

UNIVERSITY OF BIRMINGHAM

Research at Birmingham

The effects of opioids on the endocrine system:

Ali, Koddus; Raphael, Jon; Khan, Salim; Labib, Mourad H.; Duarte, Rui

DOI:

10.1136/postgradmedj-2016-134299

License

Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Ali, K, Raphael, J, Khan, S, Labib, MH & Duarte, R 2016, 'The effects of opioids on the endocrine system: an overview', Postgraduate Medical Journal, vol. 92, no. 1093. https://doi.org/10.1136/postgradmedj-2016-134299

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked 22/09/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- study or non-commercial research.

 User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

The Effects of Opioids on the Endocrine System: An overview

Koddus Ali, ¹ Jon Raphael, ^{1,2} Salim Khan, ¹ Mourad Labib, ³ Rui Duarte⁴

1. Faculty of Health, Education and Life Sciences, Birmingham City University,

Birmingham, United Kingdom

2. Department of Pain Management, Russells Hall Hospital, Dudley, United Kingdom

3. Department of Biochemistry, Russells Hall Hospital, Dudley, United Kingdom

4. Institute of Applied Health Research, University of Birmingham, Birmingham, United

Kingdom

Address for correspondence: Koddus Ali, Birmingham City University, Faculty of Health,

Education and Life Sciences, Westbourne Road, Ravensbury House, Birmingham, B15 3TN,

koddus.ali@bcu.ac.uk, 07949 282 756

Keywords: opioids, hypogonadism, chronic pain, testosterone, testosterone replacement

therapy

Word Count: 2,213

Tables: 2

References: 45

ABSTRACT

Background: Opioids commonly used for pain relief may lead to hypogonadism, which is characterised by suppression of production of the gonadotropin releasing hormone (GnRH) resulting in inadequate production of sex hormones.

Objective: To highlight the effects of opioids on the endocrine system and the development of hypogonadism.

Method: A narrative literature review of studies investigating hypogonadism in patients undertaking opioid therapy was carried out. MEDLINE, EMBASE and Cochrane Library were searched for relevant articles using a combination of both indexing and free text terms.

Results: The suppression of GnRH leading to a decrease in sex hormones has been described as the principal mechanism of opioid induced hypogonadism. However, there is no consensus on the threshold for the clinical diagnosis of hypogonadism.

Conclusion: Evidence indicates that chronic opioid use can lead to hypogonadism. Clinicians should be aware of symptomatology associated with hypogonadism and should regularly monitor patients with appropriate laboratory investigations.

INTRODUCTION

The hypothalamic-pituitary-gonadal (HPG) axis plays an important role in the development and regulation of the reproductive system. Gonadotropin releasing hormone (GnRH) is secreted by the hypothalamus in a pulsatile fashion, which regulates the release of luteinising hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary gland. In males, LH regulates the number and function of Leydig cells in the testis and hence the production of testosterone, whereas FSH stimulates Sertoli cell division and spermatogenesis. In females, FSH stimulates the differentiation of granulosa cells in the ovaries and LH stimulates the production of androgens by the theca cells, and of oestradiol and progesterone by mature granulosa cells and corpus luteal cells. Testosterone in males and oestradiol in females have a negative feedback on the pituitary inhibiting gonadotropin secretion. Opioids and prolactin reduce the pulsatile activity of GnRH inhibiting LH and FSH secretion from the pituitary.[1]

Pharmacological analgesic opioids are derived from the medicinal poppy plant *Papaver Somniferum*. These analgesics have been used for centuries to relieve acute and chronic pain.[2] Common side-effects of these drugs include sedation, dizziness, constipation, urinary retention, itchiness, nausea and respiratory depression.[3,4] Hypogonadism is one of the least recognised and investigated side-effect of opioids.[5] Although patients are generally forthcoming in reporting health related complaints to physicians, some patients may associate symptoms of hypogonadism such as decreased libido, tiredness, loss of muscle mass and strength to the pain condition or may not feel comfortable discussing some of the symptoms with the treating physician, therefore making it difficult to identify hypogonadism without routine laboratory investigations.[6]

The aim of this review is to appraise the effects of opioids on the endocrine system and the potential link between opioids and hypogonadism.

