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Abstract 17 

Despite the well-known influence of environmental context on episodic memory, little has been 18 

done to increase contextual richness within the lab.  This leaves a blind spot lingering over the 19 

neuronal correlates of episodic memory formation in day-to-day life. To address this, we presented 20 

participants with a series of words to memorise along a pre-designated route across campus while a 21 

mobile EEG system acquired ongoing neural activity. Replicating lab-based subsequent memory 22 

effects (SMEs), we identified significant low to mid frequency power decreases (<30Hz), including 23 

beta power decreases over the left inferior frontal gyrus. When investigating the oscillatory 24 

correlates of temporal and spatial context binding, we found that items strongly bound to spatial 25 

context exhibited significantly greater theta power decreases than items strongly bound to temporal 26 

context. These findings expand upon lab-based studies by demonstrating the influence of real world 27 

contextual factors that underpin memory formation. 28 

Keywords: episodic memory; context; oscillations; mobile electroencephalography 29 

Introduction 30 

Episodic memory refers to rich memories of personally experienced events. The details of these 31 

memories not only encompass the event itself but also the surrounding environmental setting, such 32 

as where and when the event occurred. Environmental context change can have a profound effect 33 

on episodic memory (Godden and Baddeley, 1975; Smith and Vela, 2001). Yet despite such context 34 

change being typical in day-to-day life, these changes are rarely incorporated in neuroscientific 35 

experiments examining episodic memory (often due to the need to conduct these experiments in 36 

magnetic resonance imaging [MRI] or magnetoencephalogram [MEG] suites). In these experiments, it 37 

is possible that mechanisms relating to the encoding of environmental context are supressed, as 38 

context remains largely consistent and therefore irrelevant to the task. This means that the neural 39 

correlates of episodic memory observed in the lab may provide an incomplete picture of episodic 40 

memory in the real world. While it is impossible to implement MEG or MRI in daily-life settings, 41 

progress has been made in the use of portable EEG outdoors (De Vos et al., 2014; Debener et al., 42 

2012). Embracing these advances, we aimed to investigate the influence of vibrant real world 43 

environments on the electrophysiological correlates of episodic memory formation. 44 

One of the most common approaches to studying episodic memory formation is the subsequent 45 

memory effect (SME). SMEs are the neural signature of successful memory formation, calculated by 46 

contrasting the neural activity at encoding which predicts later remembering with the activity that 47 

predicts later forgetting, hence isolating the activity unique to memory formation. Oscillatory SMEs 48 

are in part characterised by alpha and beta (8-12Hz; 13-30Hz) power decreases (Burke et al., 2015a; 49 

Fellner et al., 2013; Greenberg et al., 2015; Guderian et al., 2009; Hanslmayr et al., 2009; 50 
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Meeuwissen et al., 2011; Noh et al., 2014; Weiss and Rappelsberger, 2000). Additionally, theta has 51 

often been implicated in memory formation, although discrepancies exist in the literature with both 52 

theta power increases and decreases purported to underlie successful memory formation (Burke et 53 

al., 2015a, 2013; Fell et al., 2011; Guderian et al., 2009; Merkow et al., 2014; Noh et al., 2014; Nyhus 54 

and Curran, 2010; Staudigl and Hanslmayr, 2013). Nevertheless, beta power (13-20Hz) decreases 55 

have been shown to reliably arise over task-relevant sensory regions during successful memory 56 

formation, a result attributed to information processing (Hanslmayr et al., 2012). Critically, a recent 57 

EEG-repetitive transcranial magnetic stimulation (rTMS) study has demonstrated that beta power 58 

decreases are causally relevant to this process (Hanslmayr et al., 2014). The predictability of these 59 

beta power decreases provide a reliable benchmark to contrast with real world recordings in order 60 

to identify whether the typical lab-based SME is observable in a real world environment.  61 

Beyond the validation of previous lab-based findings, portable EEG technology allows the 62 

investigation of aspects of episodic memory that only occur in their entirety in the real world, such 63 

as item-to-context binding. Item-to-context binding can be assessed via contextual clustering - a 64 

behavioural phenomenon in which several events are recalled together based on contextual 65 

similarities they share. Contextual clustering has often been demonstrated for events which share a 66 

similar temporal context (i.e. events that occurred at similar points in time; Howard & Kahana, 67 

2002). However, contextual clustering is not solely restricted to the time domain (e.g. Long, Danoff, 68 

& Kahana, 2015; Polyn, Norman, & Kahana, 2009). Of particular relevance here, studies have also 69 

demonstrated spatial contextual clustering where events that occurred in similar locations are 70 

recalled together (Copara et al., 2014; Miller, Lazarus, Polyn, & Kahana, 2013). To date, this 71 

phenomenon is predominantly studied in virtual reality where participants navigate low-resolution 72 

environments with limited visuospatial information. Vestibular and locomotion cues are distinctly 73 

lacking in many virtual reality experiments, yet lesion studies in rats have shown that these cues have 74 

been shown to have a profound impact on spatial navigation (Stackman and Herbert, 2002; Wallace 75 

et al., 2002). The absence of such cues may impede the development of a comprehensive spatial 76 

contextual representation.  77 

It is also worth noting that a number of studies investigating spatial context have relied on random 78 

travel patterns to dissociate spatial and temporal contextual effects. A large number of random 79 

trajectories would inevitably mean that spatial and temporal context incidentally coincide at various 80 

points during the experiment, introducing a confounding variable and potentially trivial explanation of 81 

spatial clustering. In our experiment, we aimed to overcome this issue by using novel navigational 82 

paths that allow the observation of the independent contributions of temporal and spatial context to 83 

episodic memory formation. 84 
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On an oscillatory level, Long and Kahana (2015) demonstrated that temporal clustering correlates 85 

with gamma power increases in the left inferior frontal gyrus and the hippocampus during encoding. 86 

However, to the best of our knowledge, no other experiment has further investigated the 87 

relationship between neural oscillations at encoding and contextual clustering. Therefore, it remains 88 

unknown whether these patterns of activation are unique to subsequent temporal clustering or a 89 

part of a more general associative mechanism. If the former is true, then the oscillatory correlates of 90 

item-to-spatial context binding also remain unknown. A priori assumptions follow that subsequent 91 

temporal and spatial clustering would encompass the medial temporal lobe (MTL) – the home of 92 

place and time cells (Eichenbaum, 2014; MacDonald et al., 2011; O’Keefe, 1976). Given the intimate 93 

relationship between place cells and theta band activity, it may also be plausible to suggest that the 94 

spatial clustering effect would be observable within the theta frequency (Burgess and O’Keefe, 2011; 95 

