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SUMMARY STATEMENT 

VEGFR2 internalises constitutively via clathrin-mediated endocytosis, while VEGF introduces 

a new internalisation itinerary for VEGFR2, the pathway of macropinocytosis, which is 

essential for VEGF signalling and angiogenesis.  

 

 

ABSTRACT 

Endocytosis plays critical role in receptor signalling. VEGFR2 and its ligand VEGFA are 

fundamental in neovascularization. Yet, our understanding of the role of endocytosis in 

VEGFR2 signalling remains limited. Despite the existence of diverse internalisation routes, 

the only known endocytic pathway of VEGFR2 is the clathrin-mediated. Here, we show that 

this pathway is the predominant internalisation route of VEGFR2 only in the absence of 

ligand. Intriguingly, VEGF introduces a novel internalisation itinerary for VEGFR2, the 

pathway of macropinocytosis, which becomes the prevalent endocytic route of the receptor in 

the presence of ligand, while the route of clathrin becomes minor. Macropinocytic 

internalisation of VEGFR2, which mechanistically is mediated via the small GTPase CDC42, 

takes place via macropinosomes generated at ruffling areas of the membrane. Interestingly, 

macropinocytosis plays critical role in VEGF-induced signalling, endothelial cell functions in 

vitro and angiogenesis in vivo, while clathrin-mediated endocytosis is not essential for VEGF 

signalling. These findings expand our knowledge on the endocytic pathways of VEGFR2 and 

suggest that VEGF-driven internalisation of VEGFR2 via macropinocytosis is essential for 

endothelial cell signalling and angiogenesis. 

 

 
 
INTRODUCTION 

It has been originally thought that the plasma membrane is the exclusive place from where 

the ligand/receptor complexes activate downstream signalling cascades. In this view, 

endocytosis was considered to cause termination of signalling via directing the receptors to 

lysosomes for degradation. However, it is now evident that a number of receptors explore the 

endocytic routes in order to tune the duration, amplitude and specificity of the signalling 

process (McMahon and Boucrot, 2011; Miaczynska et al., 2004; Sorkin and von Zastrow, 

2009). 

 VEGFR2 is a major angiogenic receptor that plays crucial role in blood vessel 

homeostasis and vascular diseases (Herbert and Stainier, 2011; Olsson et al., 2006). 

Additionally, VEGFR2-triggered angiogenesis is a hallmark of cancer progression and 

metastasis (Herbert and Stainier, 2011; Olsson et al., 2006). Numerous previous studies 
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have contributed to a remarkable knowledge regarding the signalling cascades that are 

activated by VEGF and their importance in VEGF-mediated functions. Yet, our understanding 

on the different routes that are responsible for VEGFR2 internalisation remains limited. Thus, 

until now, the only known endocytic route for VEGFR2 is the canonical clathrin-mediated 

pathway (Bhattacharya et al., 2005; Bruns et al., 2010; Bruns et al., 2012; Ewan et al., 2006; 

Gourlaouen et al., 2013; Lampugnani et al., 2006; Lee et al., 2014; Nakayama et al., 2013; 

Pasula et al., 2012; Sawamiphak et al., 2010; Tessneer et al., 2014), while its importance in 

VEGF signalling is debated (Bruns et al., 2010; Gourlaouen et al., 2013; Lampugnani et al., 

2006; Lee et al., 2014; Pasula et al., 2012; Tessneer et al., 2014). Intriguingly, VEGF-

induced degradation of VEGFR2 persisted despite inhibition of clathrin mediated endocytosis 

(Bhattacharya et al., 2005; Fearnley et al., 2016; Gourlaouen et al., 2013; Pasula et al., 

2012; Tessneer et al., 2014), thereby suggesting that the receptor may also internalise via 

clathrin-independent endocytic routes, a possibility that remains unexplored.  

 To unambiguously address the role of endocytosis in VEGFR2 function, here we  

identified the different endocytic itineraries of VEGFR2 and tested their functional 

significance in signalling. Our findings suggest that clathrin-mediated endocytosis is the main 

endocytic route of VEGFR2 only in the absence of ligand, while addition of VEGF introduces 

a novel internalisation itinerary for VEGFR2, the route of macropinocytosis, which is essential 

for VEGF signalling, endothelial cell functions and angiogenesis. 

 

 

RESULTS 

Although constitutive internalisation of VEGFR2 is clathrin-mediated, VEGF 

introduces a novel, clathrin-independent internalisation route for the receptor. 

To systematically analyse the internalisation routes of VEGFR2, we studied the pathways of 

endocytosis both in the absence of ligand (constitutive, steady state internalisation) and in 

the presence of VEGFA, in primary endothelial cells (HUVECs). The isoform of VEGF used 

throughout the present study is VEGF165a, the most well studied ligand of VEGFR2 (Olsson 

et al., 2006), thereafter called simply VEGF. To track the internalization itineraries of 

VEGFR2, at first we employed a microscopy-based anti-VEGFR2 antibody uptake assay in 

live cells (Gourlaouen et al., 2013; Lampugnani et al., 2006; Sawamiphak et al., 2010), 

followed by an acid-wash step to strip the antibody that remains associated to the plasma 

membrane (this method does not interfere with VEGF signalling and VEGFR2 

phosphorylation, data not shown). Given that, apart from plasma membrane localization, a 

significant amount of VEGFR2 is localized at the Golgi and endosomal compartments 

(Gampel et al., 2006; Manickam et al., 2011), this assay allows detection of the molecules of 

the newly internalised receptor, excluding the interference form the intracellular or non-
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internalised pools of VEGFR2. Using this experimental approach, we confirmed that 

VEGFR2 internalises even in the absence of VEGF, in a clathrin-dependent manner (Fig. 1A) 

(Basagiannis and Christoforidis, 2016; Ewan et al., 2006). However, unlike constitutive 

endocytosis, VEGF-stimulated internalisation of VEGFR2 was, unexpectedly, only partially 

inhibited by the knockdown of CHC (Fig. 1B) (similar data were obtained by a second siRNA 

against CHC, Fig. S1A). These data were confirmed by an independent methodological 

approach, which is based on a biotin-pull down assay that detects the remaining VEGFR2 at 

the cell surface, post-VEGF activation. By employing this technique, we found that VEGF 

causes an increase of the amount of internalised VEGFR2, while CHC knockdown was 

unable to substantially interfere with the uptake of the receptor (Fig. 1C). To further evaluate 

the contribution of CME in VEGF-induced internalisation, we developed, based on previous 

reports (Bator and Reading, 1989; Smith et al., 1997), an "ELISA-like" assay that assesses 

quantitatively the levels of VEGFR2 at the cell surface. In line with the above data, 

knockdown of CHC reduced only partially the uptake of the receptor (Fig. 1D), which 

suggests that VEGF induces a clathrin-independent route of internalisation for VEGFR2. 

