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Abstract 

Contact electrification and electrostatic interactions often occur in the fluidization process, 

which can significantly influence the dynamic behaviour of particles and the fluidization 

performance. In this study, a discrete element method coupled with computational fluid 

dynamics (DEM-CFD) is developed by implementing contact electrification and electrostatic 

interaction models and the combined effects of contact electrification and electrostatic 

interaction on fluidization are analysed. It is found that the charge of the particle system 

increase with the superficial gas velocity. Particles of different material properties (especially 

work function) can be bi-charged and form agglomerates. At low superficial gas velocities, 

the particle bed cannot be fully fluidized and the pressure drop tends to be stable rather than 

fluctuating as the gas flows through the micro-channels of agglomerates. However, at high 

superficial gas velocities, the agglomerates can break, inducing strong fluctuation of pressure 

drop. Clearly, the electrostatic phenomena and fluidization behaviour can mutually influence 

each other during the process.   
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1. Introduction 

 

In gas-solid fluidisation, contact electrification and electrostatic interactions between particles 

are common phenomena [1]. Contact electrification is referred to as the charge transfer 

process between objects (particle-particle & particle-wall) during collisions. Once the net 

charge transferred onto particles are strong enough, the induced repulsive and attractive 

electrostatic forces between objects can cause agglomeration [2,3], dispersion [4] and 

segregation [5], which will significantly affect the dynamic behaviours of particles and the 

performance of the fluidisation process. 

 

The fluidisation process involves intensive interactions between particles and the fluid, 

specifically gas in gas-solid fluidisation. The frequent collisions and intensive mixing of 

particles could result in effective contact electrification and consequent electrostatic 

interactions [6–10]. Guardiola et al. [6] investigated electrification during fluidization using 

glass beads of various sizes at different fluidization velocities and relative humidity. The 

potential difference, as the degree of electrification, between the granular bed and the earthed 

distributor could reach a constant value under various conditions as the fluidizing process 

continues. They found that the degree of electrification increased with increasing fluidization 

velocity at a relatively lower humidity, which was attributed to the facts that a higher gas 

velocity facilitated the motion of the particles in the fluidized bed, leading to more collisions 

between particles, while the lower humidity inhibited the charge dissipation. Wolny and 

Kaźmierczak [7,8] showed experimentally that polymer particles could acquire both positive 

and negative charge and form agglomerates during fluidisation. As a result, micro-channels 

were developed and led to smaller pressure drops but higher minimum bubbling velocities. 
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Non-Newtonian fluid behaviours was observed in the fluidised bed with strong electrostatic 

interactions, especially at lower superficial gas velocities (closer to the minimum bubbling 

velocity). In addition, the adhesion of particles onto walls at lower humidity was also 

observed by Zhang et al. [9], when the particle motion was examined in the gas-solid 

fluidized bed. Liu et al. [10] investigated the electrostatic changing behaviours of insulating 

particles in pressurized fluidized bed and suggested that the electrification of particle could 

be enhanced by increasing the superficial gas velocity. The interplay between electrification 

and fluidisation makes it difficult to understand the relationship between the hydrodynamic 

pressure of the fluidised bed and the charging behaviour of particles during the process.  

 

In order to understand dynamic behaviours of particles and fluid, the discrete element method 

coupled with computational fluid dynamics (DEM-CFD) is extensively employed to model 

the contact electrification and electrostatic interactions in the fluidisation process [11,12]. For 

instance, Pei et al. [11] implemented a contact electrification (condenser) model into DEM-

CFD and examined charge accumulation and distribution of powders during fluidisation. 

