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Abstract 

BACKGROUND. Streptococcus pneumoniae is a potent human pathogen. Its pore-forming 

exotoxin pneumolysin is instrumental for breaching the host's epithelial barrier and for the 

incapacitation of the immune system.  

METHODS and RESULTS. Using a combination of life imaging and cryo-electron 

microscopy we show that pneumolysin, released by cultured bacteria, is capable of 

permeabilizing the plasmalemma of host cells. However, such permeabilization does not lead 

to cell lysis since pneumolysin is actively removed by the host cells. The process of pore 

elimination starts with the formation of pore-bearing plasmalemmal nanotubes and proceeds 

by the shedding of pores that are embedded in the membrane of released microvesicles. 

Pneumolysin prepores are likewise removed. The protein composition of the toxin-induced 

microvesicles, assessed by mass spectrometry, is suggestive of a Ca2+-triggered mechanism 

encompassing the proteins of the annexin family and members of the endosomal sorting 

complex required for transport (ESCRT) complex. 

CONCLUSIONS. S. pneumoniae releases sufficient amounts of pneumolysin to perforate the 

plasmalemma of host cells, however, the immediate cell lysis, which is frequently reported as 

a result of treatment with purified and artificially concentrated toxin, appears to be an unlikely 

event in vivo since the toxin pores are efficiently eliminated by microvesicle shedding. 

Therefore the dysregulation of cellular homeostasis occurring as a result of transient pore 

formation/elimination should be held responsible for the damaging toxin action. 

GENERAL SIGNIFICANCE. We have achieved a comprehensive view of a general plasma 

membrane repair mechanism after injury by a major bacterial toxin. 

 

Keywords: Bacterial toxin, PLY, Plasmalemmal repair, Microvesicle, Shedding, Annexin 
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1. Introduction 

Streptococcus pneumoniae is a potent human pathogen. Infection leads to common 

diseases such as otitis media, meningitis and pneumonia, which affect several million people 

and is responsible for significant infant death in developing countries [1]. The bacterial 

exotoxin pneumolysin (PLY) is instrumental for the breach of epithelial and endothelial 

barriers and the incapacitation of the host's immune system [2, 3]. 

PLY belongs to the large family of cholesterol-dependent cytolysins (CDC), toxins that are 

structurally related and characterized by their large trans-membrane pore [4]. Other prevalent 

pathogens producing CDCs are Streptococcus pyogenes (streptolysin O, SLO) and 

numerous other Gram positive bacteria, such as Clostridium, Listeria and Bacillus [5]. 

During the progress of infection PLY is released by the bacteria as soluble monomers that 

bind to cholesterol-rich microdomains within the plasma membrane of the host cells [2, 6]. 

After binding, PLY assembles in circular oligomeric prepores, undergoes a conformational 

change and perforates the plasmalemmal lipid bilayer. The formation of transmembrane 

pores leads to the loss of plasmalemmal integrity that might result in the lysis of targeted 

cells and ultimately in extended tissue damage at the site of infection and overwhelming 

immune responses [2]. 

However, plasmalemmal perforation by pore-forming toxins does not necessarily entail an 

unfavourable prognosis with respect to cellular survival. Largely depending on the 

concentration of a pore-forming toxin, the repertoire of cellular responses is considerable and 

ranges from the activation of intracellular and transmembrane signaling cascades i.e. for the 

initiation of the release of cytokines at non-lytic toxin concentrations, to imminent lytic cell 

death at lytic ones [2, 7, 8]. 

Lytic cell death has frequently been documented by using purified, concentrated exotoxins 

[2, 7]. Recently, we have shown that even at non-lytic concentrations of purified PLY the 

majority of targeted host cells are being perforated; however, these injuries are rapidly and 

efficiently resealed [9]. Ca2+-dependent recruitment of the repair machinery leads to plugging 
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of toxin pores that are either expelled into the extracellular space or internalized into the 

cellular interior [7, 10-12]. 

Here we show that during their growth bacteria produce enough PLY to perforate the plasma 

membrane of human cells. However, the host cells are capable of efficiently eliminating the 

active toxin pores and thus do not succumb to lytic death. Evaluating the mechanisms that 

are responsible for the elimination of toxin pores, we show that they are actively ejected and 

that both prepores and functional toxin pores are expelled in a Ca2+-triggered mechanism. 

Individual toxin pores and prepores have been identified by cryo-electron microscopy. Mass 

spectrometry results demonstrate that microvesicles are highly enriched in PLY, annexins, 

actin-binding and Ca2+-regulated proteins and that they also contain components of the 

ESCRT machinery. 

 

2. Materials and methods 

2.1. Mammalian cell culture and transfections 

Human embryonic kidney cells (HEK 293) and neuroblastoma SH-SY5Y cells were cultured 

as described [13]. HeLa cells were maintained in DMEM (Dulbecco`s modified Eagle`s 

medium. Gibco, Life Technologies, Paisley, UK) supplemented with 10% heat-inactivated 

FBS (Fetal Bovine Serum. Gibco, Life Technologies, Paisley, UK) and 1% penicillin-

streptomycin (Gibco, Life Technologies, Paisley, UK). Cell cultures were grown in 5% CO2 at 

37°C. Transfections were performed as described in [14]. Cells were transiently transfected 

with the coding sequence of human annexin A2, A6 or porcine annexin A1 cloned into the 

Living Colors Fluorescent protein vector pEYFP-N1 (Takara Bio Europe/Clontech, Saint-

Germain-en-Laye,  France) [14] and/or with a human charged multivesicular body protein 4B 

(Chmp4B)-mCherry construct [15]. Transfected cells were seeded on coverslips and were 

incubated for 48 h, reaching 80-90% confluence. The transfection rate for the fluorescently-

labeled constructs ranged between 70 - 90%. 
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2.2. Bacterial cultures 

The clinical pneumococcal isolates were collected in Switzerland from 1-10 year old children 

of both sexes. Strains 103.57, 211.25, 109.74, 307.14, 207.06, 208.41, 106.66, 207.31 and 

202.67 were from nasopharyngeal swabs (otitis), whereas strains B101.77, B103.21 were 

from blood cultures (septicemia). The clinical pneumococcal isolates as well as the 

pneumococcal strains D39 and PLN-A (D39 deficient in expressing PLY) were cultured in 

BHI (Brain Heart Infusion Broth, Sigma Aldrich, Buchs, Switzerland) at 37°C. The PLN-A 

strain carries an erythromycin resistance marker [16], therefore the medium was 

supplemented with 1 µg/ml erythromycin (Sigma Aldrich). For the generation of bacterial 

supernatants, bacteria grown to their stationary phase (OD500 = 1.0) were pelleted (5,000 x  

g) for 15 min. The supernatants were filtered through a syringe filter with a pore size of 0.2 

μm (VWR, Dietikon, Schweiz). Overnight cultures from D39 strain used for co-culturing 

experiments were diluted to OD500 = 0.01 in DMEM medium supplemented with 10% heat-

inactivated FBS and 20 mM HEPES (Merck, Zug, Switzerland) and grown to early stationary 

phase. For the establishment of growth curves, the overnight cultures were diluted to OD500 = 

0.01 and the OD500 was measured every 1.5 h. 