Endocytosis via caveolae (plasma membrane invaginations, where VEGFR2 had been found 

to be localized (Lajoie and Nabi, 2010; Mayor and Pagano, 2007; Parton and del Pozo, 2013; 

Pelkmans et al., 2004; Shvets et al., 2014)) is not responsible for this new route of 

internalisation, since, knock down of caveolin-1 had no effect on VEGF-induced endocytosis 

of VEGFR2 (Fig. 1C, D).  

 To further test the contribution of CME in VEGF-induced endocytosis of VEGFR2, we 

investigated the involvement of dynamin 2, a well-established mediator of this pathway 

(Sever et al., 2000). Knockdown of dynamin 2 had no effect on the internalization of 

VEGFR2, as revealed by the microscopy- or the biotinylation- based approach (Fig. S1B and 

S1C, respectively). Furthermore, knockdown of either dynamin 2 or CHC had no substantial 

effect on VEGF-induced degradation of VEGFR2 (Fig. S1D), which is in line with the 

conclusion that internalization (and further degradation) of VEGFR2 takes place in a 

dynamin- and clathrin-independent manner. 

  The above data, which suggested that constitutive internalization of VEGFR2 is 

mediated via clathrin while VEGF induces a clathrin-independent route of internalisation, 

were further supported using TIRF-M in live cells expressing VEGFR2-mCherry. In the 

absence of VEGF, addition of dynasore, a rapidly acting inhibitor of dynamin (Macia et al., 

2006), that blocks both clathrin and caveolae-mediated internalisation, led to an increase of 

VEGFR2 levels at the cell surface (compare left and middle images of Fig. S1E, see also 

Movie S1). Addition of VEGF caused a loss of the cell surface signal, suggesting that VEGF 

introduces a dynamin-independent route of entry (compare right and middle images of Fig. 

S1E, see also Movie S1). Combined, the above data suggest that, although in the absence 
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of ligand the receptor internalises mainly clathrin-dependently, VEGF introduces a novel, 

clathrin-independent route of internalisation for VEGFR2. 

 

VEGF induces membrane ruffling and internalisation of VEGFR2 via 

macropinocytosis. 

A hint about the identity of the new clathrin-independent route of VEGFR2 came from the 

observation that, following activation by VEGF, the size of a significant number of VEGFR2-

positive endosomes was considerably larger than the size of endosomes carrying 

constitutively internalised VEGFR2 (presented in detail in the subsequent figures). A route 

that is well-known for generating large endocytic vesicles is macropinocytosis (Kerr and 

Teasdale, 2009; Mayor and Pagano, 2007; Mercer and Helenius, 2009). To test whether 

VEGF induces macropinocytic internalisation of VEGFR2, as well as to exclude the 

possibility that the clathrin-independent internalisation of the receptor is due to the induction 

of compensatory endocytic pathways (Damke et al., 1995) (as a consequence of the long-

term inhibition of CME), we employed a number of experiments, in the absence of any 

perturbation of endocytic routes. First, given that macropinocytosis initiates at sites where 

membrane ruffling and actin reorganization takes place (Kerr and Teasdale, 2009), we 

employed dual color video microscopy to analyse the spatio-temporal coordination of the cell 

membrane dynamics (followed by GFP-actin) with receptor endocytosis (monitored by 

VEGFR2-mCherry). Interestingly, upon activation with VEGF, we observed sites of the 

membrane undergoing intense membrane ruffling (seen by the dynamics of GFP-actin), 

followed by the formation of large vesicles that were positive for both actin and VEGFR2 (see 

Movie S2 and Fig. 2A). Actin was only transiently present at these vesicles, that is, from the 

beginning of their generation until they were fully formed. Second, we quantified the size, the 

number and the fluorescence intensity of the vesicles containing VEGFR2, in quiescent and 

VEGF-stimulated cells. Interestingly, VEGF caused a striking increase of the content of 

VEGFR2 (relative fluorescence of VEGFR2) in large sized vesicles along with an increase of 

the number of these vesicles (Fig. 2B). Third, as a complementary approach, we analysed by 

electron microscopy the morphology and the size of vesicles containing VEGFR2. In VEGF-

activated cells, there was a significant increase over time of the signal of VEGFR2 (number 

of gold particles) in vesicles whose size was over 0.2 µm (Fig. 2C).  

 Subsequently, fourth, we tested the colocalization of internalised VEGFR2 with 

known markers of macropinosomes. Induction by VEGF led to internalisation of VEGFR2 in 

endosomes that were positive for high-molecular mass dextran (Fig. 3A), an established 

cargo/marker of macropinosomes (Mercer and Helenius, 2009; Schnatwinkel et al., 2004). 