They showed that the charge accumulated exponentially during fluidisaiton and eventually 

reached an equilibrium value. The charge originated from the contact between particles and 

walls and propagated from the region near the wall to the centre of the column. The results 

were in broad agreement with experimental observations of Guardiola et al. [6] and 

LaMarche et al. [13], although electrostatic interactions were not considered in the 

simulations. Hassani et al. [12] investigated the bubble hydrodynamics of the fluidisation 

with neutral and charged particles using DEM-CFD. The charge of particles was assumed to 

be same and constant. For mono-charged particles, bubbles tended to become smaller and 

even disappear when the mutual repulsive force was significantly larger than the weight of 

the particle [4,14]. On the other hand, as the bi-charged particles experienced both repulsive 
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and attractive forces, chain-like clusters of particles were observed in the bubbling regime. In 

addition, particle segregation and lower mixing efficiency due to the strong electrostatic 

forces during fluidisation were also observed in the DEM-CFD simulations [15]. However, as 

the charge of the particles was fixed, the dynamic charging process due to collision was not 

modelled with electrostatic interactions. Since the charge transfer process and electrostatic 

interactions are dynamic and concurrent during fluidisation, it is crucial to consider the 

combined effects of contact electrification and electrostatic interactions on the fluidisation 

process.  

 

In this study, the DEM-CFD method is further advanced with the implementation of contact 

electrification and electrostatic interaction models in order to investigate their influences on 

the fluidisation behaviour. The charge accumulation and distribution during fluidisation are 

analysed. The performance of the fluidisation at various superficial gas velocities is examined. 

The interplay between electrostatics and fluidisation conditions is also explored.  

 

2. DEM-CFD modelling 

2.1 The contact electrification model 

 

During fluidisation, both the contact electrification process and subsequent electrostatic 

interactions are dynamic in nature, in which the charge acquisition and transfer are 

determined by collisions between particles while electrostatic interactions depend on the 

charge on particles and distance between particles. The contact electrification model in this 

DEM model is for spherical particles, which is same as the model reported in Pei et al. [11]. 

When a contact takes place, the charge can be transferred from one surface to another due to 

the total potential difference that can be expressed as:   
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'' VVVVVV jic       (1) 

 

where V  is the total potential difference; Vc (=Vi - Vj) is the contact potential difference 

(CPD) between the surfaces; 'V  is the induced potential difference; Vi and Vj are the work 

function potentials of the material i and j, respectively.  

 

The induced potential difference is caused by the electric field between two charged objects 

[16]. The induced potential between the wall surface and the uniformly charged sphere is 

given as follows: 

 

qA
z

qkV 1

0

0

' 


       (2) 

 

where A is the surface area of the spherical particle; q is the charge of the particle; 0  is the 

permittivity of a vacuum (8.854×10
-12

 F·m
-1

), z is the contact gap for tunnel relaxation and is 

generally of the order of a few nano-meters to hundreds of nano-meters [17,18]. It is assumed 

to be 130 nm in the current study.   is the image correction factor for the polarization effect. 

The induced electric field can further polarize the surface and cause the image effects. If the 

image effects are considered, the induced potential difference can be affected by the image 

correction factor, depending on the dielectric properties and the contact gap [16]. In the 

current study, the wall surface is assumed to be conductive, so this image correction factor is 

set to 2 [1,16]. It should be noted that, according to Eqs (1) and (2), the CPD will be 

eventually balanced by the induced potential difference that is determined by the charge of 

particles and the induced image effects. Therefore, the image correction factor can influence 
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the final equilibrium charge on the particle. For instance, provided that the CPD is constant, 

the final equilibrium charge decreases with the increase of the image correction factor. In 

other words, the dielectric properties and contact conditions can play an important role in the 

charging transfer process.  

 

If two charged spheres of insulating materials are considered, then the induced potential 

difference can be determined as:  

 
















i

i

j

j

A

q

A

qz
V

0

'


     (3) 

 

where 
iq  and jq  are the charges of spheres i and j; iA and jA  are the surface areas of the 

spheres i and j. In the current study, spherical particles are assumed to be non-polarizable 

insulators so the charge does not relax and redistribute on spheres. The contact gap between 

spheres, z is set to 260 nm and the image effects between particles are ignore.  

 

Based on the condenser model [1,11], the CPD (Vc =Vi - Vj) is the driving force for electron 

transfer between contacting surfaces. In each collision, the transferred charge is proportional 

to the maximum contact area and the total potential difference, i.e. 

