξ)

where ϕ ∈ C∞
c (R) is supported in [ 12 , 2] and such that

∑
j∈Z

ϕ(2−j |ξ|) = 1

for all ξ �= 0, and for appropriate functions h on R
d. We extend the definition of

Pj to space-time functions on R
d×R or space-velocity functions on R

d×V in the

8



obvious manner acting on the spatial variable only. The classical Littlewood–

Paley inequality that we will use states that, for any r ∈ (1,∞) we have the

equivalence

‖h‖Lr(Rd) ∼
∥∥∥∥
(∑

j∈Z

|Pjh|2
)1/2∥∥∥∥

Lr(Rd)

.

For a proof and further discussion we refer the reader to [47].140

The annulus {ξ ∈ R
d : |ξ| ∈ [ 12 , 2]} will be denoted by A0 and the indicator

function of the set S will be written as 1S , and x+ = max{x, 0}. Also, the

Fourier transform of an integrable function ϕ : Rn → C is defined to be

ϕ̂(ξ) =

∫
Rn

ϕ(x)e−ix·ξ dx

for ξ ∈ R
n. Thus, we use the same ̂ notation for functions depending on x,

or (x, t), or (x, v). In the latter case of space-velocity functions, the meaning

is that the Fourier transform is taken only with respect to the spatial variable.

Also, sometimes it is convenient to write Fϕ = ϕ̂.

3.2. Preliminary observations145

For general velocity domains, the Fourier transform of ρf is easily computed

and we obtain the expression

ρ̂f(ξ, τ) = 2π

∫
V

δ(v · ξ + τ)f̂(ξ, v) dμ(v). (3.1)

Now suppose V = S
d−1 with Lebesgue measure. Clearly ρ̂f is supported in

the region

C := {(ξ, τ) ∈ R
d+1 : |τ | ≤ |ξ|}

and this fact plays an important role in the analysis.

It will also be helpful to note here that the dual operator ρ∗ is given by

ρ∗g(x, v) =
∫
R

g(x+ tv, t) dt (3.2)

and hence

ρ̂∗g(ξ, v) = ĝ(ξ,−ξ · v). (3.3)

9



The relevance of the multipliers D+ and D− may be seen by considering

initial data which are independent of the velocity variable. In this case, we may

explicitly calculate the above integral in (3.1) over Sd−1 using the following.

Lemma 3.1. For every (τ, ξ) ∈ R
d+1 with ξ �= 0 we have

∫
Sd−1

δ(v · ξ + τ) dσ(v) = |Sd−2|1C(ξ, τ)

|ξ|
(
1− τ2

|ξ|2
) d−3

2

.

Proof. We use rotation invariance and homogeneity to write∫
Sd−1

δ(v · ξ + τ) dσ(v) =
1

|ξ|
∫
Sd−1

δ(v · ed + τ
|ξ| ) dσ(v)

where ed is the dth standard basis vector in R
d. Parametrising S

d−1 by v =150

(ṽ sin θ, cos θ) for ṽ ∈ S
d−2 and θ ∈ [0, π] we obtain the claimed expression.

Using Lemma 3.1 and rotation invariance, one may write

ρ̂f(ξ, τ) =
2π1C(ξ, τ)

(|ξ|2 − τ2)1/2

∫
Σξ,τ

f̂(ξ, v) dσξ,τ (v) (3.4)

where Σξ,τ := {v ∈ S
d−1 : v · ξ + τ = 0} is a slice of Sd−1 by a hyperplane

with normal direction given by ξ, and σξ,τ is the induced surface measure. This

alternative representation of ρ̂f will sometimes be more convenient than (3.1).

4. Approach I : Dual analysis155

4.1. A duality principle

We begin by considering the velocity domain V equipped with the mea-

sure dμ(v) = w(v) dv for some compactly supported function w on V , and the

corresponding velocity averaging operator

ρf(x, t) =

∫
V

f(x− tv, v) dμ(v).

The duality principle that we would like to expose concerns smoothing estimates

for ρ of the form

‖F−1(mρ̂f)‖Lq
tL

r
x
≤ C‖f‖L2 (4.1)

10



for an appropriate Fourier multiplier m, and the L2 → Lq
tL

r
x boundedness of

the associated multiplier mμ given by

mμ(ξ, τ) = m(ξ, τ)
(

1
|ξ|Rw(− τ

|ξ| ,
ξ
|ξ| )

)1/2
. (4.2)

The notation ‖f‖L2 means that the integration in the v-variable is taken with

respect to the measure μ, and R is the Radon transform given by

Rw(r, θ) =

∫
V

w(y)δ(y · θ − r) dy

averaging over the hyperplane {y ∈ R
d : y · θ = r} for fixed (r, θ) ∈ R × S

d−1.

Also, we use the boldface notation C for the optimal constant in (4.1).

First, note that (4.1) is dual to the estimate

‖ρ∗F−1(mĝ)‖L2 ≤ C‖g‖
Lq′

t Lr′
x

where the dual operator ρ∗ is given by (3.2). Using (3.3) we easily obtain

‖ρ∗F−1(mĝ)‖2L2 =
1

(2π)d

∫
Rd

∫
R

|m(ξ, τ)|2|ĝ(ξ, τ)|2
∫
V

δ(τ + v · ξ)w(v) dvdτdξ

and hence

‖ρ∗F−1(mĝ)‖2L2 =
1

(2π)d
‖mμĝ‖2L2 = 2π‖F−1(mμĝ)‖2L2 .

This means that (4.1) is equivalent to the Lq′
t L

r′
x → L2 boundedness of the

Fourier multiplier mμ, and by a further duality, we have proved the following.160

Theorem 4.1 (Duality Principle). The smoothing estimate

‖F−1(mρ̂f)‖Lq
tL

r
x
≤ C‖f‖L2

holds if and only if mμ is a bounded Fourier multiplier from L2 to Lq
tL

r
x. More-

over, the optimal constant C is such that (2π)−1/2C coincides with the operator

norm of the Fourier multiplier associated with mμ as a mapping from L2 to

Lq
tL

r
x.

A particular instance of this duality principle can be found in work of165

Bouchut [7] (see Proposition 7.1) corresponding to the case where (q, r) = (2, 2)

and classical Sobolev smoothing.

11



In the case of a radially symmetric measure supported inside the unit ball

B
d−1, the following expression for the Radon transform will be convenient.

Proposition 4.2. If w(v) = w̃(|v|)1[0,1](|v|), then

Rw(r, θ) = |Sd−2|1[−1,1](r)

∫ 1

|r|
w̃(s)sd−2(1− r2

s2 )
d−3
2 ds

for each (r, θ) ∈ R× S
d−1.170

Proof. For r ∈ [0, 1], using polar coordinates we get

Rw(r, θ) = |Sd−2|
∫ 1

0

∫ 1

−1

w̃(s)δ(sλ− r)(1− λ2)
d−3
2 sd−1 dλds

and the claimed expression follows.

The cases of primary interest are V = S
d−1 or V = B

d−1 equipped with the

induced Lebesgue measures and

m(ξ, τ) = (|ξ|+ |τ |)β+ ||ξ| − |τ ||β− .