METHODS

A review of studies examining hypogonadism in patients undertaking opioids was carried out. MEDLINE (Ovid), EMBASE (Ovid) and the Cochrane Library (Wiley) databases were searched for relevant articles published up to May 6th, 2016. A combination of both indexing and free text terms was used including opioids, hypogonadism, testosterone, endocrine, androgen, luteinising hormone and follicle stimulating hormone. Studies were selected for

inclusion if they investigated hypogonadism, low testosterone or low oestrogen in chronic pain patients undertaking opioid therapy. The search was restricted to articles published in English. A hand-search of reference lists of studies meeting the inclusion criteria was also performed.

DIAGNOSIS OF HYPOGONADISM

Male hypogonadism may result from either primary testicular failure (primary hypogonadism) or secondary testicular failure (secondary hypogonadism) due to hypothalamic or pituitary disease. Primary hypogonadism is characterised by low serum testosterone and high serum LH and FSH concentrations, whereas secondary hypogonadism is characterised by low serum testosterone and inappropriately low serum LH and FSH. In females, primary ovarian failure results in low oestrogen levels and elevated FSH, while in secondary hypogonadism, low oestrogen and FSH levels are observed.

EFFECTS OF OPIOIDS ON THE ENDOCRINE SYSTEM

Male hypogonadism following the use of opioids

Opioid-induced hypogonadism is characterised by low serum levels of testosterone, LH and FSH which is associated with decreased libido, impotence, reduced body hair, poor muscle strength and fatigue.[7-10] Several studies have indicated that opioids result in low levels of testosterone and hypogonadism in men regardless of the route of administration, i.e. whether oral, intrathecal or transdermal (Table 1).[11-15] It has also been reported that the use of intrathecal opioids in men causes suppression of both LH and FSH and consequently serum testosterone levels leading to hypogonadism.[16] Amongst the various opioids prescribed, studies have suggested that buprenorphine has one of the least inhibitory effects on sex hormones due to its nature as a partial η agonist.[17,18]

It has been suggested that patients on long-term opioids are at an increased risk of developing hypogonadism compared to those treated with short term opioids.[18,19] These authors suggested that the suppressive effect by long acting opioids could be due to the sustained serum drug levels, whereas serum levels with the short acting opioids may vary throughout the day allowing intermittent GnRH and LH suppression.

Although low serum testosterone is the principle reason for opioid-induced hypogonadism, it is important to consider other factors which may affect testosterone levels.[11,20] For

example, it is well established that testosterone levels progressively decline with age and may be affected by smoking, lack of physical exercise and high BMI.[21-24]