Additionally, VEGFR2 colocalized with Rabankyrin-5 (Fig. 3A), an endosomal protein that, 

besides being localized to diverse endocytic vesicles (Fabrowski et al., 2013; Ishii et al., 
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2003; Schnatwinkel et al., 2004; Zhang et al., 2012), also localizes to macropinosomes 

(Schnatwinkel et al., 2004). We also tested the colocalization of internalized VEGFR2 with 

EEA1, a marker of the early endosomes (Mu et al., 1995). Triple labeling analysis revealed 

that a number of vesicles double-positive for VEGFR2 and Rabankyrin-5 were either 

negative or only poorly stained for EEA1 (Fig. S2), which is consistent with previous 

findings showing that macropinosomes are only weakly or not at all EEA1-positive 

(Schnatwinkel et al., 2004). Notably, given that the above four independent experimental 

approaches (Figs 2A, B, C, 3A, and movie S1) are employed in the absence of any 

perturbation of endocytosis, it is concluded that macropinocytosis of VEGFR2 is not a 

compensatory endocytic pathway that takes place as a consequence of the long-term 

inhibition of CME (Damke et al., 1995), but rather due to the ability of VEGF to induce 

macropinocytic internalisation of its receptor. Finally, fifth, we tested the effect of EIPA, a 

commonly used inhibitor of macropinocytosis (Commisso et al., 2014; Kerr and Teasdale, 

2009; Koivusalo et al., 2010; Kuhling and Schelhaas, 2014), on VEGF-induced 

internalisation of VEGFR2. Treatment with EIPA caused a substantial decrease of 

endocytosis of both VEGFR2 and dextran, as well as a reduction of the number of the large 

VEGFR2-positive vesicles (Fig. 3B), while internalization in small vesicles was not 

substantially affected (Fig. 3B). Concomitant treatment with EIPA and dynasore resulted in 

an almost complete inhibition of the internalization of VEGFR2 in large as well as in small 

vesicles  (Fig. 3B), suggesting that, while macropinocytosis is the main internalization route 

of VEGFR2, a fraction of the receptor is internalized via CME. To quantify the relative 

contribution of macropinocytosis and CME in VEGFR2 internalisation, we employed the 

"ELISA-like" assay described above, which determines the surface levels of VEGFR2 in 

intact cells. We found that the inhibitory effect of EIPA was approximately 2-fold higher than 

that of dynasore (EIPA and dynasore inhibited internalisation by 70% and 30%, 

respectively), and that the two inhibitors together blocked completely the uptake of the 

receptor, suggesting that CME and macropinocytosis are the sole routes of VEGFR2 

internalisation (Fig. 3C). Thus, several lines of evidence suggest that, upon induction with 

VEGF, macropinocytosis accounts for approximately 70% of VEGFR2 internalisation while 

only 30% of the receptor is internalised via CME (Figs 1B-D, 3C). Based on all the above, 

macropinocytosis emerges here as a novel route of VEGF-induced entry of VEGFR2, 

which, although operates in parallel to CME, is the prefered endocytic route of this receptor.  

 

Macropinocytosis of VEGFR2 is mediated by the small GTPase CDC42. 

To get insights into the mechanism of macropinocytosis of VEGFR2, as well as to further 

validate the macropinocytic internalization of this receptor, we tested the involvement of the 

small GTPase CDC42, a known regulator of macropinocytosis (Chen et al., 1996; Fiorentini 
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et al., 2001; Garrett et al., 2000; Koivusalo et al., 2010). Indeed, treatment of HUVECs with 

siRNAs against CDC42 inhibited internalization of both high MW dextran (known cargo of 

macropinocytosis) and VEGFR2 (Fig. 4A). Additionally, using the biochemical biotinylation 

assay, we found that knockdown of CDC42 attenuated the uptake of the receptor (Fig. 4B). 

Finally, interference with CDC42 delayed significantly VEGF-induced degradation of 

VEGFR2 (Fig. 4C). These data not only suggest that the mechanism of macropinocytosis of 

VEGFR2 involves the function of the GTPase CDC42, but also further substantiate that this 

receptor is endocytosed via macropinocytosis.  

 

Macropinocytosis is critical for VEGF signalling, endothelial cell functions and 

angiogenesis. 

 We then proceeded to address the significance of both CME and macropinocytosis, 

in VEGF-induced signalling and endothelial cell functions. Consistently with the minor 

contribution of CME (up to 30%) in VEGF-induced endocytosis of VEGFR2 (Figs 1B-D, 3C, 

S1A-C), inhibition of this route by knockdown of CHC had no effect on ERK1/2 or Akt 

phosphorylation (Fig. 5A) (similar data were obtained by a second siRNA against CHC, Fig. 

S3A). Likewise, interference with the function of dynamin, either by knockdown of dynamin 2 

(Fig. 5B) or by overexpression of dynamin-K44A (Fig. S3B), had no substantial effect on 

ERK1/2 or Akt phosphorylation. A minor inhibition of Akt phosphorylation by overexpression 

of dynamin K44A (Fig. S3B) could be explained by the additional role of dynamin in 

signalling, independently from its well established function in vesicle budding (Fish et al., 

2000)). Collectively, these data suggest that CME of VEGFR2 is not essential for VEGF-

induced signalling.   

 Interestingly, in keeping with the predominant contribution of macropinocytosis in 

VEGFR2 internalisation (~70%, Fig. 3C), treatment with EIPA resulted in a robust inhibition 

of ERK1/2 and Akt phosphorylation (Fig. 6A, top panels). Furthermore, consistently with the 

involvement of CDC42 in VEGFR2 macropinocytosis (Fig. 4A-C), knockdown of this GTPase 

led to a substantial inhibition of VEGF-induced signalling (Fig. 6A, bottom panels). To further 

evaluate the importance of macropinocytosis in VEGF-mediated functions, we tested 

whether inhibition of macropinocytosis influences VEGF-induced endothelial cell properties. 

Indeed, inhibition of macropinocytosis by either EIPA or knockdown of CDC42 blocked 

VEGF-induced endothelial cell sprouting (Fig. 6B), migration (Fig. 6C and S4A) and survival 

(Fig. 6D), while knockdown of CHC or dynamin 2 had no substantial effect (Fig. 6B-D, S4A). 

Minor effects of the knockdown of dynamin (but not of CHC) in endothelial cell sprouting (Fig. 

6B), or of the knockdown of CHC (but not of dynamin) in endothelial cell survival (Fig. 6D), 

could be due to an independent role of these trafficking regulators on the transport of critical 

molecules (other than VEGFR2), as proposed recently (Lee et al., 2014). Consistently with 
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this view, the knockdown of dynamin interfered with basal endothelial cell migration, without 

affecting the dependence on VEGF (Fig. 6C). Besides, the minor effect of CHC knockdown 

in cell survival (Fig. 6D) might be due to the fact that inhibition of CME causes a reduction of 

the levels of VEGFR2 (Fig. 1C, (Basagiannis and Christoforidis, 2016; Fearnley et al., 

2016)).  