These cases may be unified by considering the case where

wκ(v) =
1

Γ(1 + κ)
(1− |v|2)κ1[0,1](|v|) (4.3)

for κ ∈ [−1, 0]; we let dμκ(v) = wκ(v) dv and, to avoid double subscripts,

we write mκ for the associated multiplier given by (4.2). This family of mea-

sures naturally unifies the cases of interest since μ−1 = 1
2σ(v) and dμ0(v) =

1Bd−1(v) dv; of course, μ−1 is a singular measure and so this ceases to directly

fall under the scope of the above discussion; however a limiting argument allows

us to make sense of Rw−1 and we obtain

Rw−1(r, θ) =
1
2 |Sd−2|(1− r2)

d−3
2

+

and therefore

m−1(ξ, τ) = ( 12 |Sd−2|)1/2|ξ|β++β−− 1
2

(
1 +

|τ |
|ξ|

)β+−β−(
1− τ2

|ξ|2
)β−+ d−3

4

+

. (4.4)
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Remark. The limiting argument we refer to in order to obtain the above formula

for Rw−1 is already present in Lemma 3.1. The operator R acting on more

general singular measures can be shown to be well defined and we refer the

reader to [44] for further details on such sliced measures.175

For general κ ∈ [−1, 0] we use Proposition 4.2 followed by elementary changes

of variables to write

Rwκ(r, θ) = 1[−1,1](r)
|Sd−2|

Γ(1 + κ)

∫ 1

|r|
(1− s2)κ(s2 − r2)

d−3
2 sds

=
|Sd−2|

2Γ(1 + κ)
(1− r2)

κ+ d−1
2

+ B(1 + κ, d−1
2 ).

The beta function B satisfies the identity Γ(x+ y)B(x, y) = Γ(x)Γ(y), hence

Rwκ(r, θ) =
|Sd−2|Γ(d−1

2 )

2Γ(d+1
2 + κ)

(1− r2)
κ+ d−1

2
+

and whence

mκ(ξ, τ) =

( |Sd−2|Γ(d−1
2 )

2Γ(d+1
2 + κ)

)1/2

|ξ|β++β−− 1
2

(
1 +

|τ |
|ξ|

)β+−β−(
1− τ2

|ξ|2
)α

+

(4.5)

where α = β− + κ
2 + d−1

4 .

Remark. Observe that we are now in a position to immediately give a clear

picture of when (1.3) holds in the case (q, r) = (2, 2). Indeed, by Theorem 4.1,

(1.3) holds if and only if m−1 is a bounded multiplier L2 → L2, that is to say,

m−1 is a bounded function on R
d+1. From (4.4), clearly this is the case if and180

only if β+ + β− = 1
2 and β− + d−3

4 ≥ 0. This approach based on the duality

principle provides an alternative to that given in [15] and [14]. Of course, (4.4)

also brings to light the link to the cone multiplier Cβ−+ d−3
4 and this forms the

basis, along with Theorem 4.1, for our proof of Theorem 1.2.

More generally, we prove the following for the velocity average ρκ given by

ρκf(x, t) =

∫
Rd

f(x− tv, v) dμκ(v).

Theorem 4.3. Let d ≥ 2, q, r ∈ [2,∞), κ ∈ [−1, 0] and suppose β+, β− satisfy

(1.4). Then the estimate

‖Dβ+

+ D
β−
− ρκf‖Lq

tL
r
x
� ‖f‖L2 (4.6)

13



holds if and only if Cα is L2 → Lq
tL

r
x bounded, where α = β− + κ

2 + d−1
4 .185

Proof. From Theorem 4.1, it suffices to show that the L2 → Lq
tL

r
x boundedness

of the Fourier multiplier mκ and Cα are equivalent. Obviously F(Cαg) = mκm̃ĝ

where

m̃(ξ, τ) = Cd,κ1C(ξ, τ)φ(|ξ|)|ξ|−β+−β−+ 1
2

(
1 +

|τ |
|ξ|

)β−−β+

and Cd,κ is some constant. It follows that F−1m̃ ∈ L1 and hence the L2 → Lq
tL

r
x

boundedness of Cα follows from the L2 → Lq
tL

r
x boundedness of the Fourier

multiplier mκ.

Conversely, if we assume that Cα is L2 → Lq
tL

r
x bounded, a similar argument

shows that

‖F−1(mκP̂0g)‖Lq
tL

r
x
� ‖P0g‖L2 (4.7)

where, in general, P̂jg(ξ, τ) = φ(2−j |ξ|)ĝ(ξ, τ) is the jth Littlewood–Paley pro-

jection operator. Since

F−1(mκP̂jg)(x, t) = 2(β++β−+d+ 1
2 )jF−1(mκP̂0gj)(2

jx2jt)

where ĝj(ξ, τ) = ĝ(2jξ, 2jτ), we see that (4.7) implies

‖F−1(mκP̂jg)‖Lq
tL

r
x
� ‖Pjg‖L2

for all j ∈ Z. Since q, r ∈ [2,∞), it now follows from (3.1) that the Fourier

multiplier mκ is bounded L2 → Lq
tL

r
x.190

As a consequence of Theorem 1.3 (to be proved in the forthcoming section),

we obtain the following generalisation of Theorem 1.1 given in terms of the

threshold

β∗
−(κ) = max

{
1

q
+

d− 1

2r
− d+ κ

2
,−d+ 1 + 2κ

4

}
.

Theorem 4.4. Let d ≥ 2, q, r ∈ [2,∞), κ ∈ [−1, 0] and suppose β+, β− satisfy

(1.4).

1. Suppose 1
q ≤ d−1

2 ( 12 − 1
r ). Then (4.6) holds if and only if β− > β∗

−(κ).

2. Suppose 1
q > d−1

2 ( 12 − 1
r ). Then (4.6) holds if β− > β∗

−(κ) and fails if

β− < β∗
−(κ).195
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5. Proof of Theorem 1.3

5.1. Sufficiency

Fix α > α∗. The localisation to (τ, ξ) ∈ C with ξ ∈ A0 built into the operator

Cα means that the desired estimate

‖Cαg‖Lq
tL

r
x
� ‖g‖L2

follows once we prove that φ(|ξ|)(|ξ| − |τ |)α+ gives rise to a bounded multiplier

operator L2 → Lq
tL

r
x. Indeed, since |ξ| ∼ 1 and |τ | � 1, elementary considera-

tions show that the convolution kernel corresponding to the remaining factor in200

the multiplier is integrable on R
d × R and thus plays a benign role.

Since αmay be negative, the delicate part of the multiplier is at the boundary

of the cone τ = ±|ξ|, so the next stage is to dyadically decompose away from

this region. We may consider the cases τ > 0 and τ < 0 separately, and via

elementary changes of variables one can see that the latter case can be obtained

from the former. Thus, we take ψ ∈ C∞
c (R) to be supported in [ 12 , 2] such that

sα =
∑
k∈Z

2−kαψ(2ks) (5.1)

holds for all s > 0, and use this to decompose the multiplier as

1τ>0φ(|ξ|)(|ξ| − τ)α+ = m0(ξ, τ) +
∞∑

k=k0

2−kα1τ>0φ(|ξ|)ψ(2k(|ξ| − τ)).