Table 1: Studies investigating opioid induced hypogonadism in men

Study	Type of	Intervent	Participa	Results	Conclusion
Study	Study	ion	nts	Results	Conclusion
Abs et al.[12]	Retrospective	Intratheca	29 men	Decrease libido in 23	Majority of the 29
	study	1 opioids		of 24 men was	men in the study
	Ĭ	1		observed. Serum	receiving
				testosterone levels	Intrathecal opioids
				were below 9 nmol/L	developed
				in 25 men of 29 men.	hypogonadotropic
					hypogonadism.
Aloisi et	Cross	Intratheca	4 men	Testosterone levels	The observations
al.[13]	sectional	1	short term	were observed to be	indicate that men on
unitoj	study	opioids	and 6 men	low in day 7 and	long term opioids
	study	opioids	long term	continued to decrease	have significantly
			long term	until day 23 in short	reduced testosterone
				term opioid treated	levels in
				men (morphine 0.5-1.2	comparison to men
				mg/day). In long term	on short term
				opioid (0.5-2.5	Intrathecal opioids.
				mg/day), similar effect	The study suggests
				of reduced testosterone	that the testosterone
				levels was observed	levels were
				(0.99 VS 2.47ng/ml).	observed to be in
		X /		(0.55 V 5 2.47 lig/lill).	the range of those
					underlying
					hypogonadism.
Duarte et	Cross	Intratheca	20 men	17 men had	The observation
al.[16]	sectional	1 opioids	20 men	biochemical	suggests an
a1.[10]	study	Topiolus		hypogonadism and 15	association between
	Study			had free testosterone	intrathecal opioids
				levels of <180 pmol/L	and hypogonadism,
	07			and 2 with 180pmol/L	with 85% of men
	· K > /			and 250 pmol/L.	developing
				and 230 pmoi/L.	biochemical
					hypogonadism.
Fraser et	Cross	Oral	12 men	75% of 12 men were	The study
			12 111611	identified to have a	
al.[15]	sectional study	opioids		high prevalence of	demonstrated that long term oral
	Study			hypogonadism. 83% of	opioids for chronic
				men had total	pain had a high
				testosterone levels	pain nad a night prevalence rate of
					hypogonadism in
				below the age specific	
Einah at al [111]	Cmaaa	Intuctions	20	range.	men.
Finch et al.[11]	Cross	Intratheca	20 men	Testosterone levels	Gonadotropin levels
	sectional	l amisias		were found to be	were observed to be
	study	opioids		below the normal	low in male patients
				range of 10 to 35	suggesting
				$nmol/L (4.9 \pm 1.1)$	testosterone
				nmol/L) and was	suppression in the

				significantly lower than the male control group (12.2 ± 1.6 nmol/L)	central inhibition of hypothalamic GnRH or FSH and LH. Men had clear evidence of low
					levels of serum
					testosterone.
Rubinstein et	Retrospective	Short	81 men	745 of men were found	High prevalence of
al.[18]	cohort study	term and		to be hypogonadal on	hypogonadism was
		long term		long term opioids in	observed in opioid
		opioids		comparison to 345 of	users according to
				men that were on short	the duration of the
				term opioids that were	use of opioids.
				diagnosed as	
				hypogonadal.	

Female hypogonadism following the use of opioids

Several studies have shown that women may also be at risk of developing hypogonadism (Table 2).[12,15,25] Symptoms include amenorrhea, oligomenorrhea, failure to conceive and hot flushes.[15]

Fraser et al. showed that 21% of premenopausal women treated with opioids for longer than a year developed menstrual cycle abnormalities, such as oligomenorrhea and amenorrhea.[15] In a study of 32 women treated with intrathecal opioids, 22 women noted a decrease in libido and 7 developed irregular menstrual cycles.[12] In the same study, 18 postmenopausal women had significantly lower serum levels of LH and FSH than controls. It has also been reported that LH and FSH were 30% lower in premenopausal and 70% lower in postmenopausal women consuming sustained-action oral or transdermal opioids.[25]

Bawor et al. found no effect from opioids, including methadone, on testosterone levels in women.[20] However, Daniell et al. observed that testosterone and dehydroepiandrosterone sulfate (DHEA-S) levels are lower in opioid-consuming women compared to controls indicating impaired adrenal androgen production.[25]