 

2.3. Recombinant toxins 

The nontoxic PLY mutant ΔA146R147 exhibits a double-amino acid deletion within the PLY 

sequence [17] and is N-terminally tagged with GFP. Recombinant PLY and EGFP-tagged 

PLY were cloned and purified as follows: all primers were synthesized by Microsynth 

(Balgach, Switzerland) and are detailed in the Supplementary File 1. Restriction enzymes 

were from Fermentas (ordering partner: Fisher Scientific, Wohlen, Switzerland) and all other 

reagents used in the cloning experiments were purchased from Promega (Dübendorf, 

Switzerland) if not otherwise stated. Isolation of the genomic DNA of the strain D39 was 

performed with the E.Z.N.A. ® Bacterial DNA Kit (VWR). The PLY gene and the EGFP gene 

(from pN1-EGFP vector; Clontech, Saint-Germain-en-Laye, France) were amplified. The 

PCR products as well as the pET28a vector were cut with the complementing restriction 
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enzymes (BamHI, XhoI) and purified by the PCR Clean-up Kit (Qiagen, Hilden, Germany). 

First the PLY PCR product was ligated into the pET28a vector (Novagen, Madison, USA; 

digested with BamHI and XhoI). Subsequently, the EGFP PCR-product was ligated into the 

pET28a-PLY vector (digested with NheI and BamHI) by the T4-DNA ligase. Positive clones 

were sequenced. The pET28a-PLY and the pET28a-EGFP-PLY vector were transformed in 

BL21 (DE3) pLysS competent cells. Protein expression was induced with 1 mM IPTG (Sigma 

Aldrich) at the bacterial culture OD500 = 0.5 - 0.7. Bacterial cells were incubated for 4 h at 

37°C and harvested by centrifugation (5,000 x g, 4°C, 30 min). The recombinant proteins 

were purified with Protino® Ni-NTA 1 ml columns (MACHEREY-NAGEL, Oensingen, 

Switzerland) according to the manufacturer`s instructions. The protein content of the eluates 

was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

and high protein contents were pooled. Two dialysis steps to phosphate buffered saline 

(PBS) (1 mM DTT added) were performed with a cellulose membrane tube that retains 

proteins with ≥ 12 kDa (Sigma Aldrich) according to the manufacturer`s instructions. The 

protein concentration was determined with a bicinchoninic acid (BCA) assay (Pierce™ BCA 

Protein Assay Kit, Thermo Scientific, Reinach, Switzerland) and the hemolytic activity of PLY 

as well as EGFP-PLY was assessed by a hemolysis assay. 

 

2.4. Hemolysis assay 

Human red blood cells were isolated from whole blood of healthy volunteers and were stored 

in the Alsever’s solution (Sigma Aldrich). Before each experiment red blood cell suspension 

was centrifuged (3,000 x g, 4°C, 10 min). Pelleted erythrocytes were washed twice with PBS 

(3,000 x g, 4°C, 10 min) and used as the source (100%) in the hemolysis assay. Serial 

dilutions of bacterial culture (OD500 = 1.0) supernatants or recombinant toxins, pre-activated 

with 5 mM DTT, were incubated with 1 % human red blood cells at 37°C for 60 min in PBS. 

The absorbance of the supernatant was measured at 450 nm and the hemolytic activity was 

calculated according to the formula: hemolysis (%) = ((A sample – A negative control) / (A positive control – 
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A negative control)) x 100. Negative control = 1 % human red blood cells in PBS. Positive control = 

1 % human red blood cells in H2O. 

 

2.5. Confocal microscopy 

If not otherwise stated Tyrode`s buffer (140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 10 mM 

glucose, 10 mM HEPES, pH = 7.4) containing 2.5 mM CaCl2 (calcium Tyrode`s buffer) or 

100 µM EGTA  was used in all experiments. Imaging was performed as described in [9]. In 

brief, transfected cells (~250000 cells/coverslip) were mounted in a recording perfusion 

chamber and were washed with 200 µl of Tyrode`s buffer containing calcium or EGTA. At 

time point = 0 the buffer was completely removed and the cells were treated with 200 µl of 

the indicated solutions. If mammalian cells were treated with bacterial supernatants, 100 µl of 

bacterial supernatants were diluted in 100 µl calcium Tyrode’s buffer. Co-culturing of 

mammalian cells with S. pneumoniae was performed as follows: transfected HEK 293 cells 

were grown to confluency in cell culture dishes with a glass bottom (CELLviewTM, Ø35 mm, 

Greiner Bio-one, Frickenhausen, Germany). Mammalian cells were washed with calcium 

Tyrode`s buffer, infected with 2 ml of bacterial culture (OD500 = 0.4) and monitored for 80 min 

at 37°C and 5% CO2. Fluorescence was recorded in time series for 45 min with an Axiovert 

200 M microscope equipped with a laser scanning module LSM 510 META (Zeiss) using a 

x63 oil immersion lens [18]. Annexin-A2 positive microvesicles that were released in 

individual experiments were counted manually (every 5th frame, 300 frames à 9 s) and are 

expressed as the number of microvesicles/cell/min. 

 

2.6. Isolation of PLY-induced microvesicles and total membrane isolates  

HEK 293 cells (107 cells, transfected or untransfected as indicated) were gently washed with 

PBS. Microvesicle shedding was induced by treatment with PLY or EGFP-PLY in calcium 

Tyrode`s buffer containing 5 mM DTT (2 µg/ml PLY in 2 ml total volume). If indicated, the 

unbound toxin was removed after 2.5 min and the toxin-free calcium Tyrode`s buffer was re-

added. The cells were incubated for 45 min at room temperature. The supernatant containing 
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the shed microvesicles was collected. Total membranes were isolated by detaching cells with 

a cell scraper and rigorous fragmentation (20 x) with a glass homogenizer. The supernatant 

containing shed microvesicles or the fragmented cell suspension was centrifuged two times 

at 2,100 x g for 10 min to remove cell debris and membrane material was pelleted at 130,000 

x g for 1h (90TI rotor, Optima L, Beckman Coulter, Nyon, Switzerland). The pellets were re-

suspended in calcium Tyrode`s buffer (for cryo-electron tomography) or 1 x SDS sample 

buffer for SDS-PAGE. 