O’Keefe and Recce, 1993).  96 

It is of course important to identify potential oscillatory confounds that may arise in ‘real world’ 97 

paradigms that are not present in lab-based experiments. Numerous mobile brain body imaging 98 

(MoBI; Makeig, Gramann, Jung, Sejnowski, & Poizner, 2009) studies have demonstrated that both 99 

event-related potentials (ERPs) and oscillatory activity can be observed in moving participants (De 100 

Sanctis et al., 2014; Gramann et al., 2010; Gwin et al., 2010; Malcolm et al., 2015; Wagner et al., 101 

2014). However, in relation to oscillatory activity, movement-related changes in power changes 102 

across the frequency spectrum (~1Hz to 90Hz). More specifically, in comparison to standing, walking 103 

can produce alpha/beta band power suppression and gamma power increases in sensorimotor areas 104 

(Castermans et al., 2014; Seeber et al., 2015, 2014; Wagner et al., 2016, 2012), whilst a loss of 105 

balance has been linked to an increase in theta band activity (Sipp et al., 2013). Importantly, these 106 

latter findings share spectral similarities with the SME. Therefore, in order to avoid potential 107 

contamination of these effects, the EEG data obtained is this experiment was acquired solely while 108 

participants were stationary. 109 

In this experiment, we asked two questions; 1) can oscillatory lab-based episodic memory 110 

studies be validated in real-life settings? and 2) what are the neural correlates of temporal and spatial 111 

contextual clustering? Following a predefined route and led by the experimenter (see figure 1a and 112 

1b), participants were presented with words to encode and associate with their current location 113 

(see figure 1c), a situation similar to remembering several text messages on the way to the 114 

supermarket. Participants were shown 4 lists of 20 words, where each list was presented on a 115 

spiralling route (see figure 1a). These spiralling routes were used to help disentangle the relationship 116 

between temporal and spatial context (see methods for details). After being shown a list of words, 117 

participants were removed from the environment and completed a free recall test. Finally, 118 

participants guided the experimenter to where they thought each recalled word was shown and the 119 
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location was marked by GPS. We aimed to replicate the well-documented low to mid frequency 120 

power decreases (<30 Hz) in lab-based subsequent memory studies (e.g. Burke et al., 2015b; 121 

Hanslmayr and Staudigl, 2014), in particular the beta power decreases over the left inferior frontal 122 

gyrus elicited by verbal SME paradigms (Hanslmayr et al., 2011). Furthermore, we aimed to identify 123 

and dissociate the neural correlates of spatial and temporal contextual encoding. To this end, we 124 

contrasted neural activity associated with subsequent temporal clustering with that of subsequent 125 

spatial clustering. In short, this is the first experiment directly observing the neural correlates of 126 

episodic memory encoding in the real world, allowing both the validation of a large body of the 127 

episodic memory literature and the identification of how real world context affects the neural 128 

correlates of encoding.  129 

Materials and Methods 130 

Participants 131 

29 University of Birmingham students (18-39 years, 69% female) were recruited through a 132 

participant pool and rewarded with financial compensation for participation. Nine participants were 133 

excluded from the sample due to issues in recording leading to insufficient trials (n=4), poor weather 134 

conditions leading to insufficient trials (n=2) or extreme performance in the task (recalled <15 items, 135 

or forgot <15 items across all blocks; n=3). Recording complications meant that one block was lost 136 

for 3 participants leaving only 60 trials prior to preprocessing, however as there were still a 137 

sufficient number of trials (>=15 remembered and >=15 forgotten) after artefact rejection these 138 

participants remained in the sample. All participants were native English speakers or had lived in an 139 

English speaking country for the past 5 years. Participants reported normal or corrected-to-normal 140 

vision. Our sample size boundary (n=20) matched similar studies which have produced reliable 141 

oscillatory subsequent memory effects (e.g. Hanslmayr, Spitzer, & Bauml, 2009). A power analysis on 142 

pilot behavioural data indicated that a sample size of 16 participants was adequate for detecting a 143 

significant behavioural effect (α=0.05; 1–β=0.80). Ethical approval was granted by the University of 144 

Birmingham Research Ethics Committee, complying with the Declaration of Helsinki. 145 

Materials 146 

80 unique abstract nouns and 80 unique locations were split into 4 blocks (20 words and locations 147 

per block). The nouns were selected from the MRC Psycholinguistic Database based on scores of 148 

low imaginability and concreteness (Coltheart, 1981). All locations within a block were found in the 149 

same large, open space on the university campus. Lists and locations were counterbalanced across 150 

participants. Words were presented in black on a light grey background using the OpenSesame 151 

experiment builder (2.9.4; Mathôt, Schreij, & Theeuwes, 2012) on a Google Nexus 7 (2013; Google, 152 

Mountain View, California) tablet running Android OS (5.1.1). Tones were elicited by the tablet and 153 
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passed onto a StimTracker (Cedrus Corporation, San Pedro, California), which in turn passed a 154 

trigger to the EEG amplifier. Within each block, the navigated route formed a spiral (although 155 

participants were unaware of this; see figure 1a). In figure 1a, the dotted red line depicts the 156 

temporal sequence in which each black dot (representing a presentation location) was visited. The 157 

distance between each of these black dots when following the temporal sequence was approximately 158 

20m. In contrast, the distance between the black dots on neighbouring loops was approximately 10-159 

15m. Therefore, the black dots on neighbouring loops were closer in Euclidean distance than items 160 

presented on the same loop. To exhibit large amounts of temporal clustering, participants would 161 

have to recall items on the same loop (i.e. closer in time, further in space). Conversely, to exhibit 162 

large amounts of spatial clustering, participants would have to recall items on neighbouring loops 163 

together (i.e. closer in space, further in time). This distinction helped to disentangle the effects of 164 

temporal and spatial context while keeping rehearsal time between items constant. A Garmin eTrex 165 