 Finally, in line with the above in vitro data, EIPA blocked VEGF-induced formation of 

new blood vessels in matrigel angiogenesis assays in mice (Fig. S4B), as well as in corneal 

neovascularisation assays in rabbits (Fig. S4C). Overall, these data suggest that 

macropinocytosis is critical for VEGF-induced signalling, endothelial cell functions and 

angiogenesis. 

 

 

DISCUSSION 

Here we found that the prefered internalisation itinerary of VEGFR2 upon induction with 

VEGF is distinct from the internalisation route that the receptor follows constitutively (see 

model in Fig. 7). Without ligand, VEGFR2 is mainly endocytosed in a clathrin-dependent 

manner, while, unexpectedly, VEGF switches the preference of the internalisation of 

VEGFR2 towards macropinocytosis, an endocytic route that is critical for downstream 

signalling to ERK1/2 and Akt, for endothelial cell functions and for angiogenesis in vivo. 

 To date, the sole known route of internalisation of VEGFR2 is the clathrin- and 

dynamin-mediated endocytosis (Bhattacharya et al., 2005; Bruns et al., 2010; Ewan et al., 

2006; Gourlaouen et al., 2013; Lampugnani et al., 2006; Lee et al., 2014; Nakayama et al., 

2013; Pasula et al., 2012; Sawamiphak et al., 2010; Tessneer et al., 2014). Yet, intriguingly, 

several studies reported that VEGFR2 degradation persists even when the pathway of 

clathrin is blocked (Bhattacharya et al., 2005; Fearnley et al., 2016; Gourlaouen et al., 2013; 

Pasula et al., 2012; Tessneer et al., 2014), which suggests that VEGFR2 is also internalised 

via a route that is independent from clathrin. Indeed, the data presented here suggest that, 

following activation with VEGF, the preferred route of endocytosis of VEGFR2 is 

macropinocytosis, while, unexpectedly, only a minor fraction of VEGFR2 internalises via 

CME. Several lines of evidence support the macropinocytic internalisation of VEGFR2. First, 

VEGF induces the formation of large VEGFR2 positive vesicles at areas undergoing 

pronounced membrane ruffling (observed by live-cell microscopy). Second, the size of these 

vesicles is compatible with the known large size of macropinosomes (estimated by either 

confocal or electron microscopy). Third, following activation with VEGF, internalised VEGFR2 

colocalized with dextran and Rabankyrin-5. Finally, fourth, VEGFR2 internalisation was 

largely inhibited by EIPA, commonly used inhibitor of macropinocytosis (Commisso et al., 

2014; Kerr and Teasdale, 2009; Koivusalo et al., 2010; Kuhling and Schelhaas, 2014), or by 
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knocking down the small GTPase CDC42, a well-characterized mediator of macropinocytosis 

(Chen et al., 1996; Fiorentini et al., 2001; Garrett et al., 2000; Koivusalo et al., 2010).  

 Our data suggest that CME is not required for VEGF signaling to ERK1/2 or to Akt, 

while macropinocytosis is critical. This finding is consistent with previous studies showing 

that CME is not essential for VEGF-mediated activation of the downstream signaling 

cascades (Bruns et al., 2010; Lampugnani et al., 2006; Lee et al., 2014; Pasula et al., 2012; 

Tessneer et al., 2014). Yet, in contrast to these data, other studies have reported that CME is 

required for VEGF-mediated downstream signaling (Gourlaouen et al., 2013; Nakayama et 

al., 2013). It is possible that these differences are due to the different employed techniques, 

tools or cell lines. In fact, differences in the importance of endocytosis between primary 

endothelial cells and transformed cell lines has been reported before (Gourlaouen et al., 

2013). Additionally, a recent study proposed that reduced VEGF signaling upon depletion of 

CHC may be simply due to the enhanced degradation of VEGFR2, rather than due to a direct 

effect of this trafficking route in signaling (Fearnley et al., 2016). In any case, our findings are 

in line with the predominant and most recent view that CME is not required for VEGF 

signalling (Bruns et al., 2010; Lampugnani et al., 2006; Lee et al., 2014; Pasula et al., 2012; 

Tessneer et al., 2014). Thus, all in all, it appears that CME of VEGFR2 is not necessary for 

signalling to ERK1/2 ((Bruns et al., 2010; Lampugnani et al., 2006; Lee et al., 2014; Pasula 

et al., 2012; Tessneer et al., 2014) and present study) while macropinocytosis is absolutely 

essential (present study).  

 Since CME is the major route of constitutive endocytosis of VEGFR2 (in the absence 

of ligand), an appealing question raised from our findings is why does VEGF need to 

introduce a new route of internalisation for VEGFR2 (macropinocytosis). In other words, how 

could one explain that CME of VEGFR2, unlike macropinocytosis, is not able to support 

signalling? The inability of CME to support signalling could be either due to the lower 

efficiency of CME to internalise VEGFR2, or to its failure to co-internalise VEGFR2 with the 

necessary downstream molecules, or, finally, to the delivery of VEGFR2 to endosomal 

compartments that lack the appropriate downstream molecules. On the other hand, 

macropinocytosis may warrant VEGFR2 signalling by fulfilling one or more of the above 

functions. It is tempting to speculate that macropinocytosis might be responsible for 

delivering signalling complexes of the receptor to downstream targets, such as ERK1/2 and 

Akt, that may reside at specific endosomal compartments (Dobrowolski and De Robertis, 

2012; McKay and Morrison, 2007; Miaczynska et al., 2004; Platta and Stenmark, 2011; 

Schenck et al., 2008; Sorkin and von Zastrow, 2009; Teis et al., 2002; Zouggari et al., 2009). 