 

2.7. Mass spectrometry 

The microvesicle and the total membrane pellets were subjected to SDS-PAGE (the total 

membrane isolate was loaded in x 2 serial dilutions). After Coomassie Brilliant Blue R-250 

staining (Sigma-Aldrich), the microvesicle isolate lane and the total membrane isolate lane 

containing the matching protein concentration were carefully dissected out and analyzed by 

the Mass Spectrometry and Proteomics Core Facility (PMSCF) of the Department of Clinical 

Research at the University of Bern with an ESI-LTQ-Orbitrap: The samples were reduced, 

alkylated and digested with trypsin. Each sample was loaded onto a pre-column (PepMap 

C18, 5µm, 300A, 300µm x 1.5mm length) at a flow rate of 20µL/min with solvent A (0.1% 

formic acid in water/acetonitrile 98:2). After loading, peptides were eluted in back flush mode 

onto the analytical nano-column (magic C18, 5µm, 300A, 0.075 mm i.d. x 75mm length) 

using an acetonitrile gradient of 5% to 40% solvent B (0.1% formic acid in water/acetonitrile 

4,9:95) in 60min at a flow rate of ~400nL/min. The column effluent was directly coupled to an 

LTQ-orbitrap XL mass spectrometer (ThermoFisher, Bremen, Germany) via a nano spray 

ESI source operated at 1700 V. Data acquisition was made in data dependent mode with 

precursor ion scans recorded in the Fourier transform detector (FT) with resolution of 60’000 

(@ m/z =400) parallel to five fragment spectra of the most intense precursor ions in the linear 

iontrap. CID mode settings were: Wideband activation on; precursor ion selection between 

m/z range 360-1400; intensity threshold at 500; precursors excluded for 15 sec. CID spectra 

interpretation was performed with EASYPROT on a local, multicore processor server run 
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under linux. A small database containing all UniProt database: uniprot_sprot; taxonomies: 

1313, 9606. The following variable modifications were used: carboamidomethylated Cys (no 

limit), Met oxidation (limited to 1), Asn/Gln deamidation. 2. Parent and fragment mass 

tolerances were set to 10 ppm and 0.6 Da, respectively.  

All peptides identifications with a score of >4 were accepted for peptide mapping. The protein 

match score summation (PMSS) was used for relative quantification [19]. The PMSS adds up 

all scores from peptide spectral matches to one particular protein irrespective of whether a 

peptide was identified several times, with or without modifications. 

 

2.8. Immunoblotting / amido black staining 

The pellet of microvesicles as well as the total membrane pellet (in x 2 serial dilutions) was 

applied to SDS-PAGE. Immunoblotting was performed with a polyvinylidene difluoride 

(PVDF) membrane (Millipore AG, Zug, Switzerland) and a mouse monoclonal antibody 

against annexin A2 (#A14020, BD Biosciences, Allschwil, Switzerland), annexin A6 

(#610067, BD Biosciences, Allschwil, Switzerland) and heat shock protein 90 (Hsp90) 

(#SMC-149 A/B, StressMarq Biosciences Inc., Victoria, Canada). All 1st antibodies were 

diluted 1:500. The horseradish peroxidase (HRP)-linked ECL 2nd antibody was diluted 1:1000 

(#NA931-1ML, GE healthcare, Little Chalfont, UK). The membrane was developed with 

WesternBright ECL (Advansta, Menlo Park, USA) and the band intensities were analyzed by 

FIJI [20]. After immunoblotting, the membrane was stained with amido black and the relative 

total protein content in the microvesicle sample was determined by matching to serial 

dilutions of the total membrane isolates. In addition, the protein concentration of the 

microvesicle isolate and the total membrane isolate was determined by a BCA assay. 

 

2.9. Fluorescence activated cell sorting (FACS) analysis 

PLY or EGFP-PLY induced microvesicles shed from either annexin A2-mCherry or non-

transfected HEK 293 were isolated by centrifugation as described above and re-suspended 

in equal volumes for FACS analysis (400 µl). For FM1-43 (SynaptoGreen C4, Biotium, 
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Hayward, USA) staining the microvesicles were incubated with 12.3 µg/ml dye. The mixture 

was shortly vortexed, incubated for 10 min and directly subjected to FACS measurement. 

Microvesicles were analyzed with a LSRII (BD Instruments, San Jose, USA). The settings 

and compensations were set according to microvesicles from non-transfected cells induced 

by PLY, non-transfected cells induced by PLY-EGFP, and annexin A2-mCherry transfected 

cells with PLY. Data acquisition was performed with constant sample flow rate and was 

analyzed with FlowJo software (FlowJo, LLC, Ashland, USA). Data acquisition was 

performed with constant sample flow rate and was analyzed with FlowJo software (FlowJo, 

LLC, Ashland, USA). 

 

2.10. Immunogold labeling and conventional electron microscopy 

The supernatant of PLY-challenged HEK 293 cells was centrifuged two times at 2100 x g for 

10 min and filtrered (syringe filter, PFTE membrane, pore size 0.45 µm, Millex, Millipore). 

The membrane was removed from the plastic housing, cut into individual segments and 

incubated with a mouse monoclonal antibody against PLY (PLY-4, 1:50; Abcam, Cambridge, 

UK), washed with Tyrode`s buffer containing 2.5mM Ca2+ followed by incubation with an IgG 

goat anti-mouse 10 nm gold 2nd antibody (1:100; Sigma-Aldrich). The membrane was frozen 

at high pressure (210 MPa, EMPACT instrument, Leica-Microsystems, Vienna, Austria), 

cooled down to -196 °C and freeze-substituted as described previously in [21]. Ultrathin 

sections were viewed with a Philips CM12 transmission electron microscope and images 

were recorded with the Olympus analySIS software (Olympus, Volketswil, Switzerland). 

 

2.11. Cryo-electron tomography 

Isolated microvesicles were mixed with 10 nm fiducial gold solution (#s10110/8, AURION 

Immuno Gold Reagents & Accessories, Wageningen, The Netherlands). The mixture was 

applied to a 200 mesh lacey carbon film grid (#AGS166-3, Agar Scientific, Elektron 

Technology UK Ltd, Stansted, UK). Excess liquid on the grid was removed by blotting with a 

filter paper and the grid was immediately plunge frozen in liquid ethane with a homebuilt 
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plunge freezer. The grid was mounted on a cryo-holder (Gatan, Pleasonton, CA, USA) and 

transferred to a Tecnai F20 transmission electron microscope (FEI, Eindhoven, The 

Netherlands), set to low dose conditions, operated at 200 kV, and equipped with a field 

emission gun. Images were recorded with a 2k x 2k charge-coupled device (CCD) camera 

(Gatan) mounted after a GIF Tridiem post-column filter (Gatan) operated in zero-loss mode. 

The sample was kept at about -180°C. Tilt series were acquired using SerialEM  for 

automated acquisition recorded typically from -60° to 60° with a 2° angular increment. 

Defocus was set to -8 µm and the total electron dose used was about 90 e-/Å2. Image 

processing was done in IMOD [22]. The alignments were done using the automated fiducial 

tracking function and the 3D reconstructions were done using the weighted back projection 

followed by a nonlinear anisotropic diffusion (NAD) filtering. 
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3. Results 

3.1. Plasmalemmal repair in host cells damaged by S. pneumoniae 

In nucleated cells, PLY-induced plasmalemmal perforations lead to a pore-induced entry of 

extracellular Ca2+ [14]. As a result, fluorescently-labelled annexin A2 (used as an intrinsic 

Ca2+ sensor [14]) translocated from the cytoplasm to the plasma membrane (Supplementary 

Figure 1A, B, cells marked by stars, Video 1, 2). Ongoing plasmalemmal repair and the 

elimination of  PLY-pores manifested themselves by annexin A2 back-translocation to the 

cytosol as a result of plasmalemmal resealing and the restoration of [Ca2+]i to its resting 

levels by the cellular Ca2+-sequestration machinery [9] (Supplementary Figure 1A, Video 1). 