30 Outdoor Handheld GPS Unit (Garmin Ltd., Canton of Schaffhausen, Switzerland) was used to 166 

navigate the route and to mark co-ordinates during the spatial memory test. The GPS could 167 

accurately pinpoint a current location to approximately within 3 metres. 168 

Procedure 169 

Prior to commencing the experiment, participants were informed of the experimental procedure, 170 

completed a screening questionnaire and provided informed consent. During the encoding stage of 171 

each block, the experimenter walked the participant along a spiral path and at predefined locations 172 

stopped the participant to present them with a word on the tablet screen. When they were brought 173 

to a stop, participants were asked to immediately fixate upon the tablet screen. Critically, the 174 

participant was stationary whenever a stimulus was shown, attenuating movement-related EEG 175 

artifacts that could contaminate recordings. During stimulus presentation, the experiment stood to 176 

the left and to the front of the participant to ensure the participant could clearly see the tablet 177 

without moving their head. After haptic input from the experimenter (given once the participant was 178 

stationary), a fixation cross was displayed in the centre of the screen for 2.5 to 3 seconds (uniformly 179 

random), followed by a target word presented for 3 seconds. The lengthy pre-stimulus interval 180 

ensured that any motor/motor-rebound effects would not contaminate EEG recordings during the 181 

presentation window. The participant then encoded the word and the location. We intentionally 182 

asked participants to encode location in order to demonstrate that participants could accurately 183 

recall spatial information. If, on a whole, participants were found to be unable to recall spatial 184 

information accurately, it would be dubious to suggest that such information could influence recall in 185 

such a way as to produce spatial contextual clustering. Participants’ retention of spatial information 186 

did not influence spatial clustering (see results). After 20 locations had been visited, the participant 187 

completed a short subtraction distractor task (“starting at x, count down in steps of y, all the way to 188 
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zero”) to disrupt any working memory effects. The participant was then walked to a testing cubicle 189 

and given 3 minutes to freely recall as many of the words presented as possible. Subsequently, the 190 

experimenter walked the participant back outside and, using the list of recalled words as a cue, the 191 

participant attempted to return to where each word was presented. GPS co-ordinates for each of 192 

these recalled locations were recorded. After the participant had recalled as many of the locations as 193 

they could remember, the experimenter walked them to the next area in order to start the 194 

following block.  195 

Behavioural Analysis 196 

Spatial accuracy of recalled locations was determined by calculating the distance between the 197 

presentation and recalled locations of each word using the Haversine formula (which corrects for 198 

the curvature of the earth), providing a parametric measure of accuracy in metres. To assess spatial 199 

and temporal clustering, we used a variation on previous methods (Kahana, 1996) to assess the 200 

extent to which a recalled item was influenced by the previously recalled items. This variation allows 201 

the direct comparison of temporal and spatial clustering, expanding upon earlier studies which have 202 

used separate methods to analyse temporal and spatial clusters (Miller, Lazarus, et al., 2013). An 203 

error term was used to identify whether participants recalled in spatial and/or temporal clusters. 204 

‘Contextual error’ describes the extent to which an individual deviated from the immediate context 205 

when recalling events; the smaller the contextual error, the less they deviated from the immediate 206 

context and therefore the greater the contextual clustering. Contextual error was derived using the 207 

equation below: 208 

Contextual Error = ((|Observed Lagn,n-1| – Expected Lagn,n-1) + (|Observed Lagn,n-2| – Expected Lagn,n-2)) / 2 209 

Here, n refers to the recalled item under observation, n-1 to the item recalled immediately before n, 210 

and n-2 to the item recalled immediately before n-1. Observed Lagn,n-1 refers to the contextual 211 

distance between the items n and n-1 at encoding. Spatial contextual distance was measured in 212 

metres, while temporal distance was measured by serial lag. As each item within a block was 213 

presented approximately 25 seconds after its prior, serial lag and temporal lag are viewed as 214 

synonymous. Expected. Lagn,n-1 refers to the distance between item n and the most proximal item to n 215 

during encoding. Expected. Lagn,n-2 refers to the distance between item n and the second most 216 

proximal item to n during encoding. Subtracting the expected lag from the observed lag provides a 217 

‘raw’ contextual error score ranging from zero upwards, where zero indicates perfect contextual 218 

clustering during recall and any value greater than zero indicates imperfect clustering during recall. 219 

To contrast the two modalities of context, raw contextual error scores were z-transformed using 220 

the means and standard deviations of noise data. Noise data were generated by taking the observed 221 

hits, randomly assigning a recall position to them, and then calculating the contextual error. This 222 
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provides a ‘z-transformed’ contextual error score where zero indicates contextual clustering 223 

observed due to chance, and any value less than zero indicating contextual clustering greater than 224 

chance. To provide a measure of clustering rather than idiosyncratic jumps between individual items, 225 

an average lag was calculated using the two previously recalled items. This method is not expected 226 

to fundamentally change the results of previous lab-based studies; Lohnas & Kahana (2014) have 227 

demonstrated that temporal clustering in free recall is influenced by multiple recent recall items, not 228 

only the immediately preceding item. One-sample t-tests were used to examine whether participants 229 

recalled in clusters more greatly than expected by chance. A dependent-samples t-test then 230 

compared temporal and spatial contextual error scores. 231 

EEG Acquisition, Pre-processing and Time-Frequency Decomposition 232 

EEG was recorded using a portable ‘EEGo Sports’ EEG system (ANT Neuro, Enschede, 233 

Netherlands) with 65 Ag/AgCl electrodes arranged in a 10/10 system layout (including left and right 234 

mastoids, CPz as reference and AFz as ground). Impedances were kept below 20 kΩ, and the 235 

sampling rate was set to 500Hz. To facilitate source analysis, head coordinates of all electrodes and 236 

the nasion, left pre-auricular area and right pre-auricular area of each participant were taken using a 237 

Polhemus Fasttrack system (Polhemus, Colchester, VT) before commencing the experiment.  238 