 

VSkq ms      (4) 

 

where Sm is the maximum contact area during the collision, ks is the charging constant during 

contact electrification and is of the order of 10
-4

 C·m
-2

·V
-1

 [19–21]. During a collision, the 
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charge will be transferred from material i to material j. Hence after each collision, the charge 

on these materials will become qsi-q and qsj+q, respectively.  

 

2.2 The electrostatic interaction model 

 

The charge on particles can induce electric field, which will lead to electrostatic interactions 

between charged objects [4]. The electrostatic interaction between point charges is governed 

by the Coulomb’s law. In this study, as a first approximation, the charge is assumed to 

distribute uniformly on the surface of a spherical particle and cannot be polarized. Then the 

electrostatic interaction between charged particles is governed by the Coulomb’s law as: 

ij

ij

ji

ij
r

qq
nF

2

0

e

4

1


      (5) 

where e

ijF  is the electrostatic force from qi to qj; ijr  is the distance between the centres of the 

two particles and ijn  is the unit vector from qi to qj.  

 

When a charged particle approaches a conducting surface, a re-distribution of the charge on 

the surface is induced. The charge on the particle and the induced charge on the surface cause 

the so-called image (charge) force [22]. The image force can be calculated as:  

 
I

ps ps2

0

1

4 2 ps

qq

r
F n      (6) 

where I

psF
 
is the image force between the particle and inductive surface, q is the value of the 

charge on the particle, rps is the distance between the centre of the particle and the inductive 

surface and nps is the unit vector.  

 

2.3. Model setup 
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The discrete element method coupled with computational fluid dynamics (DEM-CFD) is 

applied to model the dynamics of particle and air in the fluidisation [23]. The particles are 

treated as elastic spheres. The contact interactions are modelled using the Hertz theory [24] in 

the normal direction and the theory of Mindlin and Deresiewicz [25] in the tangential 

direction. The two-way coupling scheme is used to compute interactions between particles 

and the fluid. The drag force is calculated according to Di Felice’s correlation [23, 26]. The 

motion of the particle is governed by Newton’s second law while the air is treated as a 

compressible fluid governed by continuity and momentum equations.  

 

A 2D DEM-CFD model is set up to simulate the contact electrification and electrostatic 

interactions during fluidization as shown in Figure 1. In the simulation, 2500 particles with a 

diameter of 100 μm are used and the properties of the particles and the column are given in 

Table 1. The neutral particles here belong to the Group B in Geldart’s group [27]. Initially the 

particles are randomly generated and deposited onto the base of the column with a size of l × 

h until the granular bed becomes stable (i.e. maximum particle velocity is smaller than 10
-6

 

m·s
-1

).  

 

The air is then introduced through the base (inlet) of the column with a superficial gas 

velocities vg = 25 ~ 100 mm·s
-1

. The air is treated as a continuous compressible fluid. The 

internal domain is divided into 10 × 80 CFD cells. No-slip boundaries are assumed at the side 

walls, and the upper boundary (outlet) is set as a continuous outflow. The air has an average 

molar weight of 2.88×10
-2

 kg·mol
-1

 and a shear viscosity of 1.8×10
-5

 Pa·s. The initial air 

pressure is set to one atmospheric pressure and the temperature of the fluidized bed is 
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maintained constant at 293 K. The time setup is 3.410
-8

 s, which is calculated based on the 

highest frequency of the Rayleigh wave propagation [23].  

 

Contact electrification and electrostatic interactions are both considered during the 

fluidization. Two types of particles with different work function potentials (5.9 and 4.1 V) are 

used. Each type has 1250 particles. The column is assumed to be conductive and have a work 

function potential of 3.5 V. The charging constant ks is set to 1×10
-4

 C·m
-2

·V
-1

. The induced 

electrostatic force between particles and the image force between the particle and the wall are 

governed by Eqs 5 and 6, respectively. The direct truncation method [4] is applied and the 

cut-off distance is set to 10 particle radii. Fluidization with neutral particles, i.e. the 

electrification and electrostatics are ignored, are also modelled for reference and comparison.  