Table 2: Studies investigating opioid induced hypogonadism in women

Study	Type of	Interventi	Participa	Results	Conclusion
A1	Study	on Totalia and	nts	D	A 11 ''
Abs et al.[12]	Retrospective	Intrathecal	44 women	Decreased libido was	All women in the
	study	opioids		present in 22 out of 32	opioid group
				women receiving	developed
				opioids. All 18	hypogonadotropic
				postmenopausal	hypogonadism with
				females were observed	15% developing
				to have decreased serum LH levels	central
					hypocorticism and
				(P<0.001) and FSH	15% developing
				levels (P=0.012).	growth hormone deficiency.
Aloisi et al.[13]	Cross	Intrathecal	16 women	No significant changes	Observations in the
Aloisi et al.[13]	sectional	opioids	short term	were detected in	study demonstrated
	study	opioids	and 18	testosterone levels in	that opioids did not
	study		women	women on short term	have a significant
			long term	opioids (morphine 0.5-	effect on
			long term	1.2 mg/day), although	testosterone levels
				low levels were present	in women on short
				on day 7, 14 and 23.	term or long term
				Long term opioids	opioids.
				(0.5-2.5 mg/day) did	-F
				not show any	
				difference and the	
				results were	
				comparable to control.	
Daniell[25]	Cross	Oral and	115	Testosterone,	The observations
	sectional	Transderm	women	oestradiol and	suggest a decrease
	study	al opioids		dehydroepiandrosteron	in adrenal androgen
				e sulphate were 48-	levels in most
				57% lower in the	women consuming
				opioid group in	sustained action
				comparison to the	oral or transdermal
				control group (P< .01-	opioids.
				.05). LH and FSH were 30% lower in	
				premenopausal women and 70% lower in	
				postmenopausal	
				women.	
				Oophorectomised	
				women not consuming	
				oestrogen, free	
				testosterone levels	
				were 39% lower in	
				opioid consumers.	
Fraser et al.[15]	Cross	Oral	14 women	21% of 14	Hypogonadism in
	sectional	opioids		premenopausal women	women was based
	study			indicated	on self reporting of
				hypogonadism with	amenorrhoea. No
				reported amenorrhea.	major findings were
				Women that underwent	present of chronic
				hysterectomy had	opioid effect on

				oestradiol levels of 349 pmol/L; therefore the prevalence of hypogonadism was 23%.	menstrual cycle in women.
Finch et al.[11]	Cross sectional	Intrathecal opioids	29 women	Median oestradiol in premenopausal women	Intrathecal opioids showed low levels
	study	opioids		were 125 pmol/l. FSH	of oestrogen in
	•			levels were 2U/L and	women in addition
				LH levels 1U/L. Whilst	to low levels in
				postmenopausal	pituitary
				women all had normal	gonadotropins
				range of oestradiol.	suggesting the
				FSH $(p = 0.0037)$ and	development of
				LH ($p = 0.0024$) levels	hypogonadism. This
				in women were	study demonstrated
				significantly lower in	small doses of
				the intrathecal opioid	intrathecal opioids
				group in comparison to	have a profound
				the control group.	effect on
					hypothalamic
					pituitary gonadal
					axis.

CONSIDERATIONS

The diagnosis of hypogonadism

The most widely accepted parameter to establish the presence of hypogonadism in men is the measurement of serum total testosterone. The Endocrine Society defines hypogonadism as a failure of the testis to produce physiological levels of testosterone and suggests 10.4 nmol/L (300ng/dl) as the threshold to classify a patient as having a low total testosterone level.[26] However, the International Society of Andrology recommends 8.0 nmol/L (230ng/dl) as the threshold, whereas the American Association of Clinical Endocrinologists recommends 6.9 nmol/L (200ng/dl) as the threshold for diagnosing males with hypogonadism.[27] The lack of consensus on the recommended testosterone threshold for low testosterone brings into question when a patient should be considered for testosterone replacement therapy (TRT).

Although there are no generally accepted lower limits of normal levels, there is a general agreement that a total testosterone level above 12.0 nmol/L (350ng/dl) does not require substitution. There is also consensus that patients with serum total testosterone levels below 8.0 nmol/L (230ng/dl) will usually benefit from testosterone replacement therapy.[21] If the serum total testosterone level is between 8.0 and 12.0 nmol/L, repeating the measurement of

total testosterone with sex hormone-binding globulin (SHBG) to calculate free testosterone may be helpful.

The serum sample for total testosterone determination should be obtained between 0700 and 1100h. Since there are known variations between assay methods, it is imperative that the practitioners use reliable laboratories and are acquainted with the reference ranges for testosterone for their specific laboratory. The measurement of free testosterone should be considered when the serum total testosterone concentration is not diagnostic of hypogonadism, particularly in obese men. There are no generally accepted lower limits of normal for free testosterone for the diagnosis of hypogonadism. However, a free testosterone level below 225 pmol/l (65 pg/ml) can provide supportive evidence for testosterone treatment. Measurements of serum LH will assist in differentiating between primary and secondary hypogonadism and serum prolactin is indicated when the serum testosterone is lower than 5.2 nmol/l (150 ng/dl) or when secondary hypogonadism is suspected.