Failure to reseal the damaged plasmalemma led to lysis of the affected cells [9, 18]. 

Equilibration between extracellular (~2.5 mM) and intracellular (~100 nM) [Ca2+] resulted in 

stable elevation of [Ca2+]i  followed by the permanent association of annexin A2, with the 

plasmalemma and, at a later stage, also with intracellular membranes (Supplementary Figure 

1B, Video 2). Supplementary Figure 1 and Videos 1 and 2 show results of experiments 

performed in HEK 293 cells that were treated with a S. pneumoniae bacterial culture 

supernatant; similar results were obtained with purified PLY [9] and SLO [13]. Identical 

responses to permeabilization by pore-forming toxins were observed in primary human 

airway epithelial cells (AEC), human neuroblastoma SH-SY5Y cells and human bronchial 

epithelial cells (HBE) [9, 13]. This suggests that the elimination of toxin-induced pores is a 

general cellular defense mechanism which is independent of cell- or toxin type. 

In order to ascertain PLY concentrations ([PLY]) that are required for the perforation/lysis of 

nucleated cells, monolayers (80-90 % confluence) of epithelial (HEK 293) or mesenchymal 

(SH-SY5Y) cells, expressing annexin A2-YFP, were treated with varying amounts of purified 

PLY. Infrequent plasmalemmal perforations were registered already at [PLY] = 50 ng/ml (~1 

nM) (not shown); at 250 ng/ml [PLY] ~30% of cells, and at 1 µg/ml [PLY] ~60% of cells were 

permeabilized (Figure 1). No differences in the extent of plasmalemmal perforation were 

observed between HEK 293 and SH-SY5Y cells (Figure 1). 
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Figure 1: Permeabilization and lysis of nucleated cells by purified PLY. 

HEK 293 cells (red lines) or SY5Y cells (blue lines) were treated with different [PLY]. The 

percentage of cells showing plasmalemmal perforation (circles) and lysis (squares) are 

plotted. The 1 µg/ml point corresponds to 87 hemolytic units. Mean ± SD, N ≥ 6; 

 

Nucleated cells have developed the means of repairing pore-induced plasmalemmal lesions 

([7]; Supplementary Figure 1A, Video 1). Hence, in comparison to their degree of 

plasmalemmal perforations, much higher [PLY] (≥ 2 µg/ml) were required to induce cell lysis 

(Figure 1). There was no difference in the extent of PLY-induced lysis between HEK 293 and 

SH-SY5Y cells (Figure 1). 

In order to ascertain whether [PLY] that are required for the perforation/lysis of nucleated 

cells can be reached in pneumococcal cultures, i.e. at conditions that are likely to occur in 

vivo, [PLY] were estimated in 11 clinically isolated S. pneumoniae strains and in the D39 

laboratory strain by comparing their hemolytic activity with that of purified PLY of known 

concentration (Table 1). Two of the tested strains showed no hemolytic activities, which 

suggests that these strains do not express/release PLY. Among the hemolytically active 

strains, [PLY] in the bacterial culture supernatants ranged from 200 ng/ml to 800 ng/ml. 

Notably, whereas all hemolytically active strains produced PLY at concentrations that were 
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sufficient to permeabilize nucleated cells, none of the strains seem to release enough PLY to 

induce lysis of the cells as judged from indirect comparison of data obtained in hemolysis 

assay (Table 1) and in experiments performed in nucleated cells (Figure 1). 

 

Table1: Concentration of PLY in S. pneumoniae strains. [PLY] released by 12 S. 

pneumoniae strains were determined by comparing the hemolytic activities of bacterial 

culture supernatants with that of purified PLY of known concentration. One hemolytic unit will 

cause 50% lysis of 1% red blood cell suspension in phosphate buffered saline, pH 7.4, after 

incubation at 37 °C for 60 min. Mean ± SD, N = 6. 

 

S. pneumoniae 

(strain) 

[PLY] 

(µg/ml) 

Hemolytic activity 

(Units/ml) 

103.57 (nasopharyngeal swab) 0.799 ± 101 333 

211.25 (nasopharyngeal swab) 0.641 ± 181 263 

109.74 (nasopharyngeal swab) 0.629 ± 169 262 

307.14 (nasopharyngeal swab) 0.439 ± 86 200 

207.06 (nasopharyngeal swab) 0.419 ± 81 175 

208.41 (nasopharyngeal swab) 0.371 ± 185 156 

106.66 (nasopharyngeal swab) 0.343 ± 66 143 

B101.77 (blood culture) 0.248 ± 14 103 

D39  0.217 ± 28 90 

207.31 (nasopharyngeal swab) 0.199 ± 36 83 

B103.21 (blood culture) 0 0 

202.67 (nasopharyngeal swab) 0 0 

  (Units/mg) 

Purified PLY 4000 435000 
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Purified eGFP-PLY 2000 250000 

 

In order to address the permeabilization/cytolytic activities of pneumococcal culture 

supernatants directly in nucleated cells, HEK 293 and SH-SY5Y cells expressing annexin 

A2-YFP were treated with bacteria-free culture supernatants obtained from S. pneumoniae 

D39 or S. pneumoniae 103.57  strains. D39 was among the strains that released the lowest 

amount of PLY, whereas 103.57 released the highest amount of PLY (Table 1). 

Pneumococci predominantly release PLY when they reach the stationary phase of growth 

and undergo autolysis [23, 24]. At these conditions (stationary phase; OD500=1.0) the 

perforation of nucleated cells was minimal for the D39 bacterial strain (HEK 293 cells: 8% ± 

5% SD, total of 107 cells recorded in 4 separate experiments; SH-SY5Y cells: 8% ± 8% SD 

(total of 70 cells recorded in 3 separate experiments) and no lysis of either HEK 293 or SH-

SY5Y cells was observed. 

In order to ensure that PLY activity was not lost during the preparation of bacterial culture 

supernatants, we performed co-culture experiments, in which D39 bacteria grown to late-

exponential-phase in DMEM cell culture medium (OD500=0.4), were directly applied to HEK 

293 cells and were further co-incubated with the cells for 80 minutes reaching the stationary 

phase of growth (OD500=0.5, Supplementary Figure 2). Comparable to the experiments with 

bacteria-free culture supernatants, 8% ± 8% SD of cells (total of 215 cells recorded in 5 

separate experiments) experienced plasmalemmal perforations during co-culturing with D39 

bacteria; all were able to reseal their PLY-damaged plasmalemma (Video 3). 

Next, we treated nucleated cells with the bacterial culture supernatant obtained from S. 

pneumoniae 103.57 strain, which was the most hemolytically active one among all bacterial 

strains that were tested in this study (Table 1). Even at these experimental conditions only 

49% ± 10% SD of HEK 293 cells (220 cells in 5 separate experiments) were permeabilized, 

and a mere 2% ± 3% SD succumbed to PLY-induced lysis. Similar results were obtained with 

SH-SY5Y cells: 43% ± 20% SD of cells treated with the 103.57 supernatant (total of 112 cells 
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recorded in 5 separate experiments) experienced plasmalemmal perforations; all perforated 

cells were able to reseal. 

