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ABSTRACT 

Dissolved organic matter (DOM) quality and quantity is not measured routinely in-situ 

limiting our ability to quantify DOM process dynamics. This is problematic given legislative 

obligations to determine event based variability, however, recent advances in field deployable 

optical sensing technology provide the opportunity to address this problem. In this paper we 

outline a new approach for in-situ quantification of DOM quantity (Dissolved Organic 

Carbon: DOC) and a component of quality (Biochemical Oxygen Demand: BOD) using a 

multi-wavelength, through-flow fluorescence sensor. The sensor measured tryptophan-like 

(Peak T) and humic-like (Peak C) fluorescence, alongside water temperature and turbidity. 

Laboratory derived coefficients were developed to compensate for thermal quenching and 

turbidity interference (i.e. light attenuation and scattering). Field tests were undertaken on an 

urban river with ageing wastewater and stormwater infrastructure (Bourn Brook; 

Birmingham, UK). Sensor output was validated against laboratory determinations of DOC 

and BOD collected by discrete grab sampling during baseflow and stormflow conditions. 

Data driven regression models were then compared to laboratory correction methods. A 

combination of temperature and turbidity compensated Peak T and Peak C was found to be a 

good predictor of DOC concentration (R2 = 0.92). Conversely, using temperature and 

turbidity correction coefficients provided low predictive power for BOD (R2 = 0.46 and R2 = 

0.51, for Peak C and T respectively). For this study system, turbidity appeared to be a 

reasonable proxy for BOD, R2 = 0.86. However, a linear mixed effect model with 

temperature compensated Peak T and turbidity provided a robust BOD prediction (R2 = 0.95). 

These findings indicate that with careful initial calibration, multi-wavelength fluorescence, 

coupled with turbidity and temperature provides a feasible proxy for continuous, in-situ 

measurement of DOC concentration and BOD. This approach represents a cost effective 

monitoring solution, particularly when compared to UV- absorbance sensors and DOC 

analysers, and could be readily adopted for research and industrial applications.  

Keywords: Water quality, optical sensors, in-situ monitoring, urban river systems.  



 

INTRODUCTION 

Recent advances in field deployable instrument technology have enabled an increase in the 

scope and resolution of water quality monitoring in freshwater systems (Wade et al., 2012; 

Strohmeier et al., 2013; Outram et al., 2014; Bieroza and Heathwaite, 2015). In particular, 

fine scale resolution data (sub daily - sub hourly) demonstrates that conventional sampling 

regimes, which are often used by environmental regulators and researchers (i.e. weekly time 

step and reliant on grab samples), fail to represent adequately catchment water quality 

dynamics (Cassidy and Jordan, 2011). This is particularly pronounced in systems with 

parameters that display marked diurnal periodicity (Halliday et al., 2015). This deficiency of 

conventional sampling campaigns has significant implications for our understanding of water 

quality process dynamics. Moreover, it highlights the need for better informed sampling 

strategies for regulatory monitoring purposes (Halliday et al., 2015).  

To date, most high resolution, in-situ water quality monitoring studies have focused on rural 

river catchments (Outram et al., 2014). The study of urban river systems using field 

deployable sensors or analyzers has been relatively neglected, despite their prevalence and 

the significant water quality problems associated with urban rivers (Viviano et al., 2014; 

Halliday et al., 2015). Here, organic pollution (point source and diffuse) is a key concern and 

labile dissolved and particulate organic matter (OM) is supplied to the channel from 

numerous sources and pathways leading to increased microbial loading (Ouattara et al., 

2014), eutrophication and depletion of dissolved oxygen (Halliday et al., 2015). Dissolved 

Organic Carbon (DOC) concentration is widely used as an indication of the dissolved fraction 

(DOM) and provides an indication of quantity but no information on quality, such as lability 

(Fellman et al., 2008). Biochemical Oxygen Demand (BOD), a laboratory measurement of 

the oxygen required for aerobic oxidation of labile carbon in a water sample, is widely used 

as an indicator of both particulate and dissolved organic pollution (Jouanneau et al., 2014). 

Many governments and large industries have monitoring obligations with thresholds and 

environmental permits often set based on oxygen requirements for fish survivorship (Collins 

and Voulvoulis, 2014).  

In lowland rivers a large proportion of BOD is thought to be particulate (Sullivan et al., 2010) 

and associated with degraded phytoplankton cells (Volkmar and Dahlgren, 2006). In urban 

rivers generally, BOD is highly variable and largely driven by storm water dynamics (Lee 



and Bang, 2000) and associated particulate transport (sediment/biofilm associated organic 

material and microbes) from impervious surfaces, storm drains and deposited sediments 

(Sakrabani et al., 2009; Kim and Sansalone, 2010). Given the diversity of OM sources within 

urban catchments (Goldman et al 2012; McElmurry et al., 2014) robust in-situ or real-time 

monitoring methods are required to improve: (i) process understanding (e.g. climate – source 

– pathway); (ii) legislative monitoring capacity; and (iii) assessment of river restoration 

initiatives (Khamis et al., 2015).  

Recent advances in optical techniques offer a promising solution with the potential to monitor 

DOC and BOD concentrations in-situ. For example, absorbance in the UV or visible 

spectrum (e.g. at 254nm), has been widely used as a DOC surrogate (Peacock et al., 2014) 

and field deployable sensors that measure the UV spectrum (i.e. 200 - 500nm) have yielded 

good relationships between field and laboratory data (Sandford et al., 2010; Strohmeier et al., 

2013; Jones et al., 2014). However, these sensors are expensive and this has hitherto limited 

the development of multi-node networks for high resolution spatial monitoring of DOC 

concentration. In-situ UV fluorescence sensors measuring humic- like fluorescence (Peak C; 

λexcitation. = 365 nm λemission = 470 nm), also referred to as fluorescent organic matter (FDOM), 

generally have a lower unit cost than UV absorbance sensors and their signal output appears 

to correlate strongly with DOC concentration once turbidity and temperature interference are 

corrected (Saraceno et al., 2009; Downing et al., 2012).Yet to-date, application of this 

technology has been limited to rural catchments and urban river systems appear to have been 

largely neglected with a distinct bias towards North American systems (Pellerin et al., 2011; 

Downing et al., 2012; Carpenter et al.,  2013; Etheridge et al., 2014). 