Consequently, macropinocytosis could link VEGFR2 to downstream cascades required to 

regulate complex angiogenic responses, such as survival (Karali et al., 2014), proliferation 

and migration of endothelial cells (Herbert and Stainier, 2011).  
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 A question that emerges from the present study is whether there are cellular 

conditions that affect macropinocytosis of VEGFR2, thereby influencing signaling, as well as 

whether macropinocytosis is the only route regulating the output of VEGFR2? Several 

observations provide the means to approach this issue. Different isoforms of VEGFA ligands 

(VEGF165, VEGF145, and VEGF121) have been found to exert differential effects on 

VEGFR2 signal transduction, trafficking and proteolysis (Ballmer-Hofer et al., 2011; Fearnley 

et al., 2016). Furthermore, VEGFR2 co-receptors, or other VEGFR2 interacting proteins, co-

internalize with - and/or regulate the trafficking properties of - VEGFR2 (Ballmer-Hofer et al., 

2011; Chen et al., 2010; Holmes and Zachary, 2008; Koch et al., 2014; Lampugnani et al., 

2006; Lanahan et al., 2013; Lanahan et al., 2010; Nakayama et al., 2013; Salikhova et al., 

2008; Sawamiphak et al., 2010). Thus, it is possible that different VEGF ligands may 

promote a differential association between VEGFR2 and its co-receptors/interacting partners, 

which may alter the balance between CME and macropinocytosis of VEGFR2, or may even 

introduce additional internalization routes for the receptor. These processes could control the 

diverse functions of the different types of endothelial cells, in different tissues, throughout the 

different stages of development, a hypothesis that warrants future investigations. 

 In the last years, macropinocytosis emerges as a critical endocytic route for the 

function of growth factors that play essential role in the vascular tissue, i.e. FGF2 (Elfenbein 

et al., 2012), PDGF (Schmees et al., 2012) and VEGF (present study). Thus, given that 

inhibition of macropinocytosis resulted in a robust inhibition of VEGF-induced angiogenesis 

in mice (present study), interference with macropinocytosis opens new perspectives in anti-

angiogenic cancer therapy or other angiogenesis-related diseases. 

 
 
MATERIALS AND METHODS 

Reagents and antibodies. The concentration of the reagents used in this study, unless 

stated otherwise, is shown below in parentheses. Recombinant human VEGFA165 (50 ng/ml) 

was obtained from Immunotools whereas dynasore (100 µmol/L) and 5-N-Ethyl-N-isopropyl 

amiloride (EIPA) (50 µmol/L) were from Sigma-Aldrich. Mouse and rabbit anti-VEGFR2 

monoclonal antibodies were from Abcam (ab9530, 1:100) and Cell Signaling (#2479, 

1:2000), respectively. The anti-actin antibody was from Millipore (MAB1501, 1:2000). Rabbit 

polyclonal antibodies against Early Endosome Antigen 1 (EEA1) and Rabankyrin-5 were 

kindly provided by Marino Zerial (MPI-CBG, Dresden, Germany).  The anti-clathrin heavy 

chain antibody was from BD Biosciences (610499, 1:3000) whereas the anti-caveolin-1 (sc-

894, 1:1000) and anti-CDC42 (sc-87, 1:200) antibodies were from Santa Cruz Biotechnology. 

The antibodies against p-VEGFR2 (Tyr1175) (#2478, 1:1000) ERK1/2 (#4695, 1:3000), p-

ERK1/2 (#4370, 1:3000), Akt (#9272, 1:1000) and p-Akt (#4060, 1:1000), were from Cell 
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Signaling. Secondary antibodies coupled to Alexa fluorophores were from Invitrogen (1:400), 

while the HRP conjugated antibodies were from Jackson Immunoresearch (1:1000). All other 

reagents were obtained from Sigma-Aldrich, unless stated otherwise. 

 

siRNAs, cDNAs and lentiviruses. The siRNAs for human clathrin heavy chain 

(5’GGGUGCCAGAUUAUCAAUUtt3’ and 5’GGGAAGUUACAUAUUAUUGtt3') were from 

Ambion whereas the siRNAs for human CDC42 (5’GAUUACGACCGCUGAGUUA3’) were 

from Dharmacon. The siRNAs for human dynamin-2 (5’CAUGCCGAGUUUUUGCACU553’), 

human caveolin-1 (5’AAGAGCUUCCUGAUUGAGAtt3’) and control siRNAs (Random DS) 

were from Biospring. CDC42 and dynamin-2 knockdown experiments were carried out using 

20 nmol/L of siRNAs. All other knockdown experiments were carried out using 50 nmol/L of 

siRNAs. Cells treated with siRNAs were assayed 60-72h post-transfection. 

The cDNA of human VEGFR2 was kindly provided by Jacques Huot (Centre de 

Recherche du CHU de Québec, Canada). The VEGFR2-mCherry expression plasmid was 

generated by sub-cloning the cDNA of human VEGFR2 in pCMV-mCherry expression vector 

with standard cloning procedures.  

Lentiviruses of dynamin wt (1 and 2) or dynamin K44A (1 and 2) were generated 

according to a previously reported protocol (Tiscornia et al., 2006). The cDNAs of dynamin 1 

and 2 (both wt and K44A) were kindly provided by Sandra Schmid (UT Southwestern, Dallas, 

Texas). HUVECs were transduced at 50% confluence, in cell growth medium supplemented 

with 8 µg/ml polybrene. The next day, medium was changed and cells were assayed 24-36h 

post-transduction. Transduction efficiency was determined by the fluorescence of GFP, 

whose expression is controlled by the same promoter as dynamin. 

 

Cell treatments. HUVECs were isolated, cultured and transfected as previously described 

(Zografou et al., 2012). Cells were routinely tested for contamination. VEGF-dependent and -

independent experiments were carried out using 2h serum deprived cells. Drug treatments 

were carried out in serum-free M199 medium. Prior to VEGF stimulation, cells were treated 

with vehicle (DMSO) or inhibitors, for 30 min.  

 

Indirect immunofluorescence microscopy. HUVECs were cultured in 35-mm diameter 

plastic dishes (appropriate for microscopy, by Ibidi), coated with collagen type I. Indirect 

immunofluorescence and analysis by confocal microscopy was employed as previously 

described (Papanikolaou et al., 2011). Images were captured using a Leica TCS SP5 II 

scanning confocal microscope and a Leica 63X HCX PL APO 1.4 NA objective. Data were 

subsequently processed in LAS AF according to the manufacturer guidelines. 
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Microscopy based internalisation assays. To monitor the internalisation fate of 

endogenous, cell surface pool of VEGFR2, HUVECs that were starved for 2h were 

transferred to 40C and the medium was replaced with ice cold blocking buffer (1% BSA in 

serum-free M199 medium buffered with 20 mmol/L HEPES). After a 30 min pre-cooling step, 

cells were treated for 1h with 10 µg/ml of mouse anti-VEGFR2 extracellular domain 

antibodies. Cells were washed 3x with blocking buffer and transferred to 370C in pre-warmed 

MI99 medium supplemented with 1.5 mg/ml 70kDa dextran Texas-Red or 50 µg/ml 

Fluorescein isothiocyanate-conjugated transferrin (Invitrogen), in the presence or absence of 

VEGF. Cells were acid-washed twice (ice cold M199 medium, pH 2.0), fixed and processed 

for immunofluorescence microscopy. The above protocol was also applied to siRNAs treated 

cells. When inhibitors were used, following antibodies incubation, cells were treated with 

vehicle or inhibitors for 30 min at 40C.  