Subsidiary diagnostic tools

Validated questionnaires have been developed to assess symptoms associated with androgen deficiency, such as Aging Male Survey (AMS) and Androgen Deficiency in the Ageing Male (ADAM).[28] The AMS evaluates the severity of symptoms over time but is also designed to measure changes in symptoms before and after TRT.[29] The ADAM tool is designed to detect men at risk for androgen deficiency but it does not provide information about the severity of symptoms.[30] Although sensitive, these questionnaires have been shown to have low specificity. Morley et al. compared the most commonly used questionnaires in148 men using bioavailable testosterone (BT) as the bio-chemical "gold standard" for the diagnosis of hypogonadism, and found the sensitivity to be 97% for the ADAM and 83% for the AMS.[29] Specificity was 30% for the ADAM and 39% for the AMS. Despite having low specificity, the AMS and other male hypogonadism questionnaires may be useful to assess the presence and severity of symptoms and for monitoring the clinical response to TRT.

Testosterone Replacement Therapy (TRT)

TRT should be considered in men with symptoms of hypogonadism and low serum testosterone with the aim of restoring normal testosterone levels. Studies have demonstrated that in addition to restoring the normal level of testosterone, TRT improves body

composition. Further benefits may include an increase in muscle mass as well as stabilisation of other endocrine functions.[31,32] In addition to physical and biomechanical benefits of TRT, a recent study reported a significant improvement in mood amongst opioid users after TRT.[33] Other long term and short term studies on hypogonadal men receiving TRT have also shown similar improvements in sexual function as well as improvements in symptoms of depression.[34,35]

Kaergaard et al. suggested that patients with low testosterone levels could score higher on pain scores.[36] English et al. also suggested that low dose transdermal testosterone therapy may provide some analgesic effects.[37] A study conducted on 16 men on testosterone patch therapy suffering from opioid induced androgen deficiency (OPIAD) showed a substantial improvement in sexual function and mood.[14] Although many studies have found benefits in the use of TRT in patients suffering from opioid induced hypogonadism, not all studies have demonstrated positive outcomes.

Huggins and Hodges identified a relationship between TRT and prostate cancer.[38] The authors reported that TRT was a contributing factor of the metastasis of prostate cancer to bone and that tumour growth rate was enhanced with the therapy. Several studies emerged shortly after which contradicted these findings. A systematic review by Shabsign et al. highlighted possible prostate cancer risk with TRT for hypogonadism.[39] In this systematic review, 11 placebo controlled and 29 non placebo controlled studies of men with no prostate cancer history and 4 studies of hypogonadal men with history of prostate cancer were included. The authors concluded that there was no evidence that testosterone replacement therapy increases the risk of prostate cancer in hypogonadal men.[39] In addition to this systematic review, a prospective study was conducted to evaluate the possible risk associated with sex hormones in serum and prostate cancer. This prospective study of 3886 men with prostate cancer and 6438 control subjects, examined the risk of prostate cancer based on serum concentration of sex hormones.[40] The findings of this study suggest that there was no association between serum concentration of sex hormones and the risk of prostate cancer. Although studies have concluded that there may be no risk of prostate cancer, we cannot neglect the fact that TRT may potentially cause adverse effects. Most common adverse effects appear to be acne and gynecomastia. However, recently developed testosterone therapy is alleged not to cause gynecomastia in patients.[41,42] Polycythaemia, an increase number of red blood cells, has also been linked with TRT.[43] It is thus recommended that

haematocrit and haemoglobin concentration should be closely monitored in patients receiving TRT.

DISCUSSION AND RECOMMENDATIONS

Several studies have indicated that opioids result in low levels of testosterone and male hypogonadism regardless of the route of administration, i.e. whether oral, intrathecal or transdermal. Women appear to be also at risk of developing hypogonadism with menstrual irregularities, reduced libido and hot flushes.