 

To-date few studies have explored in-situ BOD measurement using optical surrogates, 

although laboratory based studies have highlighted the potential for absorbance (Comber et 

al., 1996) and fluorescence based surrogates of BOD (Hudson et al., 2008; Yang et al., 2014). 

Xu and Xu (2015) outlined the suitability of in-situ fluorometery (Chlorophyll a, λexcitation = 

460, λemission = 685) to monitor BOD in a eutrophic lake system, although they measured the 

response to elevated labile OM (i.e. phytoplankton abundance) rather than determining the 

labile OM concentration directly. Tryptophan- like fluorescence (Peak T, λexcitation = 280 nm, 

λemission = 350 nm) is correlated strongly with reactive OM, and is thought to represent a 

mixture of dissolved proteinaceous material and polyphenolic compounds (Yamashita and 



Tanoue, 2003; Beggs and Summers 2011; Aiken, 2014). In the laboratory Peak T has been 

correlated with BOD (Hudson et al., 2008) and microbial abundance (Cumberland et al., 

2012). However, as mentioned above, most BOD is in the particulate fraction and thus some 

of the challenges associated with fluorescence based DOC monitoring (e.g. turbidity 

interference and temperature quenching) are difficult to overcome. Turbidity correction in 

particular poses a particular problem as filtering will remove the particulate fraction 

(Saraceno et al., 2009) and laboratory derived correction factors (e.g. Downing et al., 2012; 

Khamis et al., 2015) are only suitable for quantification of the dissolved fraction. Hence, field 

based calibrations may be necessary to construct robust, data driven regression models to 

estimate BOD from multiple in-situ optical sensors.  

A multi-wavelength fluorescence sensor platform (Peak C and Peak T) has the potential to 

address some of the research gaps outlined above, and yield high resolution information on 

DOM quantity (DOC concentration) and OM quality (BOD concentration). The aim of this 

study was to validate and refine a new cost effective monitoring system offering continuous 

quantification of BOD and DOC concentration using multi-wavelength fluorescence 

measurements, alongside turbidity and temperature to correct for confounding environmental 

interferences (Downing et al., 2012; Khamis et al., 2015). In undertaking this study, we also 

sought to address the specific challenges of monitoring DOM in urban river systems, 

particularly the accurate quantification of stormflow organic loads. We hypothesised that a 

combination of measurements, Turbidity, Peak T and C, would provide a better estimation of 

BOD and DOC concentration that single parameters. More specifically we sought to test the 

suitability of laboratory derived compensation coefficients in an urban systems with a 

responsive hydrology.  

 

METHODS 

Sensor characteristics, calibration and compensation 

A GGUN - FL30 fluorometer (Albillia Co, Neuchatel, Switzerland) was used in the field 

trial. The sensor was initially designed for tracer tests (Lemke et al., 2013), but was modified 

to monitor DOM (Peak T and Peak C; see Fig. 1 and Table 1) and turbidity. Briefly, the 

sensor comprises a pyrex flow cell housed in a stainless steel case (d = 0.16 m; h = 0.17 m) 

with optical components installed along two orthogonal axes (Fig. 1a). The instrumentation 



components include: (i) an excitation branch (LED, filter and condenser lens) and, 

perpendicular to this, (ii) a detection branch (lens, filter and photodiode). The LEDs, filters 

and photodiodes were selected to match the spectral properties of the DOM peak of interest 

(Fig 1b). For Peak T the selected excitation wavelength (285 nm) differed from the 

commonly reported maximal excitation for Peak T (270-280 nm; Fellman et al., 2010) this 

was due to: (i) previous research on urban river systems highlighting the importance (in urban 

rivers) of the peak at 282 ± 3nm (Baker, 2005); (ii) high current draw, low optical output and 

decreased lifetime of lower UV LEDs, and; (iii) comparability with other in-situ Peak T 

fluorometers (i.e. Turner Cyclops 7). The sensor has an integrated thermistor (sensitivity = 

0.01 °C) attached to the inside of the pyrex tube to monitor sample temperature, and enable 

quantification (and correction) of the thermal quenching of the fluorescence signal (Baker, 

2005; Watras et al., 2011). A small peristaltic pump (Model 810, Williamson Pumps Ltd, 

Poynings, UK) was attached to the sensor with silicon tubing to facilitate sample collection. 

Sensor calibration was undertaken in a temperature controlled laboratory (20 °C), pre and 

post deployment, to assess drift due to electronics/optics. For each of the three optical 

parameters a 6 point dilution series was created (0 – 1000 ppb for Peak T and C; and 0 -1000 

FNU for turbidity): (i) Peak C (quinine sulphate dehydrate dissolved in 0.05 M H2 SO4); (ii) 

Peak T (L- tryptophan dissolved in ultra-pure water; Milli-Q, 18.2 MΩ-1), and; (iii) turbidity 

(using a suspension of formazine). For each measurement concentration, the sensor was 

allowed 1 min to stabilize before logging 10 readings every 10 s. Detection limits, precision, 

accuracy and linear range were determined following Pellerin et al., (2013). However, for 

clarity and comparability with other published work (Baker, 2004; Watras et al., 2011) the 

voltage output (mv) of the sensor, referred to as relative fluorescence units (RFU) herein, is 

reported for Peaks T and C. 

 

Temperature quenching was tested in the laboratory using water collected from the study site 

(see Fig. 1). River water from the study site (DOC = 3.7 ± 0.2 mg L-1) was mixed with ultra-

pure water to create a 4 point dilution series (1, 0.75, 0.5, 0.25). Solutions were kept in a 

temperature controlled dark room (5 °C) for 24 h before experiments were undertaken. For 

each concentration 1 L was placed in a 2 L glass beaker and transferred to a MLR-352, 294L 

programmable incubator (Sanyo, Osaka, Japan). The sensor and pump system were placed in 

the incubator and warmed (5 – 20 °C) over a period of 6 h (mean rate of change = 2.5 °C h-1) 

logging readings at 3 min resolution (CR 1000; Campbell Scientific). A linear correction 



model (similar to that commonly used to correct EC data) was applied to provide peak T and 

C fluorescence intensity standardised to 20 °C (see Khamis et al., 2015). Briefly, Ordinary 

Least Squares (OLS) regression was applied to the data and ρ, the temperature compensation 

factor, was calculated as the ratio of the slope to the intercept at 20°C (slope/intercept20°C). 