 

In this 2D DEM-CFD model, the contact electrification (transferred charge) is determined in 

each collision, which has negligible influence on the computational time. However, the long-

range electrostatic interaction can significantly prolong the computational time. The 

computational time with long-range electrostatic interactions is 3-5 times longer than that 

without the long-range interactions. A detailed comparison can be found in the literature [4]. 

3D models require much more particles to produce a reasonable scale for the study due to one 

additional dimension. The computational time can be more significantly prolonged, 

especially with more particles in 3D. Therefore, the 2D model is considered in this study, and 

its capability to represent and analyse the electrostatic behaviours of particles in fluidization 

will be explored.  

 

3. Results 

3.1. The particle profiles 
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Figure 2 shows the fluidization process of neutral particles with a superficial gas velocity of 

50 mm·s
-1

. Initially, the granular bed is settled on the base of the column as shown in Figure 

2a. When the gas is injected from the base, the particles are lifted by the gas and move 

upwards (Figure 2b). The granular bed is gradually fluidized. The particles are dispersed and 

bubbles of gas continually form and move from the base to the top. As it is assumed that the 

particle cannot get charged, similar bubbling behaviour as shown in Figure 2c and 2d persists 

throughout the entire fluidization process.  

 

Figure 3 presents the influence of contact electrification and electrostatics on the fluidization 

process of chargeable particles with a superficial gas velocity of 50 mm·s
-1

. From Figure 3a 

and 3b, it can be seen that at the early stage of the fluidization, the fluidized bed shows 

similar fluidization phenomena as that with neutral particles shown in Figure 2d. However, 

while the net charges on particles accumulate, bi-charged particles tend to move towards each 

other to form crystalline agglomerates and the gas bubbles becomes smaller (Figure 3c). As 

the electrostatic interaction becomes stronger and the charge accumulates, the gas cannot 

easily disrupt the agglomerates of bi-charged particles (Figure 3d, positive in yellow/light 

colour and negative in blue/dark colour). Consequently, the dispersed fluidized bed 

transforms into a collection of agglomerates and the gas can only flow through the channels 

formed between the agglomerates, rather than bubbling (Figure 3d). 

 

3.2. The charge distribution 

 

The charge density distribution can be used to analyze the charge accumulation and 

distribution during fluidization. The fluidization column is divided into 20×20 cells, and the 
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charge density of each cell is calculated as the radio of the total charge in the cell to the cell 

area. In this study, particles with a low work function potential are charged positively and 

particles with a high work function potential are charged negatively as observed in Figure 3. 

The positive and negative charge can be analysed separately to examine the charge 

distribution. The positive charge density distribution only considers the total positive charge 

of the fluidized bed and the negative charge density distribution is only for the negative 

charge.  

 

Figures 4 and 5 show the corresponding positive and negative charge density distributions in 

the fluidized bed with a superficial gas velocity of 50 mm·s
-1

. Both positive and negative 

charge density distributions present similar patterns and accumulation processes during the 

fluidization. At the early stage of the fluidization, the particles start to acquire charges. 

However, the charge density is relatively low (Figures 4a and 5a), and thus the granular bed 

can still be fluidized (Figure 3b). As the granular bed is fluidized, the charge density 

increases (Figures 4b and 5b). In addition, the positive and negative charges are concentrated 

in the same areas in the fluidized bed (Figures 4c and 5c), which indicates that the positive 

and negative charges induce strong electrostatic interactions to form agglomerates of particles 

(Figure 3d).  