 

Despite its prominent binding to the plasmalemma, the inactive fluorescently-labelled PLY 

mutant ΔA146R147 [17] did not trigger plasmalemmal perforations in HEK 293 cells as 

judged by the absence of annexin A2 translocations (Video 4). Likewise, stationary, PLY-

deficient PLN-A bacteria, in which PLY is genetically disrupted were unable to induce 

annexin A2 translocations [16] (Video 5). 

Taken together, these experiments suggest that in vivo, pneumococci are able to produce 

sufficient PLY to perforate the plasmalemma of host cells; however the cells possess 

adequate means to repair such plasmalemmal injuries - at least at the initial stage of 

pneumococcal infection. 

 

3.2. Mechanisms of plasmalemmal repair: annexin- and PLY-containing microvesicles are 

shed by cells treated with S. pneumoniae 

We have shown that members of the annexin protein family are instrumental in the repair of 

toxin-induced pores [7, 25]. By translocating to the perforated plasma membrane the 

annexins plug the pores that are subsequently expelled into the extracellular space [9, 13, 

21]. Accordingly, the plasmalemma of nucleated cells treated with S. pneumoniae 103.57  

culture supernatants (Figure 2A, B) or with sub-lytic concentrations of purified PLY (Figure 

2C) sprouts thin, annexin A2-YFP positive "nanotubes" (Figure 2 arrows) that appear to 

break down by releasing microvesicular material into the extracellular milieu (Figure 2 

arrowheads, Video 1). The annexin A2 plugs are marked by stars (Figure 2 B; C). Likewise, 

protrusions were generated and microvesicles were released by HEK 293 cells after ~ 60 

minutes of co-culturing with S. pneumoniae D39 (Video 3) or after treatment with sub-lytic 

[PLY] (Video 6). 
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Figure 2: PLY-induced formation of nanotubes and release of microvesicles in HEK 293 and 

SH-SY5Y cells. The 103.57 pneumococcal supernatant (67 hemolytic units) initiates 

sprouting of thin nanotubes from the plasma membrane of HEK 293 (A, arrows) or of SH-

SY5Y (B, arrows) cells. Their breakdown is followed by the ejection of microvesicles 

(arrowheads). Purified PLY (2 µg/ml; 174 hemolytic units) also induces nanotube formation, 

which is accompanied by the subsequent release of microvesicular material (C). 

Representative images are shown. N = 5. Min:sec = time after treatment with the bacterial 

supernatant. Scale bars = 10 µm 

  

Released microvesicles contained membrane-associated annexins but were completely 

devoid of cytosolic proteins (Figure 3, Video 6), which suggests that the formation of an 

outward plasmalemmal fold composed of two tightly associated lipid bilayers is involved in 

shedding of the toxin. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

18 
 

 

Figure 3: Annexin-rich microvesicles are devoid of cytosolic CFP. Sub-lytic [PLY] (2 µg/ml; 

174 hemolytic units) induce the release of annexin A6 containing microvesicles (upper panel, 

examples are highlighted by yellow arrowheads) in HEK 293 cells expressing annexin A6-

YFP and cytosolic CFP. Similar results were obtained also for other annexins (annexin A2 

and annexin A1). However, the shed microvesicles do not contain CFP (lower panel). N = 3. 

Representative images are shown. Min:sec = time after treatment. Scale bar = 10 µm. 
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For the unequivocal detection of PLY on the plasma membrane we generated hemolytically 

active, N-terminally EGFP-tagged PLY. The labelled toxin enabled us to observe the 

formation of nanotubes and the release of microvesicles that contained both annexin A2 and 

PLY (Figure 4). 

 

 

 

Figure 4: Formation of nanotubes and release of microvesicles visualized with EGFP-PLY.  

Annexin A2-mCherry-expressing SH-SY5Y (A) or HEK 293 (B) were treated with 2 µg/ml 

EGFP-PLY (100 hemolytic units). EGFP-PLY rapidly binds to the plasma membrane and 

initiates the formation of nanotubes with the toxin capping their tips (arrows) and the release 

of microvesicles (arrowheads). N = 4. Representative images are shown. Min:sec = time 

after treatment. Scale bars = 10 µm. 
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FACS analysis of microvesicles isolated from annexin A2-mCherry transfected HEK 293 cells 

confirmed the co-localization of EGFP-PLY with the annexin (Supplementary Figure 3). 

Despite a caveat of underrepresenting a population of microvesicles that were smaller than 

500 nm, these data corroborate our imaging results (Figure 4) and are consistent with our 

previous suggestion that the removal of PLY pores from the plasmalemma during repair 

occurs by a process of annexin-mediated plugging and shedding [13, 21]. 

 

 

The presence of PLY on shed microvesicles was additionally confirmed by immunogold 

labelling with toxin-specific antibodies (Supplementary Figure 4). 

The internalization of toxin pores following lysosome-plasmalemma fusion constitutes an 

alternative mechanism for repair of toxin-damaged plasmalemmal regions [26]. However, we 

were unable to detect an internalization of EGFP-tagged PLY in SH-SY5Y or HEK 293 cells 

either at sub-lytic [PLY] (Figure 4) or at lytic [PLY] (Supplementary Figure 5). 

 

Toxin-induced nanotube formation in artificial membranes [27] and the formation of SLO-

containing ectosomes/blebs in PFA-fixed cells [28] suggest that plasmalemmal tubulation 

and shedding might occur spontaneously, as a result of an intrinsic lipid rearrangement 

within the toxin-targeted plasmalemmal lipid-bilayer. Those studies imply that shedding 

follows in a protein-independent manner and therefore also occurs in lysed cells. However, 

our results indicate that microvesicles are preferentially shed at sub-lytic [PLY] by actively 

repairing cells: a peak of microvesicle release was observed at 2 µg/ml PLY (Figure 5) - at 

conditions when ~70% of the cells were permeabilized but successfully resealed their 

plasmalemma and only ~ 5% were undergoing lytic degradation (Figure 1, Video 7; [9]). 
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Figure 5: Microvesicles are predominantly shed at sub-lytic PLY concentrations. HEK 293 

cells expressing fluorescently-labeled annexin A2 were exposed to different [PLY]. At sub-

lytic [PLY] = 2 µg/ml the highest amount of annexin-enriched microvesicles was released 

compared to lower [PLY] = 0.25 - 1 µg/ml or higher [PLY] = 4 - 8 µg/ml (blue circles). The 

chelation of extracellular Ca2+ completely inhibited microvesicle release (red squares). The 1 

µg/ml point corresponds to 87 hemolytic units. For any experimental condition N ≥ 6; mean ± 

SEM. 

 

At higher [PLY], at conditions under which the majority of cells succumbed to PLY-induced 

lysis, microvesicle release was significantly diminished (Figure 5, Video 8). This suggests 

that only the living, but not the lysed cells, were able to undergo PLY-induced microvesicle-

driven repair. Correspondingly, the chelation of extracellular Ca2+, which leads to increased 

cell lysis due to the ineffectiveness of Ca2+-dependent repair [9] prevented the shedding of 

microvesicles (Figure 5). 