 

Biotinylation-based internalisation assays. To assess biochemically the amount of 

internalised VEGFR2, 2h serum starved siRNAs treated HUVECs were stimulated with 

VEGF for 15 min, transferred to 40C and labeled with 0.5 mg/ml EZ-Link Sulfo-NHS-S-S-

Biotin (Thermo-Scientific) at 40C, for 20 min. Unbound biotin was quenched with 50 mM 

glycine in PBS, cells were lysed in lysis buffer (0.5% Triton X-100, 0.5% NP-40, 50 mM Tris 

pH 7.5, 100 mM NaCl, 5 mM EDTA and Roche protease inhibitors cocktail) and processed 

for pull-down using streptavidin beads.  

 

Total Internal Reflection Fluorescence Microscopy. Live cell imaging of plasma 

membrane VEGFR2 was accomplished by Total Internal Reflection Fluorescence 

Microscopy (TIRF-M). Cells were analysed using a Leica AM TIRF MC set up on a Leica 

DMI6000 B microscope and a Leica 100X HCX PL APO 1.4 NA objective.  

For live cell TIRF-M analysis, the medium of HUVECs transfected with a VEGFR2-mCherry 

expression plasmid was replaced with microscopy solution, cells were transferred to a 370C 

chamber and analysed by TIRF-M (48h post-transfection). During analysis, dynasore and 

VEGF were added sequentially at the indicated time points. 

 

Electron microscopy. HUVECs were stimulated with VEGF for 10 or 20 min and fixed in 4% 

formaldehyde and 0.1% glutaraldehyde in 1x PHEM buffer for 60-90 min. Cryo-sectioning 

and immuno-labelling was performed as described elsewhere (Schmidt et al., 2011). In brief, 

ultrathin sections (50–70 nm) from gelatin-embedded and frozen cell pellets were obtained 

using an FC7/UC7-ultramicrotome (Leica, Vienna, Austria). Immunogold labeling was carried 

out in thawed sections using rabbit anti-VEGFR2 cytoplasmic domain antibodies (1:20) and 5 

nm protein A-gold (UMC Utrecht University, Utrecht, The Netherlands) (1:50). A mixture 
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of uranyl acetate and methyl cellulose was used for embedding and negative staining. 

Sections were examined using a CM10 Philips transmission electron microscope with an 

Olympus ‘Veleta’ 2kx2k side-mounted TEM CCD camera. For the counting of gold particles, 

we used the stereology method, by systematic uniform random sampling, in 2D space. 

 

Surface VEGFR2 ELISA. Previous studies had developed protocols for the measurement of 

surface antigens using the cell-surface ELISA technique (Bator and Reading, 1989; Smith et 

al., 1997). Here we have established the conditions for the measurement of VEGFR2 on the 

surface of HUVECs. In brief, HUVECs cultured in 96-well dishes were treated with inhibitors, 

stimulated with VEGF for 30 min, washed 3x with PBS and fixed with 3.7% PFA for 20 min. 

Non-specific sites were blocked with 1% BSA in PBS (blocking buffer) for 1h. Cells were 

incubated for 2h with goat anti-VEGFR2 extracellular domain antibodies (R&D Systems, 

AF357, 1.5 µg/ml in blocking buffer), washed 5X with blocking buffer and treated with anti-

goat horseradish peroxidase-coupled secondary antibodies, for 1h. Subsequently, the cells 

were washed 5X and the reaction was initiated by the addition of 250 µl of substrate buffer 

(20 mg o-phenylenediamine in 50 ml phosphate-citrate buffer, pH 5.0, supplemented with 20 

µl H2O2 30%). The reaction was terminated by the addition of 50 µl H2SO4 2 mol/L and the 

absorbance was measured at 492 nm. Measured values were normalized according to the 

total protein of samples that were treated in parallel and lysed before the fixation step of the 

assay. For siRNA experiments, cells were cultured and transfected in 24-well dishes. 48h 

post-transfection, cells were detached using trypsin, seeded confluent in 96-well plates and 

assayed after 24h. Non-stimulated cells were processed in parallel. 

 

Spheroid sprouting, migration and MTT assays. The generation of HUVEC spheroids was 

performed according to a previously described protocol (Korff and Augustin, 1999). Briefly, 

siRNAs treated cells were trypsinized 24h post-transfection and HUVEC spheroids were 

generated using defined number of cells (600 cells), for 24h, in hanging drops cultures, in cell 

growth medium supplemented with 0.24% w/v carboxylmethylcellulose. Spheroids were 

harvested and embedded in 500 µl of rat type I collagen gels (supplemented with M199 

medium, 10% FCS and 0.24% w/v carboxylmethylcellulose) and were stimulated with 50 

ng/ml VEGF (in 100 µl of M199 medium, on top of the gels), for 16h. In the case of EIPA 

treatment, EIPA (50 µΜ) was added to the gels in combination with VEGF. Images of 

spheroids were captured via a Leica DMI6000 B microscope and spheroid sprouting was 

analyzed using ImageJ software. 

 Migration of endothelial cells was assessed via the wound healing assay. Confluent 

HUVEC monolayers grown in 24-well plates were serum-starved for 6h in M199 medium 

supplemented with 2% FCS and linear scratch injuries were applied with a 200 µl plastic 



 14 

pipette tip. Cells were washed 3x with HBSS and treated with 50 ng/ml VEGF in serum 

starvation medium, for 14h. Non-stimulated cells were analysed in parallel. In the case of  

treatment with EIPA, cells were pre-incubated with 50 µM EIPA for 30 min, prior to the 

addition of VEGF. Images of random injury areas were acquired at 0 and 14h using a Leica 

DMI6000 B microscope. Migration of endothelial cells was analyzed using the ImageJ 

software. 