 

Figure 6 shows the fluidized beds of charged particles with various superficial gas velocities 

at t = 3.4 s, at which a steady fluidization state is reached. It is clear that the structures and the 

height of fluidized beds for chargeable particles vary with the superficial gas velocities. With 

gas velocities of vg = 25 and 50 mm·s
-1

, the granular beds form large agglomerates and the 

gas cannot disrupt the agglomerates but only flows through the channels between 

agglomerates. On the contrary, a gas velocity of 100 mm·s
-1

 can lead to impacts between 
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agglomerates and also breakage. Therefore, due to the breakage and fluidization, the heights 

of fluidized beds increase with the superficial gas velocity.  

 

Figure 7 shows the corresponding positive charge density distribution of charged particles 

with various gas velocities at 3.4 s. The fluidized beds with different gas velocities present 

different charge density patterns. At a smaller gas velocity (say, 25 mm·s
-1

), the charge 

density is smaller and concentrated at the top-centre of the granular bed. When the superficial 

gas velocity is 50 mm·s
-1

, the charge is distributed over the entire granular bed densely, which 

means that the agglomerates are relatively stable as shown in Figure 7b. As the gas velocity is 

much larger, the charge is distributed sparsely in the fluidized bed since the particles and 

agglomerates are moving with the gas flow (Figure 7c). These phenomena indicate that the 

superficial gas velocity can affect the contact electrification process, and the subsequent 

dynamics of particles and agglomeration caused by electrostatic interactions. The negative 

charge density distribution is very similar to the positive charge density distribution.  

 

The net charge is defined as the summation of the positive and negative charges, which 

represents the polarity and the total charge of the fluidized bed. The net charge density can be 

calculated as the net charge of particles in each grid divided by the area of the grid. Figure 8 

presents the corresponding net charge density distribution of charged fluidized beds with 

various gas velocities at t=3.4 s. It can be seen that the net charges of fluidized beds with 

various gas velocities are negative, as the work functions of the particles are all higher than 

that of the column (see Discussion). A higher gas velocity causes a more dispersed and sparse 

net charge distribution. Compared to Figure 7, the value of net charge density is much 

smaller than the corresponding positive charge density of the fluidized bed.  
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3.3. The charge accumulation  

 

Figure 9 presents the charge accumulation of particles caused by contact electrification 

during fluidization. It is as expected that the charge of neutral particles stays zero during 

fluidization. The fluidization with chargeable particles show different charging processes due 

to contact electrification. As shown in Figure 9a, initially, the positive charge of the fluidized 

bed with smaller gas velocity of 25 mm·s
-1

 increases faster than that with larger gas velocity 

(50 and 100 mm·s
-1

). However, after a period of fluidization, the accumulation of positive 

charge at higher gas velocities becomes faster and exceeds that at a smaller gas velocity. The 

total negative charges in Figure 9b shows similar trends. The total net charges in all cases 

with contact electrification are negative (Figure 9c), as the work functions of the particles are 

all higher than that of the column. In addition, the total net charge increases faster at a higher 

superficial gas velocity.  

 

3.4. The performance of fluidization 

 

Figure 10 shows the mean coordination number of the fluidized bed during fluidization. For 

the fluidized bed without contact electrification, the coordination number is nearly zero, 

which indicates that the granular bed is fully dispersed and fluidized at the superficial gas 

velocity of 50 mm·s
-1

. However, for the fluidized bed with chargeable particles, the 

coordination number gradually increases during fluidization. Moreover, when a smaller gas 

velocity is used, a faster increase and a larger coordination number are induced, implying that 

the particles retain a larger number of contacts during fluidization at a smaller superficial gas 

velocity.  
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Figure 11 shows the corresponding collision rate of neutral and chargeable particles during 

fluidization. The collision rate is defined as the derivative of the total number of collision 

over time, which also represents the breakage of contacts (or agglomerates) during 

fluidization. The collision rates of neutral and chargeable particle systems demonstrate 

different features. For neutral particles, once the fluidization is achieved, the collision rate is 

low but stable. However, for the chargeable particle system, the collision (breakage) rate 

initially increases due to the formation and breakage of agglomerates caused by electrostatic 

forces. At smaller gas velocities (25 and 50 mm·s
-1

), the collision rate of the chargeable 

particle system starts to decreases when the electrostatic attractive force is strong enough to 

hold agglomerates together. At a higher gas velocity (100 mm·s
-1

), the gas is still able to 

induce breakage of agglomerates. Therefore, a large fluctuation of collision (breakage) rate is 

observed for the chargeable particle system at a higher gas velocity.  