Here, of course, m0 contains the terms up to k0 − 1 of which only O(1) remain

thanks to the localisation in ξ, and thus m0 is a smooth function supported in

the set

{(ξ, τ) ∈ R
d × R : |ξ| ∈ [ 12 , 2], |ξ| − τ ≥ 2−k0}.

The precise value of k0 ∼ 1 is not important and it will be clear that a sufficiently

large choice can be made to make the following argument work. Associated with

the above decomposition, we introduce the multiplier operator Ck given by

F(Ckg)(ξ, τ) = 1τ>0φ(|ξ|)ψ(2k(|ξ| − τ))ĝ(ξ, τ).

15



Since we are assuming α > α∗, we are reduced to proving

‖F−1(m0ĝ)‖Lq
tL

r
x
� ‖g‖L2 (5.2)

and

‖Ckg‖Lq
tL

r
x
� 2kα

∗‖g‖L2 (k ≥ k0). (5.3)

Estimate (5.2) is more easily established since m0ĝ is compactly supported in a

region where |ξ| − τ ∼ 1.

Proof of (5.2). Taking a function χ ∈ C∞
c (Rd × R) such that χ(ξ, τ) = 1 for

all (ξ, τ) in this support, we may use the fact that q, r ∈ [2,∞) and the Young

convolution inequality on mixed-norm spaces to see that

‖F−1(m0ĝ)‖Lq
tL

r
x
= ‖F−1χ ∗ F−1(m0ĝ)‖Lq

tL
r
x
� ‖F−1(m0ĝ)‖L2 .

(Such an estimate is often referred to as Bernstein’s inequality.) By Plancherel’s

theorem and since ‖m0‖L∞ � 1 we obtain (5.2).205

Proof of (5.3). For d ≥ 3, we use (in almost one fell swoop) the classical

Strichartz estimates for the wave equation for frequency localised initial data.

If we write

U(t)h(x) =

∫
Rd

ei(x·ξ+t|ξ|)ĥ(ξ) dξ (5.4)

for the half-wave propagator, then the reader may find a proof of the following

estimates in [35] along with a more comprehensive historical account.

Proposition 5.1 (Strichartz estimates for the wave equation). Suppose q, r ∈
[2,∞) and 1

q ≤ d−1
2 ( 12 − 1

r ). Then

‖U(t)h‖Lq
tL

r
x
� ‖h‖L2

whenever ĥ is supported in A0.

Remark. In fact, the single frequency Strichartz estimate in Proposition 5.1

holds if and only if d ≥ 2, q, r ∈ [2,∞], 1
q ≤ d−1

2 ( 12 − 1
r ) and (q, r, d) �= (2,∞, 3);210

thus, the cases where q = ∞ or r = ∞ are valid, except for the special case

(q, r, d) = (2,∞, 3), and consequently we may extend Theorem 1.3 to include

such exponents.
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Suppose now k ≥ k0. By Plancherel’s theorem, we obviously have ‖Ckg‖L2 �
‖g‖L2 . Hence, to prove (5.3), by interpolation it is sufficient to show

‖Ckg‖Lq
tL

r
x
� 2−k/2‖g‖L2 (5.5)

provided 1
q ≤ d−1

2 ( 12 − 1
r ). By a simple change of variables, Ckg can be written

as

Ckg(x, t) =
1

(2π)d+1

∫
R

e−istψ(2ks)

∫
Rd

ei(x·ξ+t|ξ|)φ(|ξ|)1|ξ|≥sĝ(ξ, |ξ| − s) dξds

so that by applying Minkowski’s integral inequality and Proposition 5.1 we

obtain

‖Ckg‖Lq
tL

r
x
�

∫
R

|ψ(2ks)|
(∫

Rd

|ĝ(ξ, |ξ| − s)|2 dξ
)1/2

ds.

Estimate (5.5) now readily follows from the Cauchy–Schwarz inequality, further

elementary changes of variables and another use of Plancherel’s theorem.215

Now suppose d = 2, in which the above argument does not give the full

range of q, r; the endpoint for the Strichartz estimates occurs when q = 4

and interpolation with (q, r) = (2, 2) is not sufficient to obtain the full range.

However, it clearly suffices to establish the additional estimate

‖Ckg‖L2
tL
∞
x

� 2−k/4‖g‖L2

or, by duality,

‖Ckg‖L2 � 2−k/4‖g‖L2
tL

1
x
. (5.6)

If we letK be given by K̂(ξ, τ) = φ(|ξ|)2ψ(2k(|ξ|−τ))2, then ‖Ckg‖2L2 ≤ 〈K∗g, g〉
and it suffices to show

‖K‖L1
tL
∞
x

� 2−k/2.

Since

|K(x, t)| ∼ 2−k|ψ̂2(2−kt)|
∣∣∣∣
∫
R2

φ(|ξ|)2ei(x·ξ−t|ξ|) dξ
∣∣∣∣

it follows that

|K(x, t)| � 2−k|ψ̂2(2−kt)|(1 + |t|)−1/2

17



uniformly in x ∈ R
2. This follows directly from the well-known dispersive esti-

mate which plays a key role in the standard proof of the estimates in Proposition

5.1 (see, for example, [35]). Hence

‖K‖L1
tL
∞
x

�
∫
R

|ψ̂2(s)|(1 + 2k|s|)−1/2 ds � 2−k/2

as desired.

Remark. If 1
q > d−1

2 ( 12 − 1
r ), 2 < q <∞, we can prove weak type estimates for

Cα at the critical exponent α = α∗(q, r). In fact, for q, r as above we have

‖Cα∗g‖Lq,∞
t Lr

x
� ‖g‖L2 . (5.7)

In the pure-norm case (q = r), this can be strengthened to the strong type

estimate

‖Cα∗g‖Lq
x,t

� ‖g‖L2

and we refer the reader to [39] for details of how this upgrade proceeds. (It seems

likely that the same also holds for the mixed-norm estimate but we do not pursue

this here.) Since L
r/2,∞
t is normable, (5.7) combined with the Littlewood–Paley

inequality gives

‖Dβ+

+ D
β−
− ρf‖Lq,∞

t Lr
x
� ‖f‖L2

with β− = β∗
− provided that 1

q > d−1
2 ( 12 − 1

r ), 2 < q <∞.

The proof of (5.7) is rather elementary (and follows from a more general

principle which may be found, for example, in [40]). Indeed, we may assume

‖g‖L2 = 1 and it suffices to show∣∣∣∣
{
t :

∥∥∥∥
∞∑

k=k0

2−α∗kCkg

∥∥∥∥
Lr

x

≥ λ

}∣∣∣∣ � λ−q. (5.8)

Choose q1, q2 ∈ (2,∞) such that q1 < q < q2. So, we have −α∗ + α∗(q1, r) >

0 > −α∗ + α∗(q2, r). Hence, Minkowski’s inequality followed by (5.3) yields

∥∥∥∥
N−1∑
k=k0

2−α∗kCkg

∥∥∥∥
L

q1
t Lr

x

� 2N(α∗(q1,r)−α∗)

18



and ∥∥∥∥
∞∑

k=N

2−α∗kCkg

∥∥∥∥
L

q2
t Lr

x

� 2N(α∗(q2,r)−α∗).