 Survival of endothelial cells was determined by the MTT assay. 24h post-transfection, 

siRNAs treated HUVECs were trypsinized and seeded in 96-well plates at a density of 6x103 

cells. Next day, cells were serum starved for 24h in M199 medium supplemented with 2% 

FCS. Then, the media were supplemented with 50 ng/ml VEGF (VEGF was replenished 

every 24h) and cells were incubated for 48h. At the end of the incubation, cells were treated 

with 0.5 mg/ml 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), for 4h, at 

37°C. Then, the media were aspirated and formazan crystals were dissolved by the addition 

of 200 µl of DMSO. Subsequently, plates were agitated gently and the optical density was 

measured at 570nm. VEGF-untreated cells were analyzed in parallel. 

  

In vivo Matrigel and rabbit cornea angiogenesis assay. Animal experiments have been 

performed in accordance with the guidelines of the European Commission for animal care 

and welfare (Directive 2010/63/EU) and the local and national ethical committees.  

  The Matrigel plug assay was employed as described before (Finetti et al., 2008). 

VEGF, in the presence of EIPA, was diluted in Matrigel (Becton Dickinson, growth factors 

and phenol red-free) on ice. Final drug concentrations were 500 ng/plug VEGF and 50 

µmol/L EIPA. C57/B6J mice (12 week old, 15 animals in total) were subcutaneously injected 

in the dorsal midline region with 0.4 mL of Matrigel alone or with Matrigel containing the 

stimuli. After 7 days, the mice were euthanized and implants were harvested. Plugs were re-

suspended in 1 ml of Drabkin's reagent (Sigma), for 18h on ice, and haemoglobin 

concentration was determined by absorbance at 540 nm and compared with a standard 

curve (Sigma). 

Angiogenesis was studied in the cornea of male New Zealand white rabbits (n=8, 

Charles River) as described (Monti et al., 2013). Animals were anesthetized by i.m. injection 

of xilazine 2% (0.5 ml/animal) andtiletamine/zolazepam (10 mg/kg). The depth of anesthesia 

was checked as reflex to pressure. Each eye was enucleated by the use of a dental dam, 

and a local anesthetic (i.e. 0.4% benoxinate) was instilled on the ocular surface just before 

surgery. The pellet implantation procedure started with a linear intrastromal incision using a 

surgical blade. The preparation of the corneal pocket for the pellet implant was made in the 

lower half of the cornea with a 1.5 mm pliable silver spatula with smooth edge blade. Pellets 

were implanted at 2 mm from the limbus to avoid false positives due to mechanical stress 
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and to favor gradient diffusion of test substances in the tissue toward the endothelial cells at 

the limbal plexus. To test the effect of EIPA (12,5 µg/pellet), a fully competent dose of VEGF 

(200 ng/pellet) was administered in the presence of the inhibitor, being the two substances 

released from separate and adjacent pellets. The corneas were observed, and digital images 

were taken by means of a slit-lamp stereomicroscope. 

 

Quantifications. The quantification of immunoblots and immunofluorescence images was 

performed using the ImageJ software. For the analysis of the number and the size of 

VEGFR2-positive vesicles, vesicles were categorized in groups based on their size, where 

each group should contain at least 10 vesicles, in VEGF stimulated cells. For in vivo 

experiments, angiogenic score (number of progressing vessels/mm2) was calculated during 

time in a blind manner by the use of ImageJ. In the case of EM experiments, for each time 

point (10 and 20 min, 3 times each, on 2 different sample grids), a total number of 250 gold 

particles were counted by meandering scanning. 5 cell components were assumed (plasma 

membrane, vesicles 0.2 µm<, vesicles >0.2 µm, nucleus, mitochondrion) for counting. In the 

ELISA-like assay of surface VEGFR2, an immobile fraction of VEGFR2 (40% of total), which 

does not internalise in the presence of VEGF, was excluded from all values.  

 

Statistical analysis. Data plotting and statistical analysis was performed in GraphPad 

Prism. Statistical differences were evaluated using the student t-test, for two-group 

comparison, or analysis of variance (ANOVA) followed by Dunnett’s post hoc analysis (one-

way ANOVA) or Bonferroni post-tests analysis (two-way ANOVA), for comparisons of more 

than two groups. The values reported in the figures represent mean ± S.D. calculated from at 

least 3 replicates for each experimental setting. 
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FIGURE LEGENDS 

Figure 1. VEGF introduces a clathrin- and dynamin-independent internalisation 

pathway for VEGFR2.  

HUVECs treated with siRNAs against CHC were incubated with a mouse anti-VEGFR2 

extracellular domain antibody at 40C, transferred to 370C and the receptor was allowed to 

internalise for 15 min, in the absence (A) or the presence (B) of VEGF and FITC-transferrin. 

Prior to fixation, membrane bound antibodies and transferrin were removed by acid wash and 

the internalised receptor was revealed by fluorescently labeled secondary antibodies, using 

confocal microscopy. Inhibition of transferrin uptake verified the effective inhibition of clathrin-

mediated endocytosis. Quantification of VEGFR2 internalisation (relatively to initial VEGFR2 
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levels of non-stimulated cells) is shown on the right of immunofluorescence images (10 µm 

scale bars). The data shown are representative of 3 independent experiments (n=15 cells, 

mean ± S.D., ***P<0.001, t-test). 

(C) CHC or caveolin-1 siRNAs treated HUVECs were incubated with VEGF for 15 min, 

transferred to 40C and surface proteins were labeled with cell impermeable biotin. Surface 

biotinylated proteins were pulled-down by streptavidin-beads and analysed by 

immunoblotting. Surface VEGFR2 was revealed using rabbit anti-VEGFR2 antibodies. 

Quantification of VEGFR2 is shown on the right of the immunoblots (n=3, mean ± S.D., one-

way ANOVA, Dunnett).  