The main mechanism of opioid-induced hypogonadism appears to be suppression of GnRH resulting in low LH, FSH and sex hormones (secondary hypogonadism). In addition, there is evidence of impaired adrenal androgen production in women consuming opioids.[25]

Despite this strong evidence, hypogonadism seems to be under diagnosed in patients treated with opioids. This may be due to under-reporting of symptoms by patients and also the lack of awareness by clinicians that hypogonadism is relatively common in this group of patients. Clinical diagnosis in men is hampered by the lack of specificity of assessment tools and the lack of consensus on the threshold of serum testosterone to diagnose hypogonadism. In women, symptoms of hypogonadism may go unrecognised or may be attributed to other conditions, such as depression.

Untreated, low sex hormones can lead to osteopenia and osteoporosis in both men and women.[44,45] In men, the aim of treatment is to restore normal testosterone levels in order to improve quality of life, sense of well-being, sexual function, muscle strength and bone mineral density.

We recommend that the potential effect of opioids on sex hormones should be clearly explained to patients before commencing treatment and patients should be advised to report symptoms which may be related to hypogonadism. We recommend measuring serum testosterone routinely in men treated with opioids and, if low, this should be confirmed by repeat measurement together with serum LH and FSH. If low serum testosterone is confirmed, we recommend assessment of bone mineral density and consideration of TRT. In women taking opioids, we recommend the measurement of serum oestradiol, LH and FSH in premenopausal women who develop menstrual irregularities.

In conclusion, the use of opioids for the management of pain appears to be on the increase and the available evidence supports the notion that chronic opioid use can lead to hypogonadism. Clinicians should be aware of the symptoms and physical signs associated with hypogonadism. They should regularly monitor these patients with appropriate laboratory investigations and if hypogonadism is confirmed, hormone replacement therapy should be considered.

MAIN MESSAGE

- Long term opioid therapy may induce sexual dysfunction in men and women.
- There is no consensus on the threshold in sex hormones in the diagnosis of hypogonadism.
- Although subsidiary tools are valid in the diagnosis of low androgen levels, the precision and specificity are key issues in the use of these tools.
- Replenishing testosterone with testosterone replacement therapy has been shown to improve testosterone levels in patients; however monitoring is essential to avoid risks of developing other complications.

CURRENT RESEARCH QUESTIONS

- Are different approaches to monitoring or treating hypogonadism associated with improved clinical outcomes?
- Is there a dose-related association between opioid use and hypogonadism?
- What is the best management option for patients with opioid-induced hypogonadism without disregard for their pain relief?

5 KEY REFERENCES

- 1. Abs R, Verhelst J, Maeyaert J, et al. Endocrine consequences of long-term intrathecal administration of opioids. *J Clin Endocrinol Metab* 2000;85:2215–2222.
- 2. Daniell HW. Opioid-induced androgen deficiency. *Curr Opin Endocrinol Diabetes* 2006;13: 262-266.
- 3. Fraser LA, Morrison D, Morley-Forster P, et al. Oral opioids for chronic non-cancer pain: higher prevalence of hypogonadism in men than in women. *Exp Clin Endocrinol Diabetes* 2009;117:38–43.
- 4. Daniell HW. Opioid endocrinopathy in women consuming prescribed sustained-action opioids for control of non-malignant pain. *J Pain* 2008;9:28–36.
- 5. Duarte RV, Raphael JH, Labib M et al. Prevalence and influence of diagnostic criteria in the assessment of hypogonadism in intrathecal opioid therapy patients. *Pain Physician* 2013;16:9-14.

SELF ASSESSMENT QUESTIONS

- 1. One of the characteristics of hypogonadism is low levels of testosterone. (True)
- 2. Aging male survey is a valid questionnaire in measuring male androgen deficiency. (True)
- 3. Testosterone replacement therapy does not aid in replenishing testosterone levels in hypogonadism patients. (False)
- 4. Untreated low sex hormones can lead to osteopenia.(True)
- 5. Symptoms of hypogonadism include decreased libido, impotence and fatigue.(True)

Competing interest: None

Funding: None

Contributors: KA authored the manuscript with significant input from ML and RD. All authors commented on the manuscript and approved the final version of the manuscript.