So, by this and Chebyshev’s inequality, the left-hand side of (5.8) is bounded

by

∣∣∣∣
{
t :

∥∥∥∥
N−1∑
k=k0

2−α∗kCkg

∥∥∥∥
Lr

x

≥ λ

2

}∣∣∣∣+
∣∣∣∣
{
t :

∥∥∥∥
∞∑

k=N

2−α∗kCkg

∥∥∥∥
Lr

x

≥ λ

2

}∣∣∣∣
� 2q1N(α∗(q1,r)−α∗)λ−q1 + 2q2N(α∗(q2,r)−α∗)λ−q2 .

Choosing N which optimises the last expression gives (5.8).

5.2. Necessity

By duality, it suffices to show that

α ≥ 1

q
+

d− 1

2r
− d+ 1

4
(5.9)

and

α > −1

2
(5.10)

are necessary conditions for

‖Cαg‖L2 � ‖g‖
Lq′

t Lr′
x
. (5.11)

We will accomplish these claims using a Knapp-type example and a bump func-220

tion example as follows.

Proof of (5.9)

Let 0 < δ � 1 and gδ be given by

ĝδ(ξ, τ) = φ

(
ξd − τ

δ

)
φ(ξd + τ)

d−1∏
j=1

φ

(
ξj√
δ

)
.

Note that for (ξ, τ) in the support of gδ one has

|ξj | ∼
√
δ (1 ≤ j ≤ d− 1), τ, |ξ| ∼ 1, |ξ| − τ ∼ δ, |ξ′ − ed| ∼

√
δ

19



and thus ĝδ is a smooth function adapted to a δ-plate. Writing θδ for the support

of ĝδ, by Plancherel’s theorem we clearly have ‖Cαgδ‖L2 ∼ δα|θδ|1/2. Also, one

can show that the main contribution to the right-hand side of (5.11) arises from

the dual box consisting of those (x, t) such that

|x1|, . . . , |xd−1| � 1√
δ
, |xd + t| � 1, |xd − t| � 1

δ

and therefore ‖g‖
Lq′

t Lr′
x
∼ |θδ|δ−

d−1
2r′ − 1

q′ . Since |θδ| ∼ δ
d+1
2 , it follows that if

(5.11) holds then α ≥ d+1
4 − d−1

2r′ − 1
q′ , which is equivalent to (5.9).

Proof of (5.10)225

Choose g(x, t) = g1(x)g2(t), where g1 ∈ C∞
c (Rd) is such that ĝ1(ξ) = 1

for |ξ| ∈ [ 12 , 2] and g2 ∈ C∞
c (R) is such that ĝ2(τ) = 1 for all |τ | ≤ 2. By

Plancherel’s theorem and a trivial change of variables in τ ,

‖Cαg‖2L2 ∼
∫
|τ |≤|ξ|

φ(|ξ|)2(|ξ| − |τ |)2α|ĝ1(ξ)|2|ĝ2(τ)|2 dτdξ �
∫ 1

0

(1− λ)2α dλ

and hence α > − 1
2 .

6. Approach II : Direct analysis

In this section, we shall focus on the case V = S
d−1; later we make some

remarks on the robustness of the approach taken here and applicability to other

velocity domains.230

Consider initial data f belonging to the (homogeneous) Besov space Ḃs
p,2.

To define this space, we use the Littlewood–Paley projection operators (Pj)j∈Z

introduced in Section 3, and the norm

‖f‖Ḃs
p,2

=

(∑
j∈Z

22js‖Pjf‖2Lp

)1/2

.

For instance, Ḃs
2,2 is the (homogeneous) fractional Sobolev space Ḣs (regularity

measured in the spatial variable) and specialising further still Ḃ0
2,2 is L2.
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We begin by considering f such that f̂(·, v) is supported in A0 for each

v ∈ S
d−1. Throughout this section, we regard p, q, r and s as given parameters,

and we set

β+ + β− = s+
d

r
+

1

q
− d

p
. (6.1)

The core argument in this section is based to some extent on the above proof

of Theorem 1.3; the key role played by the Strichartz estimates for the wave

equation above will be replaced by different estimates (such as the sharp �p235

decoupling inequality) depending on the context.

We shall often use that ρ̂f is supported in the region C. Thus, as a result

of the spatial localisation of the initial data we shall see that the key estimates

are

‖F−1(m0ρ̂f)‖Lq
tL

r
x
� ‖f‖Lp (6.2)

and

‖Ckρf‖Lq
tL

r
x
� 2kη‖f‖Lp (k ≥ k0). (6.3)

Here η ∼ 1 is a crucial parameter which determines the range of admissible β−,

the multiplier m0 is given by

m0(ξ, τ) =
∑

k≤k0−1

2−kβ−φ(|ξ|)ψ(2k(|ξ| − τ))

and k0 ∼ 1 is chosen sufficiently large. We emphasise that there are O(1) terms

in the sum defining m0 thanks to the localisation to A0.

As one may expect, the estimate (6.2) away from the singularity in the

multiplier is more easily established.240

Lemma 6.1. If p ∈ [2,∞] and q, r ∈ [p,∞], then (6.2) holds.

Proof. We use interpolation between the cases p = 2 and p = ∞. For p = 2,

since |ξ| − τ ∼ 1 on the support of m0, by (3.4) and the Cauchy–Schwarz

21



inequality, we have

|m0(ξ, τ)ρ̂f(ξ, τ)|2 �
∣∣∣∣
∫
Σξ,τ

f̂(ξ, v) dσξ,τ (v)

∣∣∣∣2

�
∫
Σξ,τ

|f̂(ξ, v)|2 dσξ,τ (v)

∼
∫
Sd−1

δ(τ + v · ξ)|f̂(ξ, v)|2 dσ(v).

Hence integration in τ and then ξ gives ‖m0ρ̂f‖L2 � ‖f‖L2 and therefore (6.2)

follows for p = q = r = 2.

For p = ∞, since F−1m0 ∈ L1 and, trivially, ‖ρf‖L∞ � ‖f‖L∞ we obtain

(6.2) when p = q = r = ∞. Interpolating between these two estimates we

obtain that (6.2) is true whenever p = q = r ∈ [2,∞], and since m0 is a

bounded function of compact support we finally obtain

‖F−1(m0ρ̂f)‖Lq
tL

r
x
� ‖F−1(m0ρ̂f)‖Lp � ‖f‖Lp

as desired.

The following conditional result clarifies the decisive nature of the estimates245

(6.2) and (6.3).

Proposition 6.2. Suppose (6.2) and (6.3) hold. Then whenever q, r ∈ [2,∞)

and β− > η the estimate

‖Dβ+

+ D
β−
− ρf‖Lq

tL
r
x
� ‖f‖Ḃs

p,2

holds for all f ∈ Ḃs
p,2.