The data was pre-processed using the FieldTrip toolbox (Oostenveld et al., 2011). The continuous 239 

data were epoched into single trials beginning 2000ms before word presentation and ending 3000ms 240 

after word presentation. During this time window, the participant was stationary with their eyes 241 

fixated upon the tablet screen. The data was first high-passed filtered (1Hz; Butterworth IIR) and 242 

then eye-blinks, saccades and any other consistent muscular artefacts were removed using 243 

independent component analysis. Subsequently, residual irregular artefacts were removed by 244 

rejecting the corresponding trials; mean number of trials rejected = 15.45; mean number of hits 245 

remaining = 35.25 (max: 51, min. 22); mean number of misses remaining; 26.30 (max. = 42; min. = 246 

16). Artefact rejection was blind (i.e. the experimenter had no clue as to which trials belonged to 247 

which condition), yet peculiarly this led to a larger number of misses being rejected than hits. 248 

Speculatively, this may be a result of distraction; participants may have moved in response to one of 249 

the many numerous distractors in real world environments (e.g. unexpected loud noises). These 250 

physical movements would produce large artefacts in the EEG (much greater than the underlying 251 

brain signals) that must be rejected. Critically, such movement would also prevent the participant 252 

from attending to the word, leading to poorer memory performance for these trials. The mean 253 

number of trials rejected and included sum to 77 because 3 participants only had 60 trials worth of 254 

data at artefact rejection, making the mean number of trials completed 77 prior to artefact rejection. 255 

Bad channels were interpolated based on the data of neighbouring electrodes and the data was given 256 

an average reference (mean interpolated = 0.6; max. = 5; min. = 0).  257 
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Several previous studies indicate that electrophysiological data obtained from mobile participants is 258 

subject to more noise than their lab-based equivalents. (Castermans et al., 2014; Gwin et al., 2010; 259 

Kline et al., 2015; Snyder et al., 2015; Wagner et al., 2012). To provide an indication of the 260 

cleanliness of the data obtained here, the P300 component elicited by stimulus onset can be seen in 261 

figure 2a. The P300 component was obtained by using ICA to remove non-brain related components 262 

from the raw data and then applying a low-pass filter (15Hz). Each trial was corrected using a pre-263 

stimulus baseline window ranging from -200ms to 0ms, Further examples of ‘real world’ ERPs have 264 

been demonstrated by De Vos et al. (2014) and Debener et al. (2012). In addition, a topography of 265 

this ERP is presented in figure 2b, and a time frequency representation of the data averaged over all 266 

trials time-locked to stimulus onset is presented in figure 2c. 267 

Time-frequency analysis was conducted on the pre-processed dataset for each participant using 7 268 

cycle Morlet wavelets for frequencies of 3 to 30Hz in 1hz steps; the time window was too short to 269 

effectively signals below 3Hz. Time was epoched from -1 to 2 seconds, where 0 seconds represents 270 

stimulus onset. Power was calculated at 50ms intervals within this window. For each frequency-271 

channel pair, the data were z-transformed by first obtaining the average power over time for each 272 

trial, and then calculating the average and standard deviation of this time-averaged power across 273 

trials. This twice-averaged power was then subtracted from the observed power at each channel-274 

frequency pair, and the output was divided by the standard deviation of the time-averaged power. 275 

Gaussian smoothing (2Hz, 200ms kernel) was then applied to the time-frequency representation to 276 

help reduce the impact of inter-individual differences in oscillatory response across time and 277 

frequencies. 278 

Subsequent Memory Analysis 279 

Trials were split into two categories; items where both word and location were later remembered 280 

(hits) and items where the word was later forgotten (misses). Note that as spatial memory was only 281 

test for words that were remembered, there was no location-remembered, word-forgotten 282 

condition. The data was first restricted to 0-1000ms post-stimulus between 15 and 20Hz to replicate 283 

previous beta power decreases seen in subsequent memory paradigms (for review, see Hanslmayr et 284 

al., 2012). Hits and misses for this time-frequency window were contrasted using a dependent 285 

samples t-test. A Monte-Carlo randomisation procedure using 2000 permutations  was employed to 286 

correct for multiple comparisons (see Maris & Oostenveld, 2007). The clusters used in this 287 

randomisation procedure were defined by summing the t-values of individual channel-frequency-time 288 

triplets that exceeded threshold (α = 0.05). 289 

Subsequently, further power changes in the time-frequency representation were examined. 290 

Following previous literature, alpha and beta power decreases were tested, while undirected theta 291 
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power differences were tested. Accordingly, alpha and beta tests were one-tailed, while theta power 292 

tests were two-tailed. As the non-parametric cluster analysis technique only informs us as to 293 

whether there is a significant effect between conditions within the window of interest, we used a 294 

sliding window analysis (Staudigl and Hanslmayr, 2013) to enhance the temporal and spectral 295 

specificity of our overarching SME. The sliding window (200ms by 1Hz in size, 75% overlap) was 296 

passed over the time-frequency window (-1000 to 2000ms), contrasting power differences between 297 

hits and misses within the window. In this technique, the Monte-Carlo randomisation procedure 298 

alone is not sufficient to control for multiple comparisons so the p-values for each sliding window 299 

were pooled together and thresholded using false discovery rate (FDR; Benjamini & Hochberg, 300 

1995). 301 

Subsequent Clustering Analysis 302 

To assess the oscillatory correlates of temporal and spatial clustering during encoding, contextual 303 

error scores were correlated with the time-frequency power spectrum. For each participant and for 304 

each time-frequency-channel point, the contextual error score for each trial was correlated with the 305 

observed power for that trial using a Spearman’s Rank procedure. As less contextual error denotes 306 

greater contextual clustering, a negative r-value would indicate a power increase accompanying 307 

greater contextual clustering. To aid comprehension, each returned r-value underwent a switching 308 

of sign (+0.5 became -0.5; -0.5 became +0.5), meaning a positive r-value indicated a power increase 309 

with greater contextual clustering. The time-frequency representation of r-values was tested against 310 

the null hypothesis that there would be no correlation between power and contextual clustering. 311 