 

The granular temperature is usually used to reflect the fluctuating energy inside a particle 

system, which can be defined as:  

 

21
( )g

n

T
D

 v v      (7) 

where Dn is the spatial dimension, which is 2 for 2D in this study; v is the velocity of each 

particle; v  is the average velocity of particles; the angle bracket <> indicates ensemble 

average. Generally, a higher granular temperature represents a high degree of mixing in the 

particle system.  

 

Figure 12 presents the granular temperature of neutral and chargeable particles during 

fluidization. For neutral particles, the granular temperature gradually increases to a relatively 
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stable level. A higher superficial gas velocity (50 mm·s
-1

) leads to a higher granular 

temperature than a smaller velocity (25 mm·s
-1

). For chargeable particles, the granular 

temperature initially increases. However, as fluidization continues, at smaller gas velocities 

(25 and 50 mm·s
-1

), the granular temperature decreases due to agglomeration between 

charged particles. At higher gas velocity (100 mm·s
-1

), the granular temperature can be 

maintained as the fluidization can break agglomerates of charged particles. In addition, with 

the same gas velocity, the granular temperature of chargeable particles is relatively lower 

than that of neutral particles, indicating that the fluctuating energy in the chargeable particle 

system is lower than that in the neutral particle system.  

 

The pressure drop of the fluidization, which can be used to identify the performance of the 

fluidization, is defined as the pressure different between the pressure of the input gas at the 

base of the fluidized bed and the pressure of the outflow gas at the top of the fluidized bed. 

Figure 13 shows the pressure drops of the fluidized bed with the neutral and chargeable 

particles at a superficial gas velocity of 50 mm·s
-1

. It can be seen that, for both cases, the 

pressure drop increases rapidly to a plateau once the gas is injected. The pressure drop of the 

fluidized bed with neutral particles continues to fluctuate as the neutral particles are moving 

upwards and downwards in the fluidization. However, the pressure drop of the fluidized bed 

with chargeable particles becomes relatively steady, indicating that the movement of the 

particles with the gas is relatively small.  

 

Figure 14 shows the pressure drops of fluidized beds with neutral particles at various gas 

velocities. The evolution of the pressure drops for all cases show similar trends during 

fluidization. The pressure drop initially increases rapidly and then reaches a plateau. The 

pressure drop keeps fluctuating due to the movement of the neutral particles. 
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Figure 15 shows the pressure drops of fluidized beds with chargeable particles at various gas 

velocities. For all case, the pressure drops show a similar trend to that shown in Figure 13. 

For the cases with smaller gas velocities (25 and 50 mm·s
-1

), the pressure drop rapidly 

increases to a plateau. However, at a higher gas velocity of 100 mm·s
-1

, a fluctuating pressure 

drop during the fluidization is observed, indicating that particles are moving with the gas at 

high gas velocities.  

 

4. Discussion 

 

4.1. The charging process during fluidization 

 

Since two types of particles with different work function potentials are used, both positive 

and negative charges are observed in the fluidized bed with chargeable particles. During a 

contact, the particles with a higher work function will be charged negatively and those with a 

lower work function are positive. At the initial stage of fluidization, a fluidized bed with a 

lower gas velocity is less dispersed and has more contacts between particles than that with a 

higher gas velocity, which leads to a faster increase in the total positive (negative) charge. 

However, as the charge accumulates on the particles, the electrostatic interactions become 

stronger and force particles to form agglomerates. The interactions become so strong that the 

gas with a small velocity (25 mm·s
-1

) cannot disrupt the agglomerates (Figures 6a and 10). 