Proof. As in the proof of Theorem 1.3, using the identity (5.1), the triangle

inequality, and the estimates (6.2) and (6.3), we immediately obtain

‖Dβ−
− ρ(P0f)‖Lq

tL
r
x
� ‖P0f‖Lp

since β− > η. It follows from the frequency support of ρ(P0f) that

‖Dβ+

+ D
β−
− ρ(P0f)‖Lq

tL
r
x
� ‖P0f‖Lp
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and then a rescaling argument shows that

‖Dβ+

+ D
β−
− ρ(Pjf)‖Lq

tL
r
x
� 2js‖Pjf‖Lp . (6.4)

The basis of this rescaling argument are the identities

D
β+

+ D
β−
− ρ(Pjf)(x, t) = 2j(β++β−+d)D

β+

+ D
β−
− ρ(P0fj)(2

jx, 2jt)

and P0fj(x, v) = 2−jdPjf(2
−jx, v), where f̂j(ξ, v) = f̂(2jξ, v); these are easily

verified by simple changes of variables.

Since q, r ∈ [2,∞), it follows from (3.1) that

‖Dβ+

+ D
β−
− ρf‖Lq

tL
r
x
≤

(∑
j∈Z

‖Dβ+

+ D
β−
− ρ(Pjf)‖2Lq

tL
r
x

)1/2

(6.5)

and hence the desired estimate ‖Dβ+

+ D
β−
− ρf‖Lq

tL
r
x
� ‖f‖Ḃs

p,2
follows directly250

from (6.4).

The above argument focuses attention onto the estimate (6.3). In this section

and the subsequent section we shall exhibit a variety of smoothing estimates

based on Proposition 6.2, in each case our work has been reduced to verifying

(6.3). We begin with a proof of (the sufficiency claims in) Theorem 1.1.255

6.1. Direct proof of Theorem 1.1

Suppose d ≥ 2, q, r ∈ [2,∞) and assume β+, β− satisfy (1.4) with β− > β∗
−.

Since p = 2 and s = 0, thanks to Lemma 6.1 and Proposition 6.2, it suffices to

prove (6.3) with η = β∗
−. By (5.3), it suffices to prove

‖Ckρf‖L2
tL

2
x
� 2

3−d
4 k‖f‖L2 (k ≥ k0). (6.6)

To see this, note that the representation in (3.4) allows us to write

|ρ̂f(ξ, τ)| ∼ 2k
∣∣∣∣
∫
Σξ,τ

f̂(ξ, v) dσξ,τ (v)

∣∣∣∣
whenever |ξ| − τ ∼ 2−k. Since we also assume |ξ| ∼ 1, we have that Σξ,τ is

a (d − 2)-dimensional sphere with radius (1 − τ2

|ξ|2 )
1/2 ∼ 2−k/2, and hence the

Cauchy–Schwarz inequality yields

|ρ̂f(ξ, τ)|2 � 2−k d−3
2

∫
Sd−1

δ(v · ξ + τ)|f̂(ξ, v)|2 dσ(v).
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Hence, integrating in τ , then ξ, we get (6.6). This completes our direct proof of

Theorem 1.1.

Remark. For simplicity of exposition, we have presented the direct approach

with the velocity domain as S
d−1 equipped with Lebesgue measure. However,260

it is clear that the approach is sufficiently robust to handle other situations.

For example, we may follow the above proof to give an alternative proof of the

more general statement in Theorem 4.4 concerned with the family of measures

dμκ(v) = wκ(v) dv, where wκ is given by (4.3).

6.2. Besov space estimates via the �p decoupling inequality265

Here we show how the recently established sharp decoupling theorems of

Bourgain and Demeter induce Ḃs
p,2 → Lq smoothing estimates for ρ. Since

the mixed-norm theory of decoupling estimates has currently not been fully

developed, we shall consider only the pure-norm where q = r on the velocity

average; it will be obvious how to extend our results to the mixed-norm case on270

the basis of a mixed-norm extension of Theorem 6.3 below (in particular, see

Lemma 6.4).

In order to state the �p decoupling inequality, it is necessary to introduce

some notation, starting with

Γ = {(ξ, |ξ|) ∈ R
d × R : |ξ| ∈ [1, 2]}

for the truncated cone and

Nk(Γ) = {(ξ, τ) ∈ R
d × R : τ ∈ [1, 2], |τ − |ξ|| ≤ 2−k}

for the 2−k neighbourhood of Γ, with k � 1. Then, subordinate to a given 2−k/2-

separated family of points on the sphere S
d, we let Pk(Γ) be the partition of

Nk(Γ) into plates θ with height O(1), thickness O(2−k) in the normal direction,275

and O(2−k/2) in the remaining d− 1 directions.

To define an important exponent γ(p, q) in the following decoupling theorem,

we introduce the notation T = T0 ∪ T0, where T = {( 1p , 1
q ) ∈ [0, 1

2 ]
2 : 1

p ≥ 1
q},
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T0 = {( 1p , 1
q ) ∈ T : 1

q ≥ d−1
2(d+1)} and T0 = T \ T0. Then γ(p, q) is set by

γ(p, q) =

⎧⎪⎨
⎪⎩

d+1
2q + d−1

4 − d
p if ( 1p ,

1
q ) ∈ T0

d−1
2 − d

p if ( 1p ,
1
q ) ∈ T0.

Also, for each θ ∈ Pk(Γ) and k � 1, we define the projection Πk,θ by

F(Πk,θg)(ξ, τ) = χθ(ξ
′)ψ(2k(|ξ| − τ))ĝ(ξ, τ),

where χθ is a smooth cut-off function supported on the corresponding subset of

S
d.

Theorem 6.3. Suppose that ( 1p ,
1
q ) ∈ T. Then for each ε > 0 there exists a

constant Cε <∞ such that

‖g‖Lq ≤ Cε2
(γ(p,q)+ε)k

( ∑
θ∈Pk(Γ)

‖Πk,θg‖pLp

)1/p

(6.7)

whenever ĝ is supported in Nk(Γ).

In the diagonal case p = q, Theorem 6.3 is due to Bourgain and Demeter

[11] (these estimates are also known in the literature as Wolff’s inequalities,

and earlier contributions were made in [22], [38], [54]). For example, this may

be obtained from Theorem 1.2 in [11] where a stronger statement is proved

with an �2 norm on the right-hand side; the �p decoupling estimate (6.7) follows

immediately by Hölder’s inequality. Note also that when p = 2, as a consequence

of (5.3), we may obtain

‖g‖Lq � 2α
∗(q,q)k‖g‖L2

and it is easily checked that γ(2, q) = α∗(q, q). Hence, the full range of estimates280

(6.7) for ( 1p ,
1
q ) in the triangle T follows by interpolating between the hypotenuse

1
p = 1

q and the vertical edge 1
p = 1

2 . Of course, this argument shows that there is

no loss of arbitrary ε > 0 in the exponent in (6.7) when p = 2; however, the loss

for general p and q is completely inconsequential in our application of Theorem

6.3 below, since the exponent from (6.7) will manifest itself in the exponent in285

the induced estimate (6.3) and the subsequent summation of a geometric series

already necessitates an open range for β−.
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Lemma 6.4. Suppose ε > 0. Then estimate (6.7) implies (6.3), with a bound

depending on ε, when q = r and η = γ(p, q) + 3−d
2p + ε.