This null hypothesis was realised by creating a ‘null data structure’ with the same dimensions as the 312 

observed data, but with all observed data points substituted with zeros (i.e. no correlation). The 313 

observed data was then contrasted with the ‘null data’ in the same manner as the sliding window 314 

approach described above. 315 

Source Analysis 316 

Observed effects on sensor level were reconstructed in source space using individual head models in 317 

combination with the standard MRI and boundary element model (BEM) provided in the FieldTrip 318 

toolbox. The Linearly Constrained Minimum Variance (LCMV) beamformer was used to localise 319 

sources of significant activity (van Veen et al., 1997). Pre-processed data was time-locked and then 320 

shifted to source space. This placed the time-locked data onto virtual electrodes, which then 321 

underwent an identical analytical procedure to its sensor-level counterparts. P-values are presented 322 

with each source reconstruction for completeness, but as the time-frequency windows were 323 

selected because they exceeded the significance threshold on sensor level, caution should be taken 324 

when interpreting source-level p-values. These p-values were derived from a cluster-based 325 
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permutation (Maris & Oostenveld, 2007) across the whole window of interest, as defined by sensor-326 

level analysis. Peak differences in activity were first deduced by sliding a spherical searchlight with a 327 

6mm radius over all voxels within the interpolated significant cluster (interpolated grid size: 328 

181x217x181mm). All voxels that fell within the sphere were summed, and the group of voxels with 329 

the largest absolute value was selected as the region of peak difference. As this approach cannot 330 

effectively handle sparse regions of activity, a follow-up visual inspection was conducted. For visual 331 

inspection, only the 1% of voxels with the most extreme t-values was examined. The results of visual 332 

inspection are only reported when they produced notable differences to the peak sphere approach. 333 

Additional Analyses 334 

Several further analyses were conducted but were subject to a number of analytical issues. For 335 

transparency, these analyses are listed here, but to avoid misinterpretation of the outcomes of these 336 

analyses by those glancing over the paper, these results are not reported in the results section. 337 

Theta phase to gamma amplitude coupling was investigated using the method described by Jiang, 338 

Bahramisharif, van Gerven, and Jensen (2015) in an attempt to find similar cross-frequency coupling 339 

contextual effects to those reported by Staudigl & Hanslmayr (2013). However, no differences were 340 

found, possibly due to the overly noisy gamma activity. Furthermore, differences in source-level 341 

connectivity between the medial temporal lobe and the prefrontal cortex for high versus low 342 

contextually clustered items was investigated to test the hypothesised neural context model put 343 

forward by Polyn & Kahana (2008). Unfortunately, the difference in phase angles between virtual 344 

electrode connections were almost solely clustered around 0 and π, preventing any meaningful 345 

connectivity analysis (Cohen, 2015).  346 

Results 347 

Behavioural Results 348 

On average, participants recalled 50.45% of each 20 word list and when attempting to locate 349 

where each word was presented, were on average 14.74 metres away from the presentation 350 

location. Eighty percent of participants showed less temporal contextual error (i.e. more temporal 351 

contextual clustering) than spatial contextual error (see figure 3). A one-sample t-test revealed 352 

significantly greater spatial clustering than expected by chance, t(19)=-5.728, p<0.001, 95% CI [-353 

2.155, -1.001], matching previous virtual reality results (Miller, Lazarus, et al., 2013). Furthermore, 354 

another one-sample t-test revealed significantly greater temporal clustering than expected by chance, 355 

t(19)=-6.105, p<0.001, 95% CI [-4.003, -1.959], again conforming to earlier findings (e.g. Kahana, 356 

1996). A dependent samples t-test revealed significantly greater temporal clustering than spatial 357 

clustering, t(19)=-3.921, p<0.001, 95% CI [-2.152, -0.654]. To examine how contextual error relates 358 

to memory performance, the mean contextual error of each participant was correlated with their 359 
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average hit-rate and spatial accuracy. Temporal contextual error did not correlate with memory 360 

performance in the free recall task (r=-0.274, p=0.242) or spatial accuracy when returning to 361 

presentation locations (r=-0.237, p = 0.315); the same was true for spatial contextual error (free 362 

recall performance: r=-0.235, p=0.319; spatial accuracy: r=-0.282, p=0.229).  363 

Subsequent Memory Analysis 364 

Given the robust nature of lower beta power decreases over relevant sensory regions during 365 

memory formation, we first aimed to replicate a key lab-based finding in verbal episodic memory 366 

studies: a lower beta power (15-20Hz) decrease over the left inferior frontal gyrus within 1 second 367 

of stimulus onset (for review, see Hanslmayr et al., 2012). Using a cluster-based permutation test to 368 

control for multiple comparisons across all sensors (see Maris & Oostenveld, 2007), a one-tailed 369 

dependent samples t-test revealed a significant power decrease for hits in comparison to misses 370 

between 0 and 1 second post stimulus (p=0.009; see figure 4a and 4b). To identify whether this 371 

lower beta power decrease arose in the left inferior frontal gyrus, the window was then 372 

reconstructed on source level, undergoing the same analytical procedure as its sensor level 373 

counterpart. A one-tailed dependent samples t-test revealed a significant power decrease for hits in 374 

comparison to misses (p=0.026). We determined peak activity by sliding a spherical searchlight with 375 

a radius of 6mm across the significant cluster and calculating the sum of activity within this sphere 376 

(see methods for details); these results were confirmed by visual inspection of the 1% of most 377 

extreme voxels within the major cluster. Peak differences in activity between later remembered and 378 

later forgotten items were localised to left superior and middle temporal poles, [MNI coord. x=-40, 379 

y=19, z=-30; ~BA 38], while visual inspection of the most extreme 1% of voxels within the significant 380 

cluster revealed a further difference between later remembered and later forgotten items in the left 381 

inferior frontal gyrus (IFG), [MNI coord. x=-39, y=30, z=-18; ~BA 47], (see figure 4c). These results 382 

replicate the previous findings of lower beta power decreases over the left IFG following successful 383 

memory formation of verbal information (Hanslmayr et al., 2011, 2009).  384 

Subsequently, a more comprehensive picture of the low-frequency SMEs was sought out using a 385 

sliding window analysis (see methods for details; Staudigl & Hanslmayr, 2013). Given the prevalent 386 

power decreases within the alpha and beta bands accompanying successful memory formation 387 

(Hanslmayr et al., 2012), one-tailed dependent samples t-tests were used to analyse the subsequent 388 

memory effect between 8 and 30 Hz. As some controversy surrounds theta band activity, two-tailed 389 

dependent samples t-tests where used for frequencies between 3 and 7 Hz. Analysis revealed 390 

significant, FDR corrected, p-values (pcorr<0.05) across the frequency and time spectrum (see figure 391 