Data were then corrected using: 

 

𝐹𝑟𝑒𝑓 =
𝐹𝑚𝑒𝑠

1 + 𝜌(𝑇𝑚𝑒𝑠 −𝑇𝑟𝑒𝑓)
 (1) 

 

where F is the fluorescence signal (i.e. Peak T or Peak C), T is temperature (°C) and 

subscripts mes and ref represent the measured and reference values respectively. Following 

previous studies a reference temperature of 20°C was chosen, thus Tref = 20°C and Fref 

represents the fluorescence signal at 20°C. Herein temperature corrected fluorescence will be 

denoted with a subscripted 20 (e.g. Peak T20).  

 

To assess the effect of turbidity on the sensor readings three sediment types were used: (i) 

clay/fine silt (D50 = 11.9 µm); (b) coarse silt (D50 = 52.1 µm) and (c) river sediment from the 

study site (fine sand; D50 = 82.1 µm). Following Khamis et al. (2015) all sediments were 

treated with 30% hydrogen peroxide (H2O2) to remove organic material and were thoroughly 

rinsed in ultra-pure water. River water samples (1 L) were then transferred to a 2 L glass 

beaker and constantly stirred on a magnetic stir plate. Weighed sediment was added 

incrementally to give a range of turbidity comparable to that likely to be observed in the field 

(i.e. 0 – 500 FNU) and a range in which correction algorithms are still robust (i.e. before an 

asymptote is reached). For each increment water was pumped through the sensor and 10 

readings were taken. Sensor readings were then corrected based on the sediment regression 

model for the study site following methods outlined by Downing et al. (2012). 

 

Site description 

The sensor was deployed on the Bourn Brook, a tributary of the River Rea, Birmingham, UK 

(52°27’N, 1°54’W; Fig. 2 a&b). Monitoring was conducted during spring 2015 (27th March -

8th June 2015). A detailed description of the basin is provided by Carstea et al. (2009): 

briefly, the catchment is 27.9 km2 and urban or suburban land use extends over ~80% of the 

basin (Morton et al., 2011; Fig 2c). There are no wastewater treatment works within the 

catchment; but an extensive, ageing (>100 years) network of storm sewers and combined 



sewer overflows discharge to the main channel. Hence, the system is particularly dynamic 

(‘flashy’) in terms of both river flow and DOM fluxes (Carstea et al., 2010). Catchment 

elevation ranges from 116 m, at the catchment outlet, to 234 m in the headwaters where there 

is a limited area of woodland (< 10 % of total catchment area) (Fig 2c). At the monitoring 

location the stream is 3.1± 0.2 m wide and at base flow has a mean depth of 0.18 ± 0.08 m.  

Field monitoring and sampling 

The FL30 fluorometer was deployed on the river bank to facilitate maintenance and avoid 

instrument damage. Water was abstracted from the stream using a peristaltic pump (Model 

810, Williamson Pumps Ltd, Poynings, UK) and passed through an inlet strainer (250 µm 

mesh screen) located ~0.05 m above the stream bed, before flowing through 3 m of silicon 

tubing (6 mm ID) and the FL30 flow cell before being returned to the river. The pump was 

controlled using a CR 1000 data logger (Campbell Scientific, Logan, USA) and relay switch. 

A 5V pulse activated the pump for 3 mins. every hour, to flush the system with sample water. 

At hourly intervals 5 readings of all parameters were taken at 10 s intervals and their mean 

logged. An integrated water temperature/electrical conductivity probe and a vented pressure 

transducer (see Table 1 for specifications) were located in the channel and measurements 

logged at 3 min. intervals. A stage – discharge relationship (R2 = 0.98, data not shown) was 

created using the velocity-area method (Herschy, 1985).  

Given the sensor design, it was not feasible to include an automated cleaning function using 

compressed air or a mechanical wiper. Thus, the pyrex measurement chamber was cleaned 

manually at weekly intervals with ultrapure water and a soft brush. Step changes in 

fluorescence output were observed post cleaning for Peak C (mean ± SD; -15.2 ± 2.1 %) and 

Peak T (-17.4 ± 2.7 %) and logged data were subsequently corrected using a linear regression 

model assuming a consistent rate across all timesteps (Conmy et al., 2014). Further, to inhibit 

biofilm development in the pump tubing, the FL30 system was flushed with 10% 

hydrochloric acid (HCl) and ultrapure water every two weeks. 

On four occasions when high flow conditions were anticipated, 1 L river water samples were 

collected at 1 h intervals. The aim was to capture pre-event baseflow, rising limb, peak flow 

and falling limb conditions for each event. All samples were collected using a refrigerated, 

automatic pump sampler (Avalanche, ISCO, Lincoln, USA), retained in acid washed bottles 

and returned to the Water Sciences laboratory at the University of Birmingham for analysis 

within 12 h of collection. 



A further spatial sampling sweep was conducted to collect samples from locations 

representative of potential watersources within the catchment. Bulk samples were collected 

from 4 sites: (i) the Bourn Brook (3.58 mg L-1, 5.2 FNU); (ii) the Worcester and Birmingham 

canal (4.02 mg L-1, 15.3 FNU); (iii) a storm drain in the Bourn Brook catchment (7.28 mg L-

1, 10.6 FNU), and; (iv) the settled sewage tank at a local sewage treatment works 

(Bromsgrove, Worcestershire, UK) (18.13 mg L-1, 175.4 FNU). Samples were diluted with 

ultrapure water to create a dilution series representing sample volumes (100%, 75%, 50%, 

25%, 12.5%) and measurements made with the FL30. A further suite of laboratory analysis 

was undertaken on each sample as detailed below.  