Proof. In order to prove (6.3), we assume that f̂(·, v) is supported in A0 for

each v ∈ S
d−1. First, we claim

‖Πk,θρf‖Lp � 2
3−d
2p k‖Π̃θf‖Lp (6.8)

for each θ ∈ Pk(Γ). Here we write Π̃θ for the operator given by

F(Π̃θf)(ξ, v) = χ̃θ(ξ
′)f̂(ξ, v)

where χ̃θ is a smooth cut-off function such that χθ = χθχ̃θ. Since

χ̃θ(ξ
′)ρ̂f(ξ, τ) = F(ρ(Π̃θf))(ξ, τ)

we have Πk,θρf = Πk,θρ(Π̃θf), and we may directly apply (6.6) to show that290

(6.8) holds when p = 2. Since ρ is trivially a bounded operator L∞ → L∞,

estimate (6.8) also holds when p =∞, and the claim follows.

Applying (6.7) and subsequently using (6.8), it follows that for any ε > 0

we have the estimate

‖Ckρf‖Lq ≤ Cε2
(γ(p,q)+ 3−d

2p +ε)k

( ∑
θ∈Pk(Γ)

‖Π̃θf‖pLp

)1/p

for some constant Cε < ∞. By again considering p = 2 and p = ∞, and

once again making use of the fact that f̂ has support in A0, one can show that∑
θ ‖Π̃θf‖pp � ‖f‖pp, thus completing our proof of the lemma.295

Proposition 6.2 now immediately yields the following.

Theorem 6.5. Suppose d ≥ 2, p ∈ [2,∞), q ∈ [p,∞) and s ∈ R. If β+, β−

satisfy (6.1) and β− > γ(p, q) + 3−d
2p , then

‖Dβ+

+ D
β−
− ρf‖Lq � ‖f‖Ḃs

p,2

holds for all f ∈ Ḃs
p,2.
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7. Further results and remarks

7.1. Multilinear velocity averaging

The decoupling inequalities developed recently by Bourgain, Demeter and

Guth, such as Theorem 6.3 above (see also [12]), draw on recent developments

in multilinear harmonic analysis, and in particular the fact that certain multi-

linear estimates for the cone multiplier Ck are available in essentially optimal

form. Such multilinear inequalities rely crucially on the multilinear Kakeya-

type inequalities established in [4]; see also [16], [27], [28], [55], [3]. Kakeya-type

inequalities, being X-ray transform estimates, are themselves naturally formu-

lated in terms of the kinetic transport equation and the velocity-averaging op-

erator ρ; recall that the dual operator ρ∗ given by (1.2) is simply a space-time

X-ray transform. This perspective is somewhat implicit in the literature; see

for example [37] and [53]. In multilinear settings, Kakeya-type inequalities are

much better understood than their classical linear counterparts, and in some

instances may be expressed quite directly as Strichartz estimates for the kinetic

transport equation. Most notably, an elementary limiting argument reveals that

the affine-invariant endpoint multilinear Kakeya inequality (see [13] and [16])

is equivalent to the null-form estimate

∫
R

∫
Rd

ρ̃(f1, . . . , fd+1)(t, x)
1/d dxdt �

d+1∏
j=1

‖fj‖1/dL1
x,v

(7.1)

where

ρ̃(f1, . . . , fd+1)(t, x) =

∫
(Rd)d+1

d+1∏
j=1

fj(x− tvj , vj)V(v1, . . . , vd+1)

d+1∏
�=1

dμ�(v�).

and

V(v1, . . . , vd+1) =

∣∣∣∣∣∣det
⎛
⎝ 1 · · · 1

v1 · · · vd+1

⎞
⎠
∣∣∣∣∣∣

In the above, μ1, . . . , μd+1 denote compactly supported positive Borel measures

on R
d, and ‖fj‖L1

x,v
is given with respect to Lebesgue measure in the spatial

variable and μj in the velocity variable. Also, we clarify that V(v1, . . . , vd+1)

coincides with the volume of the simplex in R
d with vertices vj ∈ R

d, 1 ≤
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j ≤ d + 1. Here we interpret ρ̃(f1, . . . , fd+1) as a (d + 1)-linear variant of the

linear operator ρ defined in (1.1); notice that without the determinant factor

the left-hand side of (7.1) simply becomes∫
R

∫
Rd

d+1∏
j=1

ρ(fj)(t, x)
1/d dxdt

and so (7.1) represents L1 control of a part of this expression. The inequal-300

ity (7.1) may be viewed as a generalisation (or perturbation) of the classi-

cal affine-invariant Loomis–Whitney inequality, as the special case of measures

μ1, . . . , μd+1 supported at non-cohyperplanar points in R
d quickly reveals.

There are other, more elementary, velocity-averaging inequalities which draw

on this multilinear perspective. For example, if ρ is given by (1.1), we have

‖ρf‖d+1

Ld+1
t,x

=

∫
(Rd)d+1

∫
Rd

∫
R

d+1∏
j=1

f(x− tvj , vj) dtdx

d+1∏
�=1

dμ(v�)

and an application of the classical affine-invariant Loomis–Whitney inequality

(see, for example, [2]) in the variable (x, t) reveals the bound

‖ρf‖Ld+1
t,x

� I1/d(μ)
1

d+1 ‖f‖L∞v Ld
x

where

I1/d(μ) :=

∫
(Rd)d+1

V(v1, . . . , vd+1)
−1/d

d+1∏
�=1

dμ(v�).

Such “energy functionals” are related to the notion of affine dimension, and

present a more geometric and measure theoretic perspective on velocity aver-305

aging. Multilinear determinant functionals of this type are studied in [20], [26]

and [52].

7.2. Symmetric data

Here we exhibit various ways in which the smoothness regime in the central

estimates in this work, namely those in Theorem 1.1, may be broadened if we310

impose some symmetry hypotheses on the initial data. Such a phenomenon is

well-known in surrounding contexts, including the following Strichartz estimates

for the wave equation for radially symmetric data, whose range of validity should

be compared with Proposition 5.1.
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Proposition 7.1. Suppose q, r ∈ [2,∞) and 1
q < (d− 1)( 12 − 1

r ). Then

‖U(t)h‖Lq
tL

r
x
� ‖h‖L2

whenever ĥ is radially symmetric and supported in A0. Here U(t) denotes the315

half-wave propagator given by (5.4).

We refer the reader to [17], [21], [32], [36], [49] for details. Below we establish

some improved smoothing estimates for the velocity average ρ acting on L2

initial data which are radial in the spatial variable, and specialising further

to initial data which are radial in the spatial variable and independent of the320

velocity variable; we denote these classes as L2
rad(x) and L2

rad(x,v). Again, we

focus on the case V = S
d−1.

These results will improve upon Theorem 1.1 for such classes of data and

our approach will follow the direct analysis in Section 6; we re-emphasise that,

as shown in Subsection 6.1, the role of the Strichartz estimates for the wave325

equation is to establish (5.3) (applied to g = ρf) which in turn allow us to work

on L2. For f ∈ L2
rad(x), it is not necessarily true that ρf is radially symmetric,

thus the additional gain only arises in an improvement in (6.6). However, if

f ∈ L2
rad(x,v), then ρf is radially symmetric and yet further gain is available in

(5.3) by exploiting Proposition 7.1.330

As outlined above, the direct approach rests on sharp estimates in the case

(q, r) = (2, 2), and so we begin here. Our argument naturally leads to estimates

beyond initial data in L2 by introducing Sobolev regularity with respect to the

velocity variable.