Components of the ESCRT machinery have recently been reported to mediate the shedding 

of toxin-perforated membrane sites in HeLa cells [15]. In particular Chmp4B and the ATPase 

Vps4 (vacuolar protein sorting 4) have been proposed indispensable for the Ca2+-dependent 

evagination and scission of wounded membranes as microvesicles [15]. We did not observe 

the association of Chmp4B with the plasmalemma of PLY-perforated cells, in contrast to the 
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PLY-induced translocation of annexin A2 (Supplementary Figure 6). However, in our 

experiments we failed to achieve cytosolic localization of Chmp4B, which was reported in 

[15], either in HEK 293, in SH-SY5Y or even in HeLa cells that were used in [15] 

(Supplementary Figure 6), which might be the reason for the discrepancy between the two 

data sets. 

 

3.3. PLY prepores and pores are actively released within the shed microvesicles 

Our imaging experiments (Figures 2 - 4) suggest that released microvesicles are smaller 

than 1 µM in diameter. In addition, a release of larger vesicles, some of them in the form of 

plasmalemmal blebs, can be expected after toxin-induced, self-inflicted mechanical damage 

[13]. This process is documented in Supplementary Figure 7 (Video 9), which shows a PLY-

perforated cell, whose appendage initially sprouts multiple blebs and is afterwards destroyed 

by its own contraction. Likewise, shedding of SLO-pores within rather larger plasmalemmal 

blebs/ectosomes has previously been invoked as a plasmalemmal repair mechanism [28]. 

 

Cryo-electron microscopy of plunge-frozen material, which was released by cells treated with 

sub-lytic [PLY] demonstrated that the population of released vesicles was highly 

heterogeneous, ranging from 45 nm to 1560 nm (Figure 6). However, more than 90% of the 

vesicles were smaller than 500 nm (median = 163 nm, 176 vesicles, Figure 6), suggesting 

that the contribution of larger vesicles in the shedding of PLY-pores was negligible. Whereas 

no quantitative analysis of size distribution was provided in [28], the reported SLO-induced 

blebs/ectosomes were heterogeneous in size, ranging from 200 nm to 2 µm, which is similar 

to the size distribution, observed in the present study. 
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Figure 6: PLY-induced microvesicles visualized by cryo-EM. Sub-lytic [PLY] (2 µg/ml; 174 

hemolytic units) induce the release of microvesicles (A). The microvesicle population is 

heterogeneous and exhibits PLY structures bound to the membranes visible as top views 

(pink arrow) and side views (yellow arrow). High density material is frequently located under 

PLY structures (blue arrows). Some PLY structures associate back-to-back (upper yellow 

arrow). (B) A microvesicle (red square) released by cells that were not incubated with PLY. 

Only four vesicles were found on the entire EM grid (compared to ~ 10000 in case of toxin-

treated cells). Inset: magnified view of the vesicle. Asterisks: ice contamination. Arrowheads: 

fiducial gold beads. (C) The diameters of the microvesicles were measured in cryo-maps and 
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the frequency of different sizes is given in percent. The majority of microvesicles are smaller 

than 500 nm. N= 3. Scale bars = 100 nm. 

 

Cryo-electron tomography of plunge-frozen microvesicles was further used to identify active 

pores within a population of PLY that also includes prepores and PLY monomers. The side 

views of PLY oligomers illustrate prepores with an intact plasma membrane underneath 

(Figure 7A) as well as functional pores featuring a perforated membrane (Figure 7B). The top 

view of oligomeric PLY does not allow the discrimination between prepore and functional 

pore due to the inferior resolution along the Z-axis, characteristic of electron microscopic 

tomography (Figure 7C). 

 

 

Figure 7: PLY oligomers are present in the membranes of microvesicles released by HEK 

293 cells. Sub-lytic [PLY] (2 µg/ml; 174 hemolytic units) induce the release of microvesicles. 
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(A) PLY prepore with an intact membrane underneath the ring structure (arrow). (B) The PLY 

pore depicts a ruptured membrane (arrow); the pore is fused back-to-back to a prepore. (C) 

Top view of an assembled PLY structure. Scale bars = 50 nm. (D) The diameters of PLY-ring 

structures were measured in 22 tomograms. Top views (54), prepore side views (17), pore 

side views (7) and back-to-back structures of prepores (85) and pores (23) do not show 

significant differences in their ring diameters. 

 

The diameters analyzed from the side views of prepores yield sizes in the range of 27.2 to 

36.5 nm (30.0 nm ± 2.1 SD), which is similar to the size of functional pores that exhibit 

diameters of 25.8 - 37.7 nm (31.4 nm ± 4.2 SD) and to the diameters established in top views 

(21.2 - 35.2 nm; 30.0 nm ± 2.7 SD) (Figure 7D). Microvesicles are often fused by a back-to-

back assembly of prepores or pores (Figure 7B), analogous to earlier reports using artificial 

liposomes [29]. 

The detection of PLY in microvesicles does not necessarily denote active toxin removal by 

the cell, since binding and oligomerization of PLY monomers can also occur after the 

microvesicles have been shed. In order to ascertain that the toxin was actively eliminated 

from the plasma membrane of host cells, we pre-incubated annexin A2-mCherry transfected 

cells with EGFP-PLY for 2.5 min which was followed by 45 min incubation in a PLY-free 

buffer and the isolation of microvesicles. FACS analysis revealed a population of PLY-

negative, annexin-positive microvesicles in addition to microvesicles containing both PLY 

and the annexin (Figure 8A). The PLY-positive vesicles presumably originate from the tips of 

the nanotubes depicted in Figure 4 and constitute original sites of PLY-pore assembly 

around which the initial plasmalemmal evagination occurs. The PLY negative vesicles 

presumably originate from the nanotube stalks (Figure 4). Cryo-electron microscopic 

tomograms of microvesicles that were generated in these experiments after the unbound 

toxin had been removed confirms the presence of PLY pores and prepores in the membrane 

of shed microvesicles (Figure 8B). Quantification of the number of PLY oligomeric structures 

on PLY-containing microvesicles revealed an average of 21 structures per µm2, which is 
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similar to the density of SLO-pores on blebs reported in [28], however, in contrast to the latter 

the pore:prepore ratio was estimated at 1:9. 