 

Analytical procedure and data processing 

In the laboratory 0.25 L of each sample was filtered through Whatman GF/G filter papers 

(pore size 1.2 µm) that had been pre-rinsed in HCI and ultrapure water. The pore size was 

chosen following Baker et al., (2007) as a trade-off between optical clarity (removal of the 

high sediment loads associated with storm event samples) and obtaining a sample that could 

be compared to the BOD measurement. Prior to analysis, all samples (filtered 0.25 L and 

unfiltered 0.75 L) were raised to 20 °C in a water bath. BOD analysis was then conducted on 

the unfiltered water sample following ISO 5815-1:2003 (ISO 5815-1:2003, 2003). For the 

filtered component, DOC was determined using a Shimadzu TOC-V CSH total organic 

carbon analyzer (Kyoto, Japan). For each sample, replicate DOC readings (n = 3-5) were 

undertaken and ≤ 2% coefficient of variation was observed. UV – Visible absorbance spectra 

(200 – 850nm; cuvette path length 10 mm) were collected using a Jenway 6800 dual beam 

spectrophotometer (Stone, UK). Measurements were completed using a quartz cuvette that 

had been triple rinsed with sample water prior to the analysis. 

 

Laboratory fluorescence measurements were undertaken using a Cary Eclipse  

Spectrofluorometer (Varian Inc., Palto Alto, USA) with instrument settings outlined in Khamis 

et al. (2015). Following Lawaetz and Stedmon (2008), a Raman blank was measured at the 

start of each instrument run and used to calibrate fluorescence intensity. Excitation Emiss ion 

Matrices (EEMs) were determined for each sample (plus an ultrapure water blank) over the 

excitation range of 200 - 400 nm (5 nm slit width) and emission range of 280 – 500 nm (2 nm 

slit width). Samples with high OM concentrations (absorbance 254nm > 0.3 AU) were diluted 



with ultrapure water before analysis. EEMs were pre-processed in Matlab (version 2011a) 

using the drEEM toolbox, following Murphy et al. (2013). A user-developed peak picking 

algorithm was used to extract Peak T (Ex: 285 nm and Em: 345 nm) and Peak C (Ex: 365 nm 

and Em: 490 nm) intensity, a further algorithm was used to identify the maximal location of 

peak T and C.  

 

Statistical analysis 

Linear mixed effect models (LMMs) were employed to investigate relationships between in-

situ measurements and response variables of interest (i.e. laboratory measurements of BOD 

and DOC). All models consisted of a fixed component comprising the predictor variables; 

Peak C, Peak T, Peak C20 and Peak T20, turbidity corrected Peak C20 and Peak T20 and 

turbidity. Storm event was included as a random component to control for the nested 

sampling structure (i.e. sample within event) and both the slope and intercept could vary 

between events. Model residuals were inspected and temporal auto-correlation was identified. 

Hence, an AR1 correlation structure was incorporated in the final model. We conducted the 

same procedure for the dataset with all samples >100 FNU removed to assess the influence of 

high turbidity events on the empirically derived correction factors and data driven regression 

model. All LMMs were ranked by AICc scores (Burnham and Anderson, 2002). R2 values 

were calculated following Nakagawa and Schielzeth (2013) and along with, mean absolute 

error (MAE) and percent bias (% bias), were used to evaluate goodness of fit between 

observed and modelled DOC and BOD (Moriasi et al., 2007). All LMMs were fitted using 

the nlme package in R version 2.15.2 (R Development Core Team, 2012). 

  



 

RESULTS AND DISCUSSION 

Sensor calibration and performance 

Sensor calibration and laboratory testing identified a linear range for Peak T (L-Tryptophan 

standard) and Peak C (quinine sulphate standard) across a 0 – 1000 ppb concentration range 

(Table 1; Supplementary material Fig. S1). This is comparable to other commercially 

available sensors (Downing et al., 2012; Khamis et al., 2015) and the range is suitable for 

monitoring a wide range of natural waters and some engineered systems (e.g. treated 

effluents and combined sewage overflows). For Peak C the accuracy of calibrated readings 

was higher when considering the range of values observed during the field deployment (0 - 

100 ppb; MAE = 4.42) compared to the full linear range (0 - 1000 ppb; MAE = 9.68). 

Similarly for Peak T, accuracy was greater for the lower range (0 - 100 ppb; MAE = 2.51) 

when compared to the full range (0 - 1000 ppb; MAE = 5.51). The minimum detection limit 

(MDL) was lower for Peak C than Peak T (Table 1) and was comparable to the commercially 

available sensors tested by Downing et al., (2012) and Khamis et al., (2015).  

Temperature correction 

Thermal quenching was pronounced for both Peak T and Peak C fluorescence measured 

using the FL 30 (Fig. 3). The temperature correction algorithm (linear model) was able to 

adequately compensate for thermal quenching (Fig. 3c & d). The calculated temperature 

compensation coefficient (ρ) was higher for Peak T (-0.054) than for Peak C (-0.016). This is 

due to differences in the chemical composition of the fluorophores contributing to Peak T and 

Peak C fluorescence, particularly the prevalence of the indole group in Peak T compounds 

which is sensitive to temperature fluctuations (Chen & Barkley, 1998). When comparing ρ 

values with the literature it is clear that Peak C is comparable with other studies (Table 2). 

However, ρ for Peak T was greater than that reported by Khamis et al. (2015) and Bieroza & 

Heathwaite (2016) (Table 2). This highlights the importance of determining instrument 

specific compensation factors before field deployment, particularly for shorter wavelength 

fluorescence peaks. It is also important to note that the Peak T component was less stable 

during the experiment. This may be due to light scattering that is more pronounced at short 

wavelengths, leading to an increase in stray light 'leaking' through the emission filter 

(Gregory, 2004). 