Theorem 7.2. Suppose d ≥ 2, s ∈ [−d−2
2 , 0], β++β− = 1

2 and β− > −s− d−2
2 .

Then

‖Dβ+

+ D
β−
− ρf‖L2 � ‖(1−Δ)s/2f‖L2

holds for all f ∈ L2
rad(x).335

Here, Δ is the Laplace–Beltrami operator on S
d−1 acting on the velocity

variable. As a simple comparison, taking s = 0, we see that the range β− > 2−d
2
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is allowed for (1.3) for f ∈ L2
rad(x), extending the range β− ≥ 3−d

4 for general

f ∈ L2.

Now fix f ∈ L2
rad(x) and write f̂(ξ, v) = F0(|ξ|, v) for f ∈ L2

rad(x). Then, for

each r > 0, we have the representation

F0(r, v) =

∞∑
k=0

Y r
k (v) (7.2)

in terms of the basis of spherical harmonics for L2(Sd−1). Using polar coordi-

nates, we may then write

‖(1−Δ)s/2f‖2L2 =
|Sd−1|
(2π)d

∞∑
k=0

(1 + k(k + d− 2))s
∫ ∞

0

‖Y r
k ‖22 rd−1 dr

since ΔY r
k = −k(k+ d− 2)Y r

k . The key point in the proof of Theorem 7.2 is to340

obtain the corresponding representation of ρ̂f in terms of spherical harmonics.

Lemma 7.3. Suppose d ≥ 2 and f is given by (7.2). Then

ρ̂f(ξ, τ) =
2π|Sd−2|
|ξ|

(
1− τ2

|ξ|2
) d−3

2

+

∞∑
k=0

pd,k(− τ
|ξ| )Y

|ξ|
k (ξ′)

for each (ξ, τ) ∈ R
d+1 with ξ �= 0.

The proof relies on the following classical theorem from harmonic analysis

whose statement requires the introduction of the Legendre polynomial pd,k of

degree k in d dimensions. We may define pd,k by the Rodrigues representation

formula

(1− t2)
d−3
2 pd,k(t) = (−1)k Γ(d−1

2 )

2kΓ(k + d−1
2 )

dk

dtk
(1− t2)k+

d−3
2

and we refer the reader to [1] for this definition and terminology.

Theorem 7.4 (Funk–Hecke). Let d ≥ 2, k ∈ N0 and Yk be a spherical harmonic

of degree k. Then ∫
Sd−1

F (ω · ω′)Yk(ω
′) dσ(ω′) = ζkYk(ω)

for any ω ∈ S
d−1 and any function F ∈ L1([−1, 1], (1− λ2)

d−3
2 ). Here

ζk = |Sd−2|
∫ 1

−1

F (λ)pd,k(λ)(1− λ2)
d−3
2 dλ.
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We also suggest that the reader consults [1] for a treatment of the Funk–

Hecke theorem.345

Proof of Lemma 7.3. As an immediate application of Theorem 7.4, using (3.1)

we obtain

ρ̂f(ξ, τ) =
2π

|ξ|
∞∑
k=0

∫
Sd−1

Y
|ξ|
k (v)δ( τ

|ξ| + ξ′ · v) dσ(v)

=
2π

|ξ|
∞∑
k=0

ζk(ξ, τ)Y
|ξ|
k (ξ′)

where

ζk(ξ, τ) = |Sd−2|
∫ 1

−1

δ( τ
|ξ| + λ)pd,k(λ)(1− λ2)

d−3
2 dλ.

The claimed expression in the statement of Lemma 7.3 follows.

Proof of Theorem 7.2. Using Lemma 7.3, polar coordinates and orthogonality

of (Y r
k )k∈N0

for each fixed r > 0,

‖Dβ+

+ D
β−
− ρf‖2L2 =

|Sd−2|2
(2π)d−1

∞∑
k=0

∫ ∞

0

∫ r

−r

(r + |τ |)2β+(r − |τ |)2β−×
(
1− τ2

r2

)d−3

|pd,k(− τ
r )|2‖Y r

k ‖2L2 rd−3 dτdr

and since β+ + β− = 1
2 , we have

‖Dβ+

+ D
β−
− ρf‖2L2 =

2|Sd−2|2
(2π)d−1

∞∑
k=0

Ik

∫ ∞

0

‖Y r
k ‖2L2 rd−1 dr

where

Ik =

∫ 1

0

|pd,k(λ)|2(1 + λ)d−3+2β+(1− λ)d−3+2β− dλ.

We now invoke the pointwise estimate

|pd,k(λ)| ≤ min{1, Cdk
2−d
2 (1− λ2)

2−d
2 } (7.3)

for each |λ| < 1 and k ≥ 1, with explicit constant given by Cd = 2d−2π−1/2Γ(d−1
2 ).

A proof of these estimates can be found, for example, in [1] (see the inequalities

labelled (2.116) and (2.117) on pages 58–59).
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It follows immediately from (7.3) that Ik � k2s for all k ≥ 1, provided s ∈350

[−d−2
2 , 0] and β− > −s− d−2

2 . Also, pd,0 = 1, so I0 � 1 provided β− > −d−2
2 . It

follows from the above that ‖Dβ+

+ D
β−
− ρf‖L2 � ‖(1−Δ)s/2f‖L2 for s ∈ [−d−2

2 , 0]

and β− > −s− d−2
2 .

Using the above analysis as a key ingredient, we provide the following im-

provement to Theorem 1.1 for general q and r for initial data in L2
rad(x) and355

L2
rad(x,v). For simplicity we state the result with no scale for smoothing in

the velocity variable; the interested reader may follow the above approach to

generalise the result accordingly.

Theorem 7.5. Let d ≥ 2, q, r ∈ [2,∞) and suppose β+, β− satisfy (1.4). If

β− > max

{
1

q
+

d− 1

2r
− 3(d− 1)

4
,
1− d

2

}

then (1.3) holds for all f ∈ L2
rad(x), and if

β− > max

{
1

q
+

d− 1

r
− (d− 1),

1− d

2

}

then (1.3) holds for all f ∈ L2
rad(x,v).

Proof. Our strategy is to follow the direct approach in Section 6. In light of

Lemma 6.1 and Proposition 6.2 (or, strictly speaking, the appropriate modi-

fication given we are restricting to f ∈ L2
rad(x)), it suffices to prove (6.3) for

f ∈ L2
rad(x) such that f̂(·, v) is supported in A0 for each v ∈ S

d−1, and where

η = max{ 1q + d−1
2r − 3(d−1)

4 , 1−d
2 }. By (5.3), it thus suffices to prove

‖Ckρf‖L2 � 2
2−d
2 k‖f‖L2 (k ≥ k0) (7.4)

for such f .360

To see (7.4), we employ Lemma 7.3 and polar coordinates to obtain

‖Ckρf‖2L2 �
∞∑
�=0

∫ ∞

0

∫ 1

−1

φ(r)2ψ(2kr(1−λ))2(1−λ2)d−3|pd,�(λ)|2‖Y r
k ‖2L2rd−2 dλdr.