Due to the agglomeration, fewer collisions occur between particles and the charge transfer is 

also limited for particles within the agglomerate. Thereafter, the positive (negative) charge 

accumulation becomes slower for the case with a lower gas velocity (25 mm·s
-1

) than those 

with higher gas velocities, which can still break the agglomerates and keep fluidizing the 
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granular bed. The charging process during fluidization with bi-charged particles varies with 

the particle properties (e.g. work functions) and the operating conditions (e.g. the gas velocity) 

due to the combined effects of the contact electrification and electrostatic interactions. 

However, for fluidization with mono-charged particles without considering the electrostatic 

interactions [11], the charging process shows an exponential pattern. Therefore, the 

sensitivity of the charging process to the combined effects of the contact electrification and 

electrostatics requires further investigated.  

 

4.2. Agglomeration during fluidization 

 

The bi-charged particles can form agglomerates due to electrostatic interactions during 

fluidization. The size and the breakage of the agglomerates are determined by the superficial 

gas velocity. A higher gas velocity can lead to a higher impact velocity between agglomerates 

and result in the disruption of the agglomerates as shown in Figure 6. Hence, the 

corresponding coordination number is smaller at a higher gas velocity as shown in Figure 10, 

indicating that a smaller number of particles adhere to each other. Moreover, the size of the 

agglomerate at a higher gas velocity is smaller. The adhesion of particles on the walls is also 

observed, especially at a higher gas velocity (see Figure 6c), in which a few layers of 

particles are attached to the wall instead of moving with the gas flow. It can be seen, although 

the neutral particles at the Group B in Geldart’s group [27] can be fluidized, the bi-charged 

particles behave like cohesive particles in Group C in Geldart’s group due to the electrostatic 

interactions. Bi-charged particles and induced agglomerate are commonly observed in 

experiments [1, 7, 8, 28]. Mono-sized particles with positive and negative charges tend to 

form agglomerates with regular lattice, i.e. crystalline structure, depending on the number of 
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particles, electrostatic interactions and dynamics of the process. The current study shows a 

broad agreement with these phenomena as can be seen in Figures 3 and 6.  

 

4.3. The performance of fluidization 

 

Contact electrification and subsequent electrostatic interaction can affect the overall 

performance of the fluidization. As can be seen from Figure 2, a superficial gas velocity of 50 

mm·s
-1

 can fully fluidize the granular bed considered in this study. However, the chargeable 

particles cannot be fully fluidized as shown in Figures 3, 6b and 11. The phenomena are also 

reflected by the fluctuation of the pressure drop (see Figures 13-15). When particles are 

fluidized and moving with the gas bubbles, the pressure drop tends to fluctuate, which is 

induced by accelerating and moving the particles. However, for charged particles with a 

smaller gas velocity, the agglomerates are too large to be lifted by the gas. As a result, the gas 

can only flow through the channels formed by the agglomerates, which leads to a steady gas 

flow and a steady pressure drop rather than a fluctuation. The high gas velocity (100 mm·s
-1

) 

can disrupt the agglomerates and keep fluidizing the granular bed, which needs extra energy 

and cause a large pressure drop as shown in Figure 15. The agglomeration clearly affects the 

pressure drop and increases the minimum bubbling velocity, which shows a qualitative 

agreement with the experimental results reported in the literature [8,14].  

 

4.4. The charge distribution 

 

The charge distribution can also be affected by the different fluidization behaviours at 

different gas velocities. A small gas velocity (25 mm·s
-1

) cannot fully fluidize the chargeable 

particles when the combined effects of contact electrification and electrostatics is activated. 
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Due to the formation of agglomerates, the movement of particles at the base are restricted by 

the electrostatic forces and the gravity of the granular bed. Therefore, the charge density in 

this region is much lower as shown in Figure 7a. A higher gas velocity (50 mm·s
-1

) can 

maintain the fluidization longer as indicated by the coordination number and collision rate in 