 

Turbidity effects 

In the laboratory suspended particle concentration, measured as turbidity, had a significant 

effect on the fluorescence signal of the FL30 for both Peak C20 and Peak T20 (Fig. 4). The 

response differed between the two peaks and between the sediment size classes (i.e. clay/fine 

silt, coarse silt and fine sand). Peak C20 displayed a linear reduction in fluorescence signal for 

all sediment types, with OLS slopes ranging from -0.15 to -0.31 for clay/fine silt and fine 

sand respectively (Fig. 4, Table 3). Signal attenuation at 500 FNU ranged from 70 to 95 %, 

for clay/silt and fine sand respectively, and was comparable to that observed by Downing et 

al. (2012) for an open path sensors across a similar turbidity range. The Peak T20 response 

varied between sediment types: (i) for clay/fine silt a distinct negative curve linear response 

with an initial increase followed by a decrease; (ii) for coarse silt a positive curve linear 

response; (iii) for the fine sand (Bourn Brook sediment) a negative linear response was 

observed. For clay/fine silt and fine sand a reduction in the fluorescence signal, -50% at 500 

FNU, was observed but for very coarse silt (glacial outwash sediment) the signal was 

amplified by ~+50%. This highlights the need to calibrate sensor output using sediment 

collected from the field location as particle size, shape and colour exert a strong control on 

scattering/absorption efficiency, influencing the attenuation and amplification of the 

fluorescence signal (Gippel, 1995).  For Peak T the signal amplification is likely due to a 

combination of the scattering angle associated with small particles directing excitation light 

to the emission filter and this stray light leaking through the emission filter Gregory (2005). 

All turbidity corrections reported herein are based on the Bourn Brook regression 

coefficients. 

Spatial samples and dilution  

The DOC (BOD) concentration of samples collected for the dilution tests ranged from 3.7 mg 

L-1 (2.2 mg L-1) to 18.1 mg L-1 (95.2 mg L-1) for the Bourn Brook and the STW respectively. 

When considering all samples and dilutions (n = 22), strong correlations between the FL30 

and laboratory spectrofluorometer were observed for Peak C20 (r = 0.98) and Peak T20 (r = 

0.99). For the Peak T20 – BOD relationship across the dilution series the Bourn Brook, Canal 

and Storm Drain were linear and no significant differences in slope or intercept were 

identified (Fig. 5a; ANOVA; P > 0.05). However, for the STW sample non linearity was 

identified (inspection of linear model residuals) and a 2nd order polynomial fitted the data 



(Fig. 5b). Inner filtering was particularly pronounced above BOD 30 mg L-1, a similar 

threshold was reported by Hudson et al., (2008) for a dilution series of multiple effluent 

samples. Conversely, for the Peak C20 – DOC dilution series, the relationships were linear 

across the dilution series (Fig. 5c); however, significant differences in slope were identified 

(ANOVA; P < 0.05) with STW displaying a steeper gradient. This is likely due to differences 

in wastewater DOM composition, particularly the prevalence of protein-like material relative 

to humic/fulvic like components in wastewater (Carstea et al., 2016) which was highlighted 

in this study by the T/C ratio (Fig. 5f) 

 

Field data 

During the study period mean air temperature was 10.9 ± 3.9 °C (Range = -0.1 – 22.2 °C) and 

precipitation totalled 109.8 mm (max intensity = 7.0 mm h-1). Mean discharge was 0.16 ± 

0.23 m3 s-1 (range = 0.13 – 3.05 m3 s-1). A total of 13 discrete rainfall events were observed, 

and during four of these events discrete grab samples were collected (see Table S1 for event 

summary statistics). Storm flow was associated with a dilution in major ion concentrations 

(i.e. decreased EC), increased particulate load (i.e. increased turbidity) and a dampening of 

the diurnal water temperature cycle (Fig. 6), although FL 30 measurements were unavailable 

for 3 days (03/05/15 – 06/05/15) and hence there are no fluorescence data over this period 

For the in-situ FL30 records, the temperature correction significantly reduced Peak C (9.9 ± 

3.1%) and Peak T (28.8 ± 7.4%) as our reference temperature (20 °C) was greater than that 

observed during spring for the study system. For Peak C20 the turbidity correction led to a 

slight reduction in baseflow readings, however during storm flow conditions when turbidity 

was elevated a significant increase in readings was apparent. For Peak T20 the turbidity 

correction had little influence on baseflow readings but, as with Peak C20, a distinct signal 

increase was apparent during high flow conditions (Fig. 6).  

Distinct diurnal periodicity was apparent for Peak C20 and Peak C20 +TURB during days with no 

precipitation (Fig. S2). Similar patterns were observed by Spencer et al., (2007) for a lowland 

river and Watras et al., (2015) for a dystrophic lake; and in both cases it was suggested that a 

combination of photo-degradation and biological activity were driving the oscillation in the 

Peak C signal. In our study, Peak T broadly tracked the Peak C signal (r = 0.83, P <0.05; Fig. 

6), and as no diurnal pattern was apparent, it seems that the photodegradation of Peak T may 



be less pronounced than Peak C (Moran et al., 2000). However, it is difficult to apportion 

errors associated with implementing the temperature correction procedure. The relationship 

between the two peaks has also been explored using laboratory derived results (Fig. S3) and a 

PARAFAC model showed a strong correlation (r > 0.9) between the protein-like component 

and the Humic UVB component (Khamis unpublished). However, during an extended multi-

peak storm event (Emp; Fig. 6) a distinctly higher Peak C signal relative to Peak T was 

observed during the recession. This suggests the flushing of DOM of increased aromaticity 

and lower protein content as rainfall intensity fell during the recession phase of the event 

(Inamdar et al., 2011). 

  

Discrete sampling during storm events 

Strong relationships between in-situ Peak C20, Peak T20 and laboratory measurements of 

filtered Peak C, Peak T and A254 were observed (Fig. 7). The mean Peak T maxima (ex = 283 

± 6.1 nm; em = 361 ± 1.2 nm) was red shifted in comparison to studies on lowland 

agricultural and woodland catchments (Heinz et al., 2015) while mean Peak C maxima (ex = 

353 ± 5.1 nm; em = 432 ± 4.2 nm) was comparable to that observed by other studies from 

urban river systems (Carstea et al., 2010). In-situ corrected Peak C20+Turb and Peak T20+Turb 

fluorescence were good predictors of DOC (Fig. 8), R2 = 0.90 and R2 = 0.90, respectively. 