Using the pointwise estimate |pd,�(λ)| ≤ 1 (see (7.3)) we quickly obtain (7.4)

from this expression.

32



To prove the claimed estimate on L2
rad(x,v), we use Proposition 7.1 to improve

upon (5.3) for g which are radially symmetric in the spatial variable. Indeed,

by the same argument used to prove (5.3) via Proposition 5.1, it follows from

Proposition 7.1 that for q, r ∈ [2,∞) with 1
q < (d− 1)( 12 − 1

r ) we have

‖Ckg‖Lq
tL

r
x
� 2−k/2‖g‖L2 (k ≥ k0)

for all g which are radially symmetric in the spatial variable. Hence, for all

ε > 0 there exists Cε <∞ such that

‖Ckg‖Lq
tL

r
x
≤ Cε2

(α∗∗+ε)k‖g‖L2 (k ≥ k0)

where

α∗∗ := max

{
1

q
+

d− 1

r
− d

2
,−1

2

}
.

It follows from (7.4) that, for all ε > 0, (6.3) holds (with an implicit constant

depending on ε) for β− > α∗∗ + 2−d
2 + ε. Proposition 6.2 then implies (1.3)

holds whenever β− > α∗∗ + 2−d
2 , and this gives the claimed range of β− in the365

statement of Theorem 7.5 for f ∈ L2
rad(x,v).

7.3. Sharp constants

The duality principle in Theorem 4.1 along with (4.5) allows us to extract

optimal constants for all cases of (1.3) when (q, r) = (2, 2), along with an

identification of the class of extremisers.370

Theorem 7.6. Suppose d ≥ 2 and β+, β− satisfy (1.4) (i.e. β++β− = 1
2) with

β− ≥ 3−d
4 . Then the optimal constant in the estimate

‖Dβ+

+ D
β−
− ρf‖2L2 ≤ C‖f‖2L2 (7.5)

for all initial data f ∈ L2 is given by

C = 2π|Sd−2|(d− 2)2−d(d− 1− 4β−)
d−1
2 −2β−(d− 3 + 4β−)

d−3
2 +2β−

for β− ∈ [ 3−d
4 , 1

4 ], and C = 2π|Sd−2| for β− ∈ ( 14 ,∞). Furthermore, extremisers

exist if and only if (d, β+, β−) = (2, 1
4 ,

1
4 ), in which case f is an extremiser if

and only if

f̂(ξ, v) = (|ξ|2 − |ξ · v|2)1/4ĝ(ξ,−ξ · v),
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where g ∈ L2 is nonzero and ĝ is supported in C. In particular, nonzero func-

tions in L2 which are independent of the spherical variable are extremisers when

(d, β+, β−) = (2, 1
4 ,

1
4 ).

We note that when d = 2 and β− = 3−d
4 , the expression 00 arises in the

above formula for the optimal constant C, and this should be interpreted as375

00 = 1 is each instance.

Proof. By (4.4) we may write m−1(ξ, τ)
2 = M( |τ ||ξ| ), where

M(λ) = 1
2 |Sd−2|(1 + λ)

d−1
2 −2β−(1− λ)2β−+ d−3

2 1[0,1](λ).

Since σ = 2μ−1, it follows from Theorem 4.1 that C = 4π‖M‖∞. Elemen-

tary considerations may be used to show that this coincides with the claimed

expression in the statement of Theorem 7.6.

Regarding extremisers, we observe that a necessary condition for existence380

is that ‖m−1‖∞ is attained on a set of positive measure in R
d+1. However, it

is clear that ‖M‖∞ is attained at a single point if (d, β+, β−) �= (2, 1
4 ,

1
4 ), thus

ruling out the possibility of extremisers.

When (d, β+, β−) = (2, 1
4 ,

1
4 ) we have C = 4π and the function M is identi-

cally equal to 1[0,1]; hence extremisers exist. To give an identification of the class

of extremisers, note that (7.5) holds if and only if T = F−1mρ̂f is a bounded

operator L2 → L2, with m(ξ, τ) = (|ξ|2 − |τ |2)1/4, and one can show that the

class of extremisers for T coincides with the image under T ∗ of the class of

extremisers for the dual inequality T ∗ : L2 → L2 (see, for example, [5]). By

(4.1) it follows that g is an extremiser for T ∗ if and only if g is an extremiser

for the multiplier estimate

‖F−1(m−1ĝ)‖22 ≤ ‖g‖22.

Since m−1 = 1C in the case (d, β+, β−) = (2, 1
4 ,

1
4 ), it is necessary and sufficient

for such g to have Fourier support in C. Using (3.3), we see that f is an

extremiser if and only if

f̂(ξ, v) = (|ξ|2 − |ξ · v|2)1/4ĝ(ξ,−ξ · v)
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for such g, as claimed.

Taking ĝ(ξ, τ) = (|ξ|2 − τ2)−1/4g0(|ξ|), where g0 is a nonzero function such

that
∫∞
0
|g0(r)|2r dr <∞, then g ∈ L2 with support in C. Moreover,

(|ξ|2 − |ξ · v|2)1/4ĝ(ξ,−ξ · v)

is independent of v, and hence such functions are amongst the class of extrem-385

isers.

An inspection of the argument used to prove Theorem 7.2 when s = 0 allows

us to extract optimal constants and a characterisation of extremisers.

Theorem 7.7. Suppose d ≥ 2 and β+, β− satisfy (1.4) (i.e. β++β− = 1
2) with

β− > 2−d
2 . Then the optimal constant in the estimate

‖Dβ+

+ D
β−
− ρf‖2L2 ≤ C0‖f‖2L2

for initial data f ∈ L2
rad(x) is given by

C0 = 22d−2π
|Sd−2|2
|Sd−1| B(

1
2 ; 2β+ + d− 2, 2β− + d− 2)

and this is attained if and only if f ∈ L2
rad(x,v).

Here, B(x; a, b) =
∫ x

0
λa−1(1−λ)b−1 dλ denotes the incomplete beta function.390

Proof. From the proof of Theorem 7.2 when s = 0, it is clear that the step at

which an inequality was made occurred when we used the bound Ik � 1 for all

k ≥ 0, where

Ik =

∫ 1

0

|pd,k(λ)|2(1 + λ)d−3+2β+(1− λ)d−3+2β− dλ.

The uniform bound |pd,k(λ)| ≤ 1 = pd,0 for all k ≥ 0, d ≥ 2 and |λ| ≤ 1 gives

that

Ik ≤ 22(d−2)B( 12 ; 2β+ + d− 2, 2β− + d− 2) = I0 (7.6)

for all k ≥ 0, with equality if and only if k = 0. This gives the claimed inequality

in the statement of Theorem 7.7, and the optimality of the constant is clear by
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taking f ∈ L2
rad(x,v), for then all terms Y r

k are zero in the expansion (7.2) for

k ≥ 1. Conversely, if f is an extremiser then the fact that (7.6) holds strictly

for k ≥ 1 forces Y r
k to vanish for almost all r > 0.395
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