Figures 10 and 11, which results in a more uniform charge transfer process in the fluidized 

bed (Figure 7b). When the gas velocity is increased to 100 mm·s
-1

, the gas can break the 

agglomerates of charged particles and mobilize the particles and the agglomerates. Thus, the 

charge distribution is much sparse in the fluidized bed. The charge distribution in the bi-

charged particle system is different from the mono-charged system, especially when the 

electrostatic force is negligible. In the mono-charged particle system, the charge is initially 

generated and transferred between particles and column walls, and then propagates from the 

region close to walls to the centre during fluidization [11]. LaMarche et al. [13] observed 

similar phenomena in experiments, in which the charge on particles close to the wall is higher 

than that in the centre when particles flow through a cylinder and become charged. However, 

when a mixture of bi-charged particles is involved, the charge distribution becomes more 

complex. In this study, the positive and negative charges of mono-sized particles distribute 

sparsely uniform. When the size and electric properties of particles are different, more 

complex distributions of charge and particles are observed in experiments, including coating 

and segregation [13].  

 

4.5. The effect of the column 

 

The material properties, especially work function, of the column can also affect the charging 

process during fluidization. According to Eqs (3.1) and (3.7), the total potential difference 

between the particle and the column surface will eventually become zero if there are 
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sufficient contacts between the particle and the column. Since the work function potentials of 

the particles are higher than the work function potential of the column, the total charge of the 

granular bed becomes negative. In addition, with a larger superficial gas velocity, particles 

have a greater probability of making contact with the column and therefore have a larger total 

net charge. However, the agglomerates restrict the movement of the particles and reduce the 

contact number between the particle and the column. The increase of the total charge is very 

slow and the absolute value of the total charge is much smaller than the total positive charge 

as shown Figure 9, especially for the cases with lower gas velocities. Moreover, it can be 

seen that a layer of agglomerates is generated and attracted along each side of the column 

because of the contact electrification and the image force between the particle and the column, 

which will decrease and prevent further charge transfer from the column to the particle. 

Therefore, it will take a much longer time (or even not possible) to achieve the theoretical 

equilibrium state of the total charge as indicated by Eqs. (1) and (2). Clearly, the column wall 

plays a significant role in the charging process, which has been observed in the experiments 

[13, 29]. The interplay between walls and particles, including material properties and size 

effects need further investigations.  

 

5. Conclusions 

 

A DEM model with contact electrification and electrostatic interactions is developed to 

analyse the effect of electrostatics on fluidization. Particles with two different work functions 

and fluidization at different superficial gas velocities are considered. It is found that the 

fluidization process is influenced by contact electrification and electrostatic interactions. In 

addition, the gas velocity plays a significant role in the charging and agglomeration processes 

during fluidisation.  
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Particles with different work functions are charged positively and negatively. The charged 

particles form agglomerates, which can inhibit the fluidization process. A charged granular 

bed at a lower gas velocity cannot be fluidized because of the presence of agglomerates. A 

higher gas velocity can break the agglomerates and drag the primary particles to move in the 

fluidized bed, which leads to a larger charge accumulation and a sparse charge distribution. 

The difference in work functions between the column and the particles can also affect the 

particle charging behaviour during fluidization. Further analysis and discussion of these 

phenomena are required. 
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Figure 3  Fluidization of chargeable particles with vg = 50 mm·s
-1
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) of chargeable particles with various gas 
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Figure 10  The evolution of the mean coordination number during fluidization. 

Figure 11  The evolution of the collision rate during fluidization. 

Figure 12  The evolution of the mean granular temperature during fluidization.  
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Table 1  Properties of the particle and the column 

 Particle Column 

Young’s module, Y (GPa), 8.9 210 

Poisson’s  ratio, υ 0.3 0.3 

Density, ρ (kg·m
-3

) 1500 7800 
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Highlights 

 Contact electrification and electrostatic interactions are implemented into DEM-CFD 

 Particles with different work functions are charged positively and negatively  

 Bi-charged particles form agglomerates and affect the fluidization 

 A high gas velocity can break agglomerates and leads to larger charge accumulation 

 The agglomeration alters the pressure drop and increase the bubbling velocity 