Conversely, for BOD, in-situ Peak C20+Turb and Peak T20+Turb were relatively poor predictors 

(Fig. 9), primarily due to extreme outliers in Event C (high precipitation intensity and 

turbidity; Table S1). Notably, BOD was positively correlated with turbidity (R2 = 0.86; Fig. 

9) suggesting a significant particulate matter contribution to BOD, most probably due to the 

break-up of biofilms and re-suspension of sediments from storm sewers and the river channel 

(Volkmar & Dahlgren 2006; Sakrabani et al., 2009). However, the relationship was non-

linear and appears to reach an asymptote at ~ 150 FNU (Fig. 9a). The poor relationship 

between BOD and both Peak T20 and Peak T20+TURB during Event C (high precipitation 

intensity) is of particular interest and is likely due to an increase in either (i) the contribution 

of non-fluorescent OM to BOD; or (ii) the relative contribution of particulate OM to BOD 

(Lusk and Toor, 2016). Hence, in this system for turbidity below100 FNU in-situ 

fluorescence can be used as a reliable BOD surrogate (Table 5) 

The LMMs for DOC and BOD are summarised in Tables 4 and 5 respectively. For DOC 

when all the dataset was used in the LMM the best performing models (ΔAICc < 3.0) 



included turbidity as a predictor with either Peak C, Peak C20 and Peak T20 (Table 4). 

However, models using laboratory derived turbidity correction factors also performed well; 

for example Peak T20+TURB + Peak C20+TURB had a marginally higher MAE (0.09 mg L-1) than 

the best model (Table 4). When the high turbidity data points were removed (> 100 FNU) the 

best model was comprised of Peak T20+TURB and Peak C20+TURB but improvements associated 

with the correction coefficients were relatively small as the MAE of single parameter models 

(Peak C20 + 0.04 mg L-1; Peak C +0.1 mg L-1) were relatively low. These findings suggest 

that empirically derived correction coefficients are suitable for high resolution, continuous 

DOC monitoring in river systems (Downing et al., 2012; Lee et al., 2015) and if low turbidity 

is expected a single wavelength Peak C sensor may be used with minimal loss of accuracy 

(Table 4). For BOD, when considering all data, the best models included turbidity, Peak T20, 

Peak C20 or Peak T (Table 5). Models using laboratory derived turbidity correction factors all 

performed poorly compared to the data driven regression approaches (MAE > +1.2 mg L-1). 

When the high turbidity data was removed the best models still included turbidity as a 

predictor but improvements associated with data driven models were modest compared to 

Peak T20+ TURB (MAE - 0.3 mg L-1). This highlights the need to monitor turbidity alongside 

Peak T20, even in systems where low turbidity is anticipated, as turbidity interferes with 

fluorescence measurements (Khamis et al., 2015) but is also indicates particulate load 

(Lawler et al., 2006). Furthermore, this highlights the need for careful field calibration of 

fluorescence sensors for monitoring BOD that may involve a period of ‘getting to know your 

systems’ with a number of grab samples over a range of hydrological conditions (Sobczak & 

Raymond, 2015).  

CONCLUSIONS 

This paper summarises research to develop and test an innovative multi-wavelength 

fluorescence monitoring system for continuous determinations of BOD and DOC 

concentration in an urban catchment. The flow-through sensor platform has several 

advantages in that it can be located on the bankside facilitating maintenance, and it is less 

expensive than open face, submersible fluorescence sensors. However, it is important to clean 

the flow-through system regularly, and there are power supply constraints given the need for 

a peristaltic pump and hence, this system may not be feasible for use in remote locations. In 

such cases multiple open path sensors, deployed in a multi-parameter sonde or linked to an 

external data logger, could provide comparable output to the FL30 sensor tested here.  



While focusing on a single urban river, this study has highlighted the potential utility of 

multi-wavelength optical sensing as a tool to probe the OM pool. For monitoring DOC 

concentration, temperature and turbidity corrected Peak C represent the most cost effective 

monitoring scenario. A limited improvement in accuracy was achieved with an additional 

wavelength (i.e. Peak T), however, laboratory derived coefficients, should be based on 

sediments and matrix water collected from the study site whenever possible. For in-situ BOD 

monitoring a period of ‘getting to know your system’ is required to build up a field based 

calibration. This is largely due to the need to quantify the relationship between BOD and both 

the particulate (turbidity used as a surrogate) and dissolved (fluorescence used as a surrogate) 

OM fractions. However, where low and relatively stable turbidity is anticipated (i.e. below 

100 FNU) adequately compensated fluorescence measurements can provide a continuous 

indication of BOD. Hence, for accurate monitoring both BOD and DOC concentration a 

sensor platform monitoring Peak T, Peak C, turbidity and temperature is required. 

In-situ fluorescence monitoring represents a cost effective monitoring solution, particularly 

when compared to UV - absorbance sensors and DOC analysers. Moreover, the approach 

outlined in this paper has the potential to help address fundamental research questions on 

urban OM sources, pathways and processing. The sensor also offers the means to increase the 

temporal resolution of both DOC concentration and BOD monitoring. However, future work 

should focus on linking in-situ fluorescence measurements with: (i) analysis of particulate 

and soluble fractions of BOD; and, (ii) compositional analysis of the OM pool. This 

additional information, coupled with longer term monitoring programs, will help to further 

unravel urban storm water dynamics. 
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Table 1. Instrumentation used for in-situ measurements. For the GGNU-FL30 MDL 

minimum detection limit and precision were determined as in Khamis et al., (2015), linear 

range was determined by comparing the slope of regression model for increasing ranges and 

the linear range determined as the point at which the slope was significantly different from 1. 