5). Specifically, low frequency theta (3-4Hz, pcorr<0.05) power decreases for hits in comparison to 392 

misses were observed between 600ms and 1200ms post-stimulus; alpha (8-12Hz, pcorr<0.05) power 393 

decreases for hits in comparison to misses were observed between 400ms and 800ms post-stimulus; 394 
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and beta (21-25Hz) power decreases for hits in comparison to misses were observed just before (-395 

250ms to 0ms, pcorr<0.05) and later after stimulus onset (1000 to 1300ms, pcorr<0.05). These low 396 

frequency power decreases match many other effects reported in the literature (see Hanslmayr & 397 

Staudigl, 2014). It is worth noting that given the relatively short time window and the use of 7 cycle 398 

wavelets, any frequency below 3Hz could not be convolved. Therefore, a broadband delta/theta 399 

effect cannot be ruled out. It is also worth noting that the broadband appearance of the spectrogram 400 

is not likely due to a subsequent memory ERP, which has been shown to elicit a greater positivity 401 

following successful memory formation (e.g. Fernández et al., 1998). Rather, it may simply be due to 402 

the nature of the subsequent memory effect. For example, Burke et al., (2015b, 2014) have 403 

demonstrated broadband power decreases accompanying successful memory formation. The 404 

difference in power between subsequently remembered versus forgotten items did not correlate 405 

with spatial accuracy.  406 

Significant regions of activity observed on sensor-level were then reconstructed on source 407 

level. Theta power decreases (3-4Hz, 600-1200ms, p=0.005) peaked in the right superior occipital 408 

area, the right precuneus and the right cuneus, [MNI coord. x=19, y=-87, z=39; ~BA 19]. Visual 409 

inspection of the theta source activity also revealed peak differences in activity within the left middle 410 

and inferior temporal gyri, [MNI coord. x=-52, y=-10, z=-26; ~BA 20], and the right superior parietal 411 

lobe, [MNI coord. x=25, y=-64, z=53; ~BA 7] (see figure 5c). Generally speaking, these theta power 412 

decreases occurred in regions associated the processing of with task-relevant stimuli (i.e. semantic 413 

processing, Pobric, Lambon Ralph, & Jefferies, 2009; Visser, Jefferies, & Lambon Ralph, 2010; 414 

visuospatial processing, Formisano et al., 2002; Sack et al., 2002), conforming to earlier findings 415 

(Greenberg et al., 2015). Alpha power decreases (8-12Hz, 500-800ms, p=0.005) peaked in the right 416 

inferior frontal gyrus, the right superior and middle temporal poles and the right insula, [MNI coord. 417 

x=40, y=19, z=-27; ~BA 38]. Post-stimulus beta power decreases (21-25Hz, 1000-1300ms, p=0.003) 418 

peaked in the left inferior frontal gyrus, left superior temporal pole and gyrus, and the left rolandic 419 

operculum, [MNI coord. x=-58, y=8, z=0; ~BA 48]. Pre-stimulus beta activity (21-25Hz, -250-200ms, 420 

p=0.003) could not be effectively localised using the spherical cluster, but visual search of the source 421 

revealed notable differences in the right superior parietal lobe and right postcentral gyrus, [MNI 422 

coord. x=27, -50, 58; ~BA 7]. In summary, the real world SME observed here appears to match what 423 

is regularly reported in lab-based studies (e.g. Greenberg et al., 2015; Hanslmayr et al., 2009). 424 

Subsequent Clustering Analysis 425 

Our subsequent clustering analysis was conducted on a time-frequency representation of r-426 

values obtained from correlating the power for each channel-frequency-time data point of each trial 427 

by the clustering score of the same trial. As a first step, we examined whether the correlation 428 

between power and temporal/spatial clustering differed significantly from the null hypothesis (i.e. no 429 
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correlation; r = 0). Concerning temporal clustering, the sensor level analysis (conducted as in 430 

Subsequent Memory Analysis) revealed no cluster exceeding the significance threshold. This is 431 

consistent with a previous study which also found no correlation between temporal clustering and 432 

low frequency power (Long & Kahana, 2015). Concerning spatial clustering however, a sliding 433 

window analysis revealed a cluster consisting of extended slow theta power decreases across the 434 

stimulus interval (3-4Hz; -1000-1000ms, pcorr<0.05), and a broader theta post-stimulus power 435 

decrease (3-6Hz; 400-900ms, pcorr<0.05), which predicted greater spatial clustering (see figure 6). In 436 

other words, these theta power decreases were associated with a greater likelihood of recalling 437 

items that were spatially proximate to one another. As above, these windows were reconstructed in 438 

source space. The post-stimulus theta power decreases (3-6Hz; 400-900ms, pcorr<0.05) peaked in 439 

the left calcarine sulcus, cuneus and superior occipital regions, [MNI coord. x=-8, y=-97, z=20; ~BA 440 

17] (see figure 5B). Meanwhile, the peri-stimulus theta power decreases (3-4Hz; -1000-1000ms, 441 

pcorr<0.05), peaked in left superior and medial frontal gyrus, [MNI coord. x=-8, y=39, z=51; ~BA 8] 442 

(not pictured due to strong similarity with fig. 6c).  443 

 In a second step, we contrasted the r-values obtained by correlating theta power and temporal 444 

clustering with r-values obtained by correlating theta power and spatial clustering, in order to 445 

identify whether these theta power decreases were unique to the spatial clustering condition. 446 

Cluster analysis indicated that there was a small but significant difference between temporal 447 

clustering - theta power effects and spatial clustering - theta power effects (pcorr<0.05; see figure 7a). 448 

T-values indicate that theta power decreases correlate more strongly with spatial clustering than 449 

with temporal clustering. When reconstructing this difference on source level (see figure 7b), the 450 

spatial-temporal clustering contrast (3-7Hz, 400-800ms, p=0.003) appeared to peak in left frontal 451 

superior and medial gyri, [MNI coord. x=-5, y=40, z=57; ~BA 8]. Visual inspection of the peak 1% of 452 

activity also revealed greater theta power decreases for spatial clustering from within the left medial 453 

temporal lobe, [MNI coord. x=-26, y=2, z=-35; ~BA 36]. 454 

As can be seen in figure 7b, this difference in theta power between spatial and temporal 455 

clustering occurs in a region at the boundary of the forward model and therefore may be particularly 456 

susceptible to ocular and/or muscle artifacts. To address this concern, we repeated this analysis 457 

using only the electrodes on the outer rim of the cap (FP1, FPz, FP2, AF7, AF8, F7, F8, FT7, FT8, T7, 458 