 

 

Figure 8: PLY structures are actively removed from the plasma membrane of host cells. HEK 

293 cells expressing annexin A2-mCherry were treated with [EGFP-PLY] = 2 µg/ml (100 

hemolytic units). The unbound toxin was removed after 2.5 min and cells were further 

incubated for 45 min.(A) FACS analysis of the released microvesicles revealed the presence 

of microvesicles containing both annexin A2 and PLY (15% ± 7% SD) as well as annexin-

positive, PLY-negative (22% ± 9% SD) and a few annexin-negative, PLY-positive (1% ± 

0.4% SD) microvesicles. N = 3. Data from an individual experiment with 90% transfection 

efficiency are shown. (B) Cryo-electron tomograms illustrate the presence of PLY prepores 

(right side) and pores (left side) in the membranes of the microvesicles. N= 5. Scale bar = 

50 nm 
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3.4. PLY-induced microvesicles carry a complex protein cargo 

In order to identify proteins that were specifically enriched in the PLY-released microvesicles 

and, therefore might play a role in plasmalemmal repair, we compared the protein 

composition of the microvesicles with that of the total cellular membrane preparations, which 

contained components originating from both the plasma membrane as well as from the 

intracellular membranes. The latter preparation was selected as a reference since 

microvesicles are expected to originate from plasmalemmal folds that are devoid of cytosolic 

components and also the intracellular membranes (e.g. lysosomes [26]) are expected to play 

a role in the process of plasmalemmal repair. Analysis of the total protein concentration 

revealed that 8% ± 4% SD (N = 6) of total membrane protein mass was emitted as 

microvesicular protein cargo at sub-lytic [PLY]. Western blot analyses of individual proteins 

demonstrated that 5% ± 5% SD (N = 4) of membrane-associated Hsp90 was expelled with 

microvesicles, which is comparable to the amount of total protein released with microvesicles 

and, thus suggests its random and equal distribution on the plasmalemma and on the 

released microvesicles (Supplementary Figure 8). However, 33% ± 22% SD (N = 6) of 

membrane-associated annexin A6 (~4-fold enrichment compared to the released total protein 

mass (~8%)) and 22% ± 20% SD (N = 5) of membrane-associated annexin A2 (~2-3-fold 

enrichment) were detected in the microvesicular fraction, which is indicative of their specific 

accumulation within microvesicles (Supplementary Figure 8). 

Mass spectrometric analysis of the protein composition of PLY-released microvesicles and of 

purified total membranes (3 independent experiments) yielded 1073 proteins in the 

microvesicle fraction compared to 1036 in the total membrane isolate. This is a very sensitive 

method, therefore it is only to be expected that many of these proteins are contaminants. 

These could originate from the cytosol and the intracellular compartments of cells that were 

lysed by PLY or during experimental handling or might belong to the content of broken (and 

vesiculated) cellular protrusions depicted in Supplementary Figure 7. In total, 190 proteins 

were enriched in the microvesicle fraction compared to the fraction of total cellular 
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membranes in all 3 experiments (Supplementary File 2). We are aware that the total 

membrane fraction or any other isolate are not a precise match for the microvesicles and 

therefore do not consider enrichment per se as a well-defined indicator of a selective 

presence of a particular protein within the microvesicle fraction. Hence we applied a more 

stringent criterion of at least 4-fold enrichment in all 3 experiments, which yielded 38 proteins 

(Table 2). Prominent members of these were annexins A6, A7 and A11 together with several 

other Ca2+-sensing proteins, actin-binding proteins, components of the ESCRT-I complex 

and proteins that are involved in the intracellular vesicle trafficking (Table 2). 

 

Table 2: Mass spectrometric analysis of isolated microvesicles. Proteins with an at least four-

fold increased PMSS index in microvesicles compared to total membrane isolates in all 

individual experiments are listed (HEK 293 cells; N = 3). 

Pneumolysin 
Ca

2+
-dependent or Ca

2+
-regulated: 

Annexin A6  
Annexin A7  
Annexin A11  
Calcyclin-binding protein 
Calpain-1 catalytic subunit 
Nucleobindin-1 
Peflin 
Tumor protein D52 
Actin-binding: 
 Calponin-3 
Plastin-2 
Plastin-3 
Transgelin-2 
Unconventional myosin-Ic 
Vesicular trafficking/ESCRT-components: 
ADP-ribosylation factor-like protein 1 
Flotillin-2 
GTP-binding protein SAR1a 
Programmed cell death 6-interacting protein 
Syntenin-1  
Tumor susceptibility gene 101 protein 
Unconventional myosin-Ic 
Unconventional myosin-Id 
Ubiquitin fusion degradation protein 1 homolog 
Vacuolar protein sorting-associated protein 28 homolog 
Heat shock protein-/chaperone-associated: 
DnaJ homolog subfamily B member 1 
DnaJ homolog subfamily A member 2 
DnaJ homolog subfamily C member 7 
Prefoldin subunit 5 
Stress-induced-phosphoprotein 1 
Enzymes: 
Casein kinase II subunit alpha' 
Malate dehydrogenase, mitochondrial  
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Peroxiredoxin-2 
Pyruvate kinase isozymes M1/M2 
Thioredoxin-dependent peroxide reductase, mitochondrial 
Tetraspanin-/Immunoglobulin super family-associated: 
CD9 antigen  
Immunoglobulin superfamily member 8 
Junctional adhesion molecule A 
Prostaglandin F2 receptor negative regulator 
RNA-associated: 
Eukaryotic translation initiation factor 4 gamma 2 
Eukaryotic translation initiation factor 5A-1 
Far upstream element-binding protein 1 
Far upstream element-binding protein 2 
Others: 
Integrin alpha-5 light chain 
Monocarboxylate transporter 1 
Suppressor of G2 allele of SKP1 homolog 
Synapse-associated protein 1 

 

 

4. Discussion 

4.1. Repair of plasmalemmal toxin pores is critical for the cellular response to early 

pneumococcal invasion 

Pneumolysin (PLY) is the most prevalent virulence factor of Streptococcus pneumoniae. Its 

assembly into large transmembrane pores leads to perforation of the plasmalemma of the 

host cells, which might result in immediate lysis. Our data suggest that during pneumococcal 

infection PLY is released in amounts that are sufficient to permeabilize host cells. In general, 

cells are capable of repairing the PLY-induced plasmalemmal lesions. Their ability to 

withstand low amounts of PLY is crucial for the course of infection since “non-lytic” [PLY] 

trigger the release of pro-inflammatory cytokines and the recruitment of immune cells [30-32]. 

Our data suggest that PLY-induced activation of cellular signaling can occur even without a 

specific receptor and it appears to be a result of successful repair of the PLY-perforated 

plasmalemma since the effective plasmalemmal repair in perforated cells is accompanied by 

transient elevation in [Ca2+]i [9, 13, 18, 21, 33], which is a major second messenger. On the 

other hand, dysregulation of cellular homeostasis occurring as a result of transient, pore-

induced entry of calcium ions might be responsible for the long-term damaging toxin action 

since high [Ca2+]i is a potent activator of apoptosis. 
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4.2. Microvesicle release is the membrane repair strategy of choice 

The fact that several, seemingly mutually excluding mechanisms have been advocated for 

plasmalemmal repair of toxin-perforated cells, rev. by [7, 25, 34, 35] points to its critical 

importance for cellular survival. It is likely that the repair strategy of choice depends as much 

on the nature and the extent of the damage, as on the metabolic status of damaged cells and 

even on their geometry [13]. 