 

Parameter Instrument Specification 

Water Level PDCR-830 (GE, Fairfield, USA) 

Vented pressure sensor 

Accuracy ± 0.6% of reading 

Electrical 

Conductivity 

CS54A7 (Campbell Scientific, Logan, 

USA) - Potentiometric Electrode  

Accuracy ± 5% of reading 

Temperature CS54A7 – Thermistor Accuracy ± 0.4°C 

Turbidity GGUN - FL30 

660nm - detector 90° scatter 

MDL = 0.8 NTU 

linear range = 0 – 1000 NTU 

Precision across range = 1.9% 

Peak T GGUN - FL30 

Ex 285nm ± 12 nm (FWHM) 

Em 345 ± 25 nm (FWHM) 

MDL = 1.74 ppb  

linear range = 0 – 1000 ppb 

Precision across range = 2.5% 

Peak C GGUN - FL30 

Ex 365nm ± 15 nm (FWHM) 

Em 490 ± 30 nm (FWHM) 

MDL = 1.39 ppb 

linear range = 0 – 1000 ppb 

Precision across range = 0.7% 

 

  



Table 2. Temperature compensation coefficients (ρ) estimated for this study and compared 

with other studies. The reference temperature for all studies was 20°C. NOM*= Suwannee 

NOM (IHSS aquatic reference material); NOM^= Pahokee soil (IHSS aquatic reference 

material );QS = Quinine Sulphate. 

Study Fluorescence peak 
(Sensor) 

Matrix Temperature coefficient 
(mean ± SD) 

This study  C (FL30) River water -0.016 ± 0.0007 

 T (FL 30) River water -0.054 ± 0.008 

Khamis et al. (2015) T (Turner –Cyclops 7) L-Tryptophan -0.039 ± 0.0145 

 T (Chelsea UV Lux) L -Tryptophan  -0.049 ± 0.0134 

Bieroza & Heathwaite (2016) T (Chelsea UV Lux) L -Tryptophan -0.020 ± na 

Downing et al. (2012) C (multiple model) NOM*  ̂& QS  ̂  -0.012 ± 0.004 

Watras et al. (2011) C (Turner –Cyclops 7) Lake water -0.098 ± 0.001 

 C (Sea Point) Lake water -0.016 ± 0.002 

 C (Sea Point) NOM* -0.026 ± 0.003 

Lee et al. (2015) C (Turner –Cyclops 7) River water -0.017 ± 0.004 

 

  



 

Table 3. Regression coefficients for the turbidity correction models. Where a 2nd order 

polynomial model was deemed to have the best fit (lower AIC score than the linear model) 

the coefficient is displayed in the Turbidity2 column. Non-significant parameters are marked 
ns all other parameters are significant at α =0.999. 

Sediment Fluorescence peak Intercept Turbidity Turbidity2 

Clay C20 -1.58 ± 0.45 -0.15 ± 0.001 - 

 T20 0.08 ± 0.87ns 0.12 ± 0.005 -3.81e-4 ± 1.57e-5 

Silt C20 -2.51 ± 0.51 -0.14 ± 0.002 - 

 T20 -4.13 ± 1.0 -0.31 ± 0.01 -4.45e-4 ± 2.70e-5 

Bourn Brook C20 6.1± 1.54 -0.23 ± 0.05 - 

 T20 -7.45 ± 1.22 -0.11 ± 0.02 - 



Table 4. Mixed effect model results testing the relationship between in-situ optical measurements (Peak T, Peak C and turbidity) and laboratory 

DOC determinations. Models are ranked by AICc scores in addition models are benched marked by mean absolute error (MAE) and percent bias 

(% bias). All models are significant at P <0.05 and have a random intercept term of sample time nested in sample event. 

DOC (all data) 
 

DOC ( > 100 FNU removed) 

Model variables R2 AICc ΔAICc MAE 

% 

Bias 

 

Model variables R2 AICc ΔAICc MAE 

% 

Bias 

TURB + Peak C20 0.96 85.3 0 0.56 -0.9  Peak T20+TURB + Peak C20+TURB 0.98 58.2 0 0.37 -0.1 

TURB + Peak T20 + Peak 
C20 

0.96 85.9 0.6 0.57 -0.7  Peak C20+TURB 0.98 61.1 2.9 0.43 -0.6 

TURB + Peak C 0.95 87.5 2.2 0.62 -1.2  TURB + Peak T20 + Peak C20 0.98 63 4.8 0.4 -0.1 

TURB + Peak T + Peak C 0.96 88.9 3.6 0.62 -1  TURB + Peak C20 0.98 64.2 6 0.44 -0.5 

TURB + Peak T20  0.93 98.2 12.9 0.8 -0.4  Peak C20 0.97 68.2 10 0.41 -0.1 

TURB + Peak T  0.93 98.9 13.6 0.77 -0.6  TURB + Peak C 0.97 68.4 10.2 0.52 -0.9 

Peak T20+TURB + Peak 
C20+TURB 

0.92 106.3 21 0.65 -1.1  Peak T20 + Peak C20 0.97 68.9 10.7 0.45 0.1 

Peak C20+TURB 0.90 107.8 22.5 0.73 -1.6  TURB + Peak T + Peak C 0.97 69.3 11.1 0.49 -0.5 

Peak T20+TURB 0.90 108 22.7 0.81 -1  Peak C 0.97 71.2 13 0.47 -0.3 

Peak C 0.86 120.5 35.2 1 -2.1  Peak T + Peak C 0.97 72.3 14.1 0.52 -0.1 

Peak C20 0.86 120.7 35.4 0.93 -2  TURB + Peak T20  0.96 76.1 17.9 0.54 0 

Peak T 0.86 120.8 35.5 1.12 -1.2  Peak T20+TURB 0.96 76.7 18.5 0.74 0.9 

Peak T + Peak C 0.87 120.8 35.5 1.03 -1.6  TURB + Peak T  0.96 79.7 21.5 0.6 -0.2 

Peak T20 + Peak C20 0.87 121.5 36.2 0.99 -1.7  Peak T  0.94 87.5 29.3 0.96 0.9 

Peak T20 0.85 122.8 37.5 1.23 -1.4  Peak T20 0.94 88.1 29.9 1.13 1.9 

TURB 0.55 159.9 74.6 2.79 -9.1  TURB 0.85 111.9 53.7 1.47 -7.6 



Table 5. Mixed effect model results testing the relationship between in-situ optical measurements (Peak T, Peak C and turbidity) and laboratory 

BOD determinations. Models are ranked by AICc scores with R2 ,mean absolute error (MAE), percent bias (% bias) also displayed. All models 

are significant at P <0.05 and have a random intercept term of sample time nested in sample event.  