T8, TP7, TP8, P7, P8, PO7, PO8, O1, Oz, O2) as these electrodes are most likely to contain the 459 

ocular/muscle artifacts. Being able to replicate the analysis based on these electrodes alone may 460 

indicate that these findings are a result of artifacts, however the absence of a significant difference 461 

would indicate that the result is dependent on electrodes closer to cortical sources. When 462 

replicating the sensor-level spatial-temporal clustering contrast, we found no significant difference 463 
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between the two conditions over the outer rim electrodes alone. This suggests that the difference in 464 

theta power between spatial and temporal clustering was not due to ocular/muscular artifacts.  465 

Discussion 466 

Here, we identified the oscillatory subsequent memory effect (SME) in a real-world environment. 467 

Moreover, we examined the influence of real world contextual factors (i.e. space) on episodic 468 

memory relative to contextual factors available within the lab (i.e. time). Participants donned a 469 

portable EEG setup and were presented with verbal stimuli on a tablet across the university campus. 470 

Each list was presented on a spiral path that disentangled temporal and spatial context. Successful 471 

memory formation was accompanied by strong beta power decreases over left frontal regions for 472 

items which were later remembered in comparison to those which were later forgotten. 473 

Furthermore, a broad theta power decrease was observed shortly after stimulus presentation for 474 

items later remembered, over regions including the left temporal pole and right posterior parietal 475 

cortex. Similarly, theta power decreases accompanied strong spatial clustering within left frontal 476 

regions and the medial temporal lobe when compared to temporal clustering. 477 

Generally speaking, our findings corroborate what others have demonstrated within a lab setting. 478 

On a behavioural level, individuals demonstrate both temporal and spatial contextual clustering in an 479 

environment where spatial details are significantly richer than what is experienced within the lab 480 

(Miller, Lazarus, et al., 2013; Miller, Neufang, et al., 2013). Expanding on previous experiments, the 481 

spiralling presentation pattern used in this experiment helped attenuate temporal and spatial 482 

contextual overlap. Knowing that temporal clustering could not inform spatial clustering and vice 483 

versa, this experiment furthers the notion that temporal clustering and spatial clustering are 484 

autonomous phenomena.  485 

On an electrophysiological level, we replicated the established low-frequency power decreases 486 

observed during successful memory formation (Burke et al., 2015a, 2014; Fellner et al., 2013; 487 

Greenberg et al., 2015; Guderian et al., 2009; Hanslmayr et al., 2009; Meeuwissen et al., 2011; Noh 488 

et al., 2014; Weiss and Rappelsberger, 2000). Source localisation of the beta power activity revealed 489 

decreases in the left frontal and temporal pole regions, both of which are associated with verbal and 490 

semantic processing (Pobric et al., 2009). Following the information-via-desynchronisation hypothesis 491 

(Hanslmayr et al., 2012), these beta power decreases would reflect verbal information processing 492 

necessary for successful memory formation. Although discussed in previous studies (Hanslmayr et 493 

al., 2009), given the aspects of this study relating to movement we reiterate that these power 494 

decreases are not viewed as oscillatory correlates of motor activity (Salenius and Hari, 2003). The 495 

participant was stationary before and during the presentation of each stimulus, so no motor 496 

component would be systematically present during stimulus presentation. If a component relating to 497 
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motor activity did arise, then it would be evenly distributed between later remembered and later 498 

forgotten items, and hence cancel out in the later remembered-later forgotten contrast. One could 499 

still argue that a participant plans their next movement after they are confident that they have 500 

successfully encoded a stimulus before the trial has ended. Such sensorimotor planning may indeed 501 

elicit a beta power decrease (e.g. Pfurtscheller and Neuper, 1997). While we cannot rule this out 502 

based on the results of this experiment alone, this does not fit the numerous lab-based studies (e.g. 503 

Hanslmayr et al., 2011; Long and Kahana, 2015) that have found the same beta power decrease over 504 

the left inferior frontal gyrus in paradigms that have no potential for subsequent sensorimotor 505 

planning following encoding. With evidence that familiar lab-based paradigms can be replicated in real 506 

world conditions, the field can move onto more adventurous paradigms that fully embrace real 507 

world environments. 508 

We also observed significant theta power decreases following successful memory formation, 509 

particularly for items that demonstrated strong spatial clustering at recall. These power decreases 510 

may reflect a common process – possible selective communication within and across spatially diverse 511 

regions. Diversity in phase is optimal for communication as signals can arrive at a time of peak 512 

excitability and selectively communicate with receiving, down-stream, neural assemblies (Maris et al., 513 

2016). There is a wealth of evidence to suggest theta is well suited for such communication needs 514 

(for review, see Colgin, 2013). Critically, the diversity in theta phase beneficial for communication 515 

would be reflected by theta power decreases in regions relevant to successful memory formation, 516 

especially in macro-scopic recording techniques such as EEG. In the context of the current 517 

experiment, observed theta power decreases in the temporal poles, posterior parietal cortex and 518 

medial temporal regions likely reflect the activation of, and communication between, areas 519 

responsible for the processing of semantics (e.g. Whitney, Kirk, O’Sullivan, Lambon Ralph, & 520 

Jefferies, 2011) and spatial location (Ciaramelli et al., 2010; Miller et al., 2014). Ultimately, these 521 

oscillatory dynamics allows the formation of coherent memory episodes. This account would also 522 

explain the absence of a similar theta power decrease for temporally clustered items. Temporal 523 

clustering might rely on a smaller network involving no communication with spatial processing 524 

regions. Consistent with this assumption, a previous study linked temporal clustering to high 525 

frequency (gamma) activity which might reflect the action of more local networks (Long and Kahana, 526 