REFERENCES

- 1. Smith H, Elliott J. Opioid-induced androgen deficiency (OPIAD). *Pain Physician* 2012;15:145-156.
- 2. Hylands-White N, Duarte RV, Raphael JH. An overview of treatment approaches for chronic pain management. *Rheumatol Int* 2016[Epub ahead of print]
- 3. Mazziotti G, Canalis E, Giustina A. Drug-induced osteoporosis: Mechanisms and clinical implications. *Am J Med* 2010;123:877-884.
- 4. Duarte R, Raphael J. The pros and cons of long-term opioid therapy. *J Pain Palliat Care Pharmaco ther* 2014;28:308-310.
- 5. Reddy RG, Aung, T, Karavitaki N, et al. Opioid induced hypogonadism. *BMJ* 2010;341:44-62.
- 6. Colameco S, Coren JS. Opioid-induced endocrinopathy. *J Am Osteopath Assoc* 2009;109:20-25.
- 7. Gudin JA, Laitman A, Nalamachu S. Opioid related endocrinopathy. *Pain Med* 2015;16 Suppl 1:S9-15.
- 8. Paice JA, Penn RD, Ryan WG. Altered sexual function and decreased testosterone in patients receiving intraspinal opioids. *J Pain Symptom Manage* 1994;9:126–131.
- 9. Genazzani AR, Genazzani AD, Volpogni C, et al. Opioid control of secretion in humans. *Hum Reprod* 1993;8:151–153.
- 10. Daniell HW. Opioid-induced androgen deficiency. *Curr Opin Endocrinol Diabetes* 2006;13:262-266.
- 11. Finch PM, Roberts LJ, Price L, et al. Hypogonadism in patients treated with intrathecal morphine. *Clin J Pain* 2000;16:251-254.
- 12. Abs R, Verhelst J, Maeyaert J, et al. Endocrine consequences of long-term intrathecal administration of opioids. *J Clin Endocrinol Metab* 2000;85:2215–2222.

- 13. Aloisi AM, Pari G, Ceccarelli I, et al. Gender-related effects of chronic non-malignant pain and opioid therapy on plasma levels of macrophage migration inhibitory factor (MIF). *Pain* 2005;115:142-151.
- 14. Daniell HW, Lentz R, Mazer NA. Open-label pilot study of testosterone patch therapy in men with opioid-induced androgen deficiency. *J Pain* 2006;7:200–210.
- 15. Fraser LA, Morrison D, Morley-Forster P, et al. Oral opioids for chronic non-cancer pain: higher prevalence of hypogonadism in men than in women. *Exp Clin Endocrinol Diabetes* 2009;117:38–43.
- 16. Duarte RV, Raphael JH, Labib M et al. Prevalence and influence of diagnostic criteria in the assessment of hypogonadism in intrathecal opioid therapy patients. *Pain Physician* 2013;16:9-14.
- 17. Bliesener N, Albrecht S, Schwager A, et al. Plasma testosterone and sexual function in men receiving buprenorphine maintenance for opioid dependence. *J Clin Endocrinol Metab* 2005;90:203–206.
- 18. Rubinstein AL, Carpenter DM, Minkoff JR. Hypogonadism in men with chronic pain linked to the use of long-acting rather than short-acting opioids. *Clin J Pain* 2013;29:840-5.
- 19. Cepeda MS, Zhu V, Vorsanger G, et al. Effect of opioids on testosterone levels: cross-sectional study using NHANES. *Pain Med* 2015;16:2235-42.
- 20. Bawor M, Dennis BB, Samaan MC, et al. Methadone induces testosterone suppression in patients with opioid addiction. *Scientific reports* 2014;4:6189.
- 21. Wang C, Nieschlag E, Swerdloff R, et al. Investigation, treatment and monitoring of late-onset hypogonadism in males. *Eur J Endocrinol* 2008;159:507–514.
- 22. Gray, A., Berlin, J.A., Mckinlay, J.B., et al. An examination of research design effects on the association of testosterone and male aging: Results of a meta-analysis. *J Clin Epidemiol* 1991;44:671–684.