In either case, toxin-perforation leads to Ca2+-influx and subsequently to the mobilization of 

the Ca2+-dependent plasma membrane repair machinery [25] which attempts to immediately 

neutralize the injury in order to prevent noxious Ca2+-flooding and to restore plasma 

membrane integrity [9, 18, 21, 33]. We have shown that after perforation, Ca2+-dependent 

members of the annexin protein family are recruited to the plasma membrane [9, 18, 21, 36] 

resealing the sites of excessive Ca2+-influx and allowing the cell to quarantine the damaged 

membrane regions [13, 18, 21, 33]. The annexin-driven plugging of the initial toxin-induced 

plasmalemmal perforations is crucial: plasmalemmal repair is severely compromised in cells 

in which expression of either annexin A1 or annexin A6 was down-regulated [21, 33]. There 

is also sufficient evidence that the plasmalemmal repair mechanisms described here in 

molecular detail are not restricted to the toxin-induced perforations [37] and are also 

operative in vivo [25]. In particular annexin A1 has been implicated in epithelial repair of 

inflamed stomach and colon [38, 39], while annexin A5 is upregulated in neurons and glia in 

rats after experimental spinal cord trauma [40]. 

The plugged toxin pores are removed by shedding of the affected regions into the 

extracellular milieu in the form of microvesicles/ectosomes [13, 18, 21]. Ectosomal, 

microvesicular structures are credited with clinical importance since they do not only act as 

biomarkers but are also implicated in short and long distance intercellular communication 

[41-43]. An alternative route for the removal of toxin pores is represented by intracellular 

uptake, following pore-induced fusion of lysosomes with the damaged plasmalemma, as has 

previously been shown for the elimination of SLO pores [26]. 
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Here we show that microvesicular release is associated with the formation of thin nanotubes 

that originate on the plasmalemma of cells treated with S. pneumoniae and that appear to 

break down by releasing microvesicular material into the extracellular milieu. Released 

microvesicles were relatively small (median = 163 nm) with more than 90% of them being 

smaller than 500 nm. Larger PLY-containing vesicles observed in this study or SLO-

containing blebs that were reported earlier [28] might be a sub-product of nanotube-induced 

microvesicle shedding; otherwise they might originate from the heavily damaged cells [13]. 

It is conceivable that the release of microvesicles occurs spontaneously since nanotubes that 

sprout from toxin-attacked cells are so thin that they might break off passively, either by 

Brownian motion or by shear stress. Toxin-induced blebbing in chemically fixed cells [28] has 

previously been taken as evidence for spontaneous plasmalemmal resealing which is driven 

by rearrangement of the plasmalemmal lipid-bilayer. We have addressed the possibility of 

passive microvesicle shedding, exclusively driven by the physical action of the toxin on the 

membrane rather than by the active contribution of cellular proteins [28] but we were unable 

to affirm the presence of this particular mechanism. 

On the other hand, active modes of microvesicle formation cannot be excluded. Annexins 

possess membrane fusogenic activity, and thus might be responsible for microvesicle 

release [25, 44], or else the shedding of toxin-perforated membrane sites is mediated by 

components of the ESCRT-III complex (Chmp4B, Vps4; [15]). A Ca2+-dependent 

accumulation of components of the ESCRT-III complex has previously been shown to be 

followed by outward budding and scission of the damaged sites in plasmalemmal repair of 

laser- and toxin induced cellular injuries [15]. This study [15] did not find evidence for a 

contribution of annexin A1 in membrane repair, which might indicate that the injury model 

described by Jimenez et al. (2014) [15] did not induce sufficient Ca2+-influx for the 

recruitment of annexin A1 to the perforated plasmalemmal sites (20 µM is required for 

annexin A1) [9]. However, the presence of more sensitive annexins such as A2, A6 or A11 

was not investigated and thus cannot be excluded. Although we failed to observe an 

association of Chmp4B with the plasmalemma of PLY-perforated cells, we found that the 
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ESCRT-I components Tsg101 and Vps28 were highly enriched in the preparations of purified 

shed microvesicles. 

 

4.3. PLY pores within released microvesicles structurally resemble those in artificial 

membranes 

PLY prepore and pore structures in artificial liposomes are well characterized by cryo-

electron microscopy [29]. In addition, the packing of monomers in the prepore complex has 

been described by crystallography [45]. The plasma membrane of living cells differs from 

artificial liposomes as regards lipid composition, the presence of an extracellular matrix, 

peripheral and integral membrane proteins and, importantly, by its ability to actively react to a 

toxin-attack. Yet, the diameters of toxin pores in sample preparations of PLY-containing 

microvesicles are only slightly different than the ones that have been described in artificial 

liposome membranes [29]. 

 

4.4. Microvesicles are selectively enriched in proteins instigating membrane repair and 

vesicular trafficking 

The mass spectrometric analysis of the PLY-induced microvesicle isolate yields a complex 

protein cargo with annexins among the most prevalent proteins, further supporting their 

active role in plasmalemmal repair. We found that other Ca2+-regulated proteins, such as 

peflin and the calpain 1 catalytic subunit are highly enriched in microvesicles. The 

enrichment in the microvesicular fraction of several actin-binding proteins (transgelin 2, 

myosin Ic) is in line with the contribution of the actin cortex in plasmalemmal resealing [13, 

33, 34]. The apoptosis-linked gene 2 (ALG-2) and ALIX (ALG-2 interacting protein X) have 

been described to direct ESCRT-III proteins to the perforated sites in a Ca2+-dependent 

manner [15]. It is interesting to note that ALG-2 has been reported to interact with N-terminal 

Pro-rich regions of annexin A7 and A11 [46, 47], suggestive of a potential link between the 

annexin family and the ESCRT complex. Interestingly, cryo-electron tomography showed that 

high density material was frequently locally concentrated within microvesicles under PLY 
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structures. In all likelihood, this material corresponds to the proteins detected by mass 

spectrometry. In particular, the accumulation of the annexins directly at the damaged sites of 

plasmalemma ([9, 21]; Figure 2) is well documented and the formation of two-dimensional 

annexin A5 arrays at the sites of plasmalemmal injury has been recently reported [37]. 

 

5. Conclusions 

S. pneumoniae releases sufficient PLY for toxin-induced plasmalemmal perforation in host 

cells, however, at least in the initial stages of infection, repair mechanisms are highly 

effective. Therefore, an immediate and straightforward cell lysis, which is frequently reported 

in the literature as a result of treatment with purified and artificially concentrated toxins, 

appears to be an unlikely event in vivo. Our data suggest that it is rather the dysregulation of 

cellular homeostasis occurring as a result of transient, pore-induced entry of second-

messenger calcium ions that should be held responsible for the damaging toxin action. We 

present evidence that active microvesicle shedding is the predominant mechanism of toxin 

removal and that PLY is not internalized or shed in a passive process. Detailing the structure 

of PLY-oligomers on biological membranes, we demonstrate that prepores and functional 

pores are likewise removed. The protein composition of the toxin-induced vesicles is 

suggestive of a Ca2+-triggered mechanisms involving the annexin protein family and 

members of the ESCRT complex. 
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Highlights 

S. pneumoniae releases sufficient PLY to perforate host cells. 

PLY-induced plasmalemmal perforations are efficiently repaired. 

Microvesicle shedding is the predominant mechanism of PLY-pore elimination.  

PLY prepores are likewise removed.  

Shed microvesicles are enriched in annexins and ESCRT proteins. 