2015).  527 

Alternatively, the absence of a neural correlate to temporal clustering may also be a result of 528 

adapting encoding strategies across blocks. Hintzman (2016) argued that an ‘intelligent’ participant 529 

would favour a memory strategy that facilitates later recall, so an unsuccessful strategy in an early 530 

block may be adapted to aid performance in later blocks. Numerous memory strategies focus on 531 

memorising lists in the order they were presented (e.g. pegwords, story creation). Swapping 532 
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amongst these strategies may produce a similar degree of temporal clustering with dissimilar 533 

underlying neural correlates. That said, temporal clustering functions have been shown to remain 534 

consistent in the face of varying memory strategies and suggested to be a strategy-independent 535 

memory phenomenon (Healey and Kahana, 2014). Possibly, the absence of a clear neural correlate in 536 

this experiment was due to changes in memory strategy distorting the neural signal produced by 537 

‘true’ temporal clustering.  538 

Interestingly, we found no neural correlate of later spatial accuracy. Perhaps the short delay between 539 

the participant being stopped at the presentation location and being asked to fixate upon the screen 540 

was sufficient to process and encode the surrounding environment. Therefore, the neural activity 541 

associated with greater spatial accuracy at retrieval may have occurred prior to the defined time 542 

window of analysis. Alternatively, participants may have only begun to process the spatial location 543 

after the stimulus had disappeared from the screen. Again, this would be outside of the period of 544 

when the EEG signal was analysed. Unfortunately, as the signal outside of the planned period was 545 

contaminated with movement-related artifacts, we were unable to explore this hypothesis. 546 

Unsurprisingly, real world EEG comes with its own challenges. Here, we will take the opportunity to 547 

discuss some of these issues in hope that this will save others from experiencing the same 548 

difficulties. Firstly, our testing was highly dependent on the weather. Even the lightest of rain could 549 

affect signal quality if the scalp were to become wet (e.g. through channel bridging). Conversely, 550 

sunny and/or humid days present the same risk as participants begin to sweat more. Secondly, the 551 

equipment setup is heavy, and due to the short cables connecting the cap to the amplifier, this 552 

weight had to be carried by the participant. Undoubtedly, this will have tired participants greatly 553 

during the experiment and may have increased sweating on the scalp, again comprising EEG signal 554 

quality. In future, this weight should be distributed as greatly as possible in order to avoid participant 555 

strain, decline in cognitive performance due to fatigue and the decline in signal quality that may 556 

accompany the strain. Finally, real world experiments most likely involve complex eye-movements as 557 

participants visually explore and process the surrounding environments. Future experiments could 558 

incorporate eye-tracking to help pinpoint the onset of neural processes (e.g. scene/object 559 

processing) and identify non-brain artifacts (e.g. macro-/micro-saccades), 560 

In conclusion, our findings are the first to provide strong evidence for the ecological validity of lab-561 

based experiments investigating episodic memory formation and oscillations. More importantly, our 562 

investigation into contextual clustering highlights the importance of real world memory research. 563 

We speculate that similar virtual reality studies would not observe such strong effects of spatial 564 

contextual clustering, given the lack of vestibular and locomotion cues and low-resolution 565 

visuospatial information available in virtual reality. The real world EEG approach used here can not 566 

only pave the way towards new insights into the underpinnings of contextual details in newly formed 567 
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memories, but also lead to realistic investigations in other domains such as spatial navigation and 568 

beyond.  569 
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 780 

Figure 1. Behavioural paradigm. a) Spiral path. Participants were guided along the red line by the experimenter. At each 781 

black dot, the participant was shown one word to encode along with the presentation location. This route was chosen to 782 

help attenuate contextual overlap between time and space (see methods for details). b) Example pictures of the campus 783 

areas where the experiment took place. c) A visual representation of each trial as shown on the tablet screen. After the 784 

experimenter tapped the screen, a word was displayed following a variable fixation window. Participants were then shown 785 

to the next location (black dot in (a)) and the process was repeated.   786 
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 788 

Figure 2. ‘Real world’ EEG data. a) The P300 component elicited over parietal channels (P1, Pz, P2, PO3, POz, PO4), 789 

averaged across all trials in response to stimulus onset. Only independent components explaining eye-blinks, saccades and 790 

other muscular artifacts have been removed from the data.  b) Topography of time-locked data, 0 to 400ms post-stimulus. 791 

c) Time-frequency plot depicting oscillatory activity across all trials and all channels locked to stimulus onset. 792 
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 794 
Figure 3. Bar plot representing the mean spatial and temporal ‘z-transformed contextual error score’. Zero indicates the 795 

contextual error expected by chance. A score less than zero indicates less contextual error than expected by chance, and 796 

therefore greater contextual clustering. Individual scatter points represent the mean contextual error score of each 797 

participant. Spatial and temporal clustering was significantly greater than chance (p<0.001). Temporal was significantly 798 

greater than spatial clustering (p<0.001). 799 
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 802 
Figure 4. Subsequent memory effect (hits minus misses) in the a priori region of interest (0 to 1000ms, 15 to 20Hz, all 803 

channels). a) The time course of z-transformed power differences between the later remembered (hits) and later forgotten 804 

(misses) items, averaged over all channels and frequency bins with standard error of the mean. b) Topography of significant 805 

power differences between hits and misses, averaged across the a priori time-frequency window. c) Source localisation of a 806 

priori window of interest. Differences show a significantly greater beta power decrease in the hits condition over left 807 

inferior frontal regions. 808 
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 810 
Figure 5. Subsequent memory effect (hits – misses) across low and mid-frequencies. a) Time-frequency representation of 811 

cluster t-values for each significant sliding window. All non-significant FDR corrected time-frequency windows are masked. 812 

b) Topography of significant difference between hits and misses for theta (3-4Hz, 600ms to 1200ms post-stimulus). c) 813 

Source localisation of the significant theta effect.  814 
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 817 
Figure 6. Neural correlates of spatial clustering. a) Time-frequency representation of cluster summed t-values for windows 818 

where the observed correlation coefficient was significantly different from the null hypothesis (i.e. r = 0). b) Topography of 819 

the post-stimulus theta power decrease associated with greater spatial clustering (3 – 4Hz, -1000 to 1000ms). c) Source 820 

reconstruction of the same theta power decrease accompanying greater spatial clustering.  821 
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 823 

 824 
Figure 7. Significant decreases in theta power activity for spatial clustering in comparison to temporal clustering.  a) Sensor 825 

level time-frequency representation of significant differences in theta power. b) Orthographic plot of source activity 826 

differences between spatial clustering and temporal clustering,  827 
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