- 23. Laaksonen DE, Niskanen L, Punnonen K, et al. Testosterone and sex hormone—binding globulin predict the metabolic syndrome and diabetes in middle-aged men. *Diabetes Care* 2004;27:1036–1041.
- 24. Dobs AS, Bachorik PS, Arver S, et al. Interrelationships among lipoprotein levels, sex hormones, anthropometric parameters, and age in hypogonadal men treated for 1 year with a permeation-enhanced testosterone transdermal system. *J Clin Endocrinol Metab* 2001;86:1026–1033.
- 25. Daniell HW. Opioid endocrinopathy in women consuming prescribed sustained-action opioids for control of non-malignant pain. *J Pain* 2008;9:28–36.
- 26. Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. *J Clin Endocrinol Metab* 2006;91:1995-2010.
- 27. Wang C, Nieschlag E, Swerdloff R, et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males.ISA, ISSAM, EAU, EAA, and ASA recommendations. *Eur J Endocrinol* 2008;159:507–514.
- 28. Morley JE, Perry HM, Kevorkian RT, et al. Comparison of screening questionnaire for the diagnosis of hypogonadism. *Maturitas* 2006;53:424-429.
- 29. Heinemann LAJ, Saad F, Zimmermann T, et al. The Aging Males' Symptoms (AMS) scale: Update and compilation of international versions. *Health Qual Life Outcomes* 2003;1:15.
- 30. Mohamed O, Freundlich RE, Dakik HK, et al. The quantitative ADAM questionnaire: a new tool in quantifying the severity of hypogonadism. *Int J Impot Res* 2010;22:20-24.
- 31. Katznelson L, Finkelstein J.S., Schoenfeld, DA, et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. *J Clin Endocrinol Metab* 1996;81:4358–4365.
- 32. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. *J Clin Endocrinol Metab* 1999;84:5741.

- 33. Blick G, Khera M, Bhattacharya RK, et al. Testosterone replacement therapy outcomes among opioid users: The Testim registry in the United States (TRIUS). *Pain Med* 2012;13:688–698.
- 34. Mcnicholas TA, Dean JD, Mulder H, et al. A novel testosterone gel formulation normalizes androgen levels in hypogonadal men, with improvements in body composition and sexual function. *BJU International* 2003;91:69–74.
- 35. Dean JD, Carnegie C, Rodzvilla J, et al. Long-term effects of testim(r) 1% testosterone gel in hypogonadal men. *Rev Urol* 2005;7:87-94.
- 36. Kaergaard A, Hansen AM, Rasmussen K, et al. Association between plasma testosterone and work-related neck and shoulder disorders among female workers. *Scand J Work Environ Health* 2000;26:292–298.
- 37. English KM, Steeds RP, Jones TH, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomised, double-blind, placebo-controlled study. *Circulation* 2000;102:1906–1911.
- 38. Huggins C, Hodges CV. The effect of castration of oestrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. *JAMA* 1941;43:209-223.
- 39. Shabsigh ED, Crawford A, Nehra A,et al. Testosterone therapy in hypogonadal men and potential prostate cancer risk: a systematic review. *Int J Impot Res* 2009;21:9-23.
- 40. Endogenous hormones and prostate cancer collaborative group. Endogenous Sex Hormones and Prostate Cancer: A Collaborative Analysis of 18 Prospective Studies. *J Natl Cancer Inst* 2008;100:170–183.
- 41. Rhoden EL, Morgentaler A. Risks of testosterone replacement therapy and recommendations for monitoring. *N Engl J Med* 2004;350:482-492.
- 42. Morgentaler A, Dobs AS, Kaufman JM, et al. Long acting testosterone undecanoate therapy in men with hypogonadism: results of a pharmacokinetic clinical study. *J Urol* 2008;180:2307-2313.

- 43. Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 2010;95:2536-59.
- 44. Duarte RV, Raphael JH, Southall JL, et al. Hypogonadism and low bone mineral density in patients on long-term intrathecal opioid delivery therapy. *BMJ Open* 2013;3:e002856.
- 45.Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. *Lancet* 2002;359:1929–36.