BOD (all data) 
 

BOD ( > 100 FNU removed) 

Model variables R2 AICc ΔAICc MAE 

% 

Bias 

 

Model variables R2 AICc ΔAICc MAE 

% 

Bias 

TURB + Peak T20  0.95 89.8 0 0.56 0 
 

TURB + Peak T + Peak C 0.96 55.7 0 0.36 -0.2 

TURB + Peak T20 + Peak C20 0.95 91.3 1.5 0.56 0 
 

TURB + Peak T  0.94 59.4 3.7 0.41 0 

TURB + Peak T  0.94 92.3 2.5 0.51 0 
 

TURB + Peak T20  0.94 61.8 6.1 0.43 0.1 

TURB + Peak T + Peak C 0.94 95.3 5.5 0.5 0 
 

TURB + Peak T20 + Peak C20 0.94 62.2 6.5 0.4 0 

TURB + Peak C20 0.93 97.6 7.8 0.6 0 
 

TURB + Peak C 0.91 70.1 14.4 0.49 -0.1 

TURB + Peak C 0.93 98 8.2 0.59 0 
 

TURB + Peak C20 0.91 70.4 14.7 0.49 -0.1 

TURB 0.86 115.7 25.9 1.01 -1.6 
 

TURB 0.88 76.2 20.5 0.62 -1.7 

Peak T20+TURB 0.57 155.8 66 1.85 -1.2 
 

Peak T20+TURB 0.85 81.4 25.7 0.67 1.4 

Peak T20+TURB + Peak C20+TURB 0.60 156.2 66.4 1.93 -0.1 
 

Peak C20+TURB 0.85 81.6 25.9 0.64 0.2 

Peak C20+TURB 0.52 160.2 70.4 1.83 -3.3 
 

Peak T20+TURB + Peak C20+TURB 0.86 82.7 27 0.64 0.6 

Peak T20 0.51 160.9 71.1 1.97 -2.7 
 

Peak T 0.84 84 28.3 0.66 1.3 

Peak T 0.50 161.6 71.8 1.96 -2.4 
 

Peak C 0.83 85.6 29.9 0.66 0.2 

Peak T20 + Peak C20 0.53 161.8 72 2.07 -2 
 

Peak T + Peak C 0.84 86.1 30.4 0.63 0.8 

Peak T + Peak C 0.51 163.5 73.7 2.01 -1.4 
 

Peak T20 0.82 87 31.3 0.69 0.2 

Peak C20 0.46 163.7 73.9 1.95 -4.3 
 

Peak C20 0.81 88.5 32.8 0.77 1.7 

Peak C 0.46 163.9 74.1 1.94 -4.3 
 

Peak T20 + Peak C20 0.82 89.1 33.4 0.7 0.6 

 



Figure 1. (a) FL30 optical setup. (b) The peaks measured by the FL30; Peak C (UVA Humic 

like fluorescence) and Peak T (Tryptophan- like fluorescence) highlighted in the wider EEM. 

The red boxes represent the FMHW of the sensor measurement window. The EEM displayed 

is a sample collected directly downstream of a small sewage treatment works, 

Worcestershire, UK. 

Figure 2. (a) Map of the UK with study region highlighted. (b) Location of study catchment 

(red) in the West Midlands. Urban areas (grey), woodland (green) and the river network 

(blue) are also highlighted (c) land use map for the Bourn Brook catchment with sample 

location and meteorological site highlighted.  

Figure 3. Temperature quenching of Peak C (a) and Peak T (b) for 4 dilutions (1, 0.75, 0.5, 

0.25) of Bourn Brook stream water. Temperature corrected data for Peak C (c) and Peak T (d) 

are displayed. 

Figure 4. Change in the FL30 fluorescence signal (Peak C and T) of Bourn Brook waters in 

response to changing turbidity. (a) Response curves for a clay sediment (D50 = 11.9 µm); (b) 

Response curves for a silt sediment (D50 = 52.1 µm) (c) Response curves for Bourn Brook 

sediment (D50 = 82.1 µm). 

Figure 5. (a) BOD dilution series for samples collected from the Bourn Brook (BBR), 

Birmingham Canal, and a storm drain. No significant differences in slope or intercept were 

identified (ANOVA; P > 0.05); (b) BOD dilution series for a sewage treatment works 

(primary effluent; STW); note that inner filtering was apparent and is particularly pronounced 

at BOD >30 mg L-1 /12.5 (RFU). (c) DOC dilution for all samples; note all were linear across 

the dilution series, however significant differences in slope were identified (ANOVA; P < 

0.05). (d) Sample dilution vs Peak T20 fluorescence. Linear responses observed for all 

samples except STW which suggested inner filtering occurred at > 75%. (e) Sample dilution 

vs Peak C20. (f) Ratio of Peak T/ Peak C for each sample error bars represent 95% CI for the 

dilution series (n = 5). 

Figure 6. In-situ variables recorded at the Bourn Brook test site (08/04/2015-20/06/2015). 

Upper panel displays discharge, precipitation and water temperature (Tw), the middle panels 

display Peak T and Peak C respectively. The lower panel displays electrical conductivity 

(EC) and turbidity. The four events when discrete sampling was undertaken for laboratory 

analysis are labelled A-D, further event of interest.  

Figure 7. Scatterplot matrix displaying the relationship between in-situ and laboratory 

measured parameters. The red line is a LOESS smoother (span = 0.7). 

Figure 8. Relationship between DOC concentration and a) turbidity, b) absorbance at 254nm 

, c) Peak C corrected for temperature, d) Peak T corrected for temperature, e) Peak C 

corrected for temperature and turbidity, and f) Peak T corrected for temperature and turbidity. 

NB Italics denotes laboratory measurement (i.e. absorbance 254nm) and lines of best fit are 

only displayed if P <0.1.  



Figure 9. Relationship between BOD concentration and a) turbidity, b) absorbance at 254nm, 

c) Peak C corrected for temperature, d) Peak T corrected for temperature, e) Peak C corrected 

for temperature and turbidity, and f) Peak T corrected for temperature and turbidity. Italics 

denotes laboratory measurement (i.e. absorbance 254nm) and lines of best fit are only 

displayed if P <0.1.  
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