(D) Quantitative ELISA-like assay of surface VEGFR2 in CHC or caveolin-1 knocked down 

cells upon induction with VEGF (30 min). Values represent the percentage (%) of the 

receptor that remains at the plasma membrane of stimulated cells, compared to the levels of 

quiescent cells. Data shown are representative of 3 independent experiments performed in 

quadruplicates (mean ± S.D., **P<0.01, one-way ANOVA, Dunnett).  

 

Figure 2. VEGF induces the internalization of VEGFR2 in large endocytic vesicles. 

(A) Live cell time-lapse video microscopy of HUVECs expressing GFP-actin and mCherry-

VEGFR2. Magnified images show the VEGF-induced, progressive formation of an enlarged 

VEGFR2-positive vesicle (mCherry-VEGFR2), driven by extensive membrane ruffling (GFP-

actin). Scale bar represents 3 µm. See also Movie S2. 

(B) Analysis of the effect of VEGF on the number and fluorescence intensity of VEGFR2-

positive vesicles. The number of VEGFR2-positive vesicles (lower graph) and the intensity of 

VEGFR2 fluorescence (upper graph) is presented (as fold of increase over constitutive 

internalisation) in relation to the size of the vesicles. The data shown are derived from 3 

independent experiments (n=20 cells, mean ± S.D., ***P<0.001, **P<0.01 and *P<0.05, t-

test). 

(C) Electron microscopy analysis of VEGFR2-positive vesicles. Immunogold labeling of 

VEGFR2 (5 nm gold, arrowheads) on ultrathin cryosection of HUVECs stimulated with VEGF 

for 10 (left) or 20 min (right). Scale bars represent 500 nm. The graph on the right shows 

quantification of the number of gold particles (n=250) in vesicles below or above 0.2 µm, 

after 10 or 20 min of treatment with VEGF. The white bars show the number of gold particles 

in vesicles that have size <0.2 µm, while the black bars show the gold particles in large 

vesicles >0.2 µm (n=3, mean ± S.D., *P<0.05, **P<0.01, t-test).  

 

Figure 3. VEGF induces a preferential internalization of VEGFR2 via macropinocytosis. 

(A) Immunofluorescence microscopy analysis of VEGFR2 colocalization with dextran and 

Rabankyrin-5. HUVECs were incubated with an anti-VEGFR2 antibody at 40C and were 
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transferred to 370C for 15 min, in the presence of 70 kDa dextran, without (top) or with VEGF 

(bottom). Cells were acid washed, fixed and stained for endogenous Rabankyrin-5. The fold 

of induction of internalisation of VEGFR2, upon treatment with VEGF, is indicated in the inset 

text in the bottom left image (10 µm scale bars). 

(B) Immunofluorescence microscopy analysis of VEGFR2 internalisation upon inhibition of 

macropinocytosis. Plasma membrane anti-VEGFR2 antibody labeled HUVECs were treated 

with vehicle (top) or EIPA (middle) or EIPA+dynasore (bottom) and stimulated with VEGF (15 

min), in the presence of 70 kDa dextran. Cells were acid-washed, fixed and stained for 

endogenous Rabankyrin-5. Scale bars represent 10 µm. Quantification of the number and 

size of VEGFR2-positive vesicles is shown on the right of immunofluorescence images. The 

data shown are representative of 3 independent experiments (n=15 cells, mean ± S.D.) 

(C) Quantitative ELISA-like assay of surface VEGFR2. Effect of inhibition of dynamin (by 

dynasore) or of macropinocytosis (by EIPA) or of dynamin and macropinocytosis (by 

EIPA+dynasore) on the internalisation of VEGFR2. HUVECs were treated for 30 min with 

vehicle or inhibitors, stimulated with VEGF (30 min) and assayed using surface ELISA. Data 

shown are representative of 3 independent experiments performed in quadruplicates (mean 

± S.D., ***P<0.001, **P<0.01, one-way ANOVA, Dunnett). 

 

Figure 4. Macropinocytosis of VEGFR2 is mediated by CDC42. 

(A) HUVECs were treated with siRNAs against CDC42, incubated with a mouse anti-

VEGFR2 extracellular domain antibody at 40C and transferred to 370C, where the receptor 

was allowed to internalise for 15 min, in the absence (left) or the presence (right) of VEGF 

and 70kDa dextran. Prior to fixation, membrane bound antibodies and dextran were removed 

by acid wash and the internalised receptor was revealed by incubation with fluorescently 

labeled secondary antibodies, using confocal microscopy. Quantification of VEGFR2 

internalisation, from three independent experiments, is shown on the right of the 

immunofluorescence images (10 µm scale bars) (n=30 cells, mean ± S.D., ***P<0.001, t-

test). 

(B) HUVECs were treated with siRNAs against CDC42, incubated with VEGF for 15 min, 

transferred to 40C and surface proteins were labeled with cell-impermeable biotin. Surface 

biotinylated proteins were pulled-down by streptavidin-beads and analysed by 

immunoblotting. Surface VEGFR2 was revealed using rabbit anti-VEGFR2 antibodies. 

Quantification of VEGFR2 internalisation is shown on the right of the immunoblots (n=3, 

mean ± S.D., ***P<0.001, t-test).  

(C) HUVECs were treated with siRNAs against CDC42, serum-starved for 2h, incubated with 

100 µm cycloheximide for 30 min and stimulated with VEGF for the indicated time intervals. 
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Quantification of VEGFR2 levels is shown on the right of the immunoblots (n=4, mean ± S.D., 

***P<0.001, two-way ANOVA, Bonferroni).  

  

Figure 5. Clathrin-mediated endocytosis is not essential for VEGF signalling. 

HUVECs transfected with siRNAs against clathrin heavy chain, or caveolin-1 (A), or dynamin 

2 (B), were stimulated with VEGF and subjected to immunoblotting analysis using antibodies 

against ERK1/2 and Akt (phosphorylated or total). The efficiency of dynamin 2 knockdown 

was determined by semi-quantitative RT-PCR, 60h post-transfection of the cells. Levels were 

normalised to GAPDH. Bar graphs on the right show quantification of the immunoblots (n=3, 

mean ± S.D., two-way ANOVA, Bonferroni). 

 

Figure 6. Macropinocytosis is critical for VEGF signalling and in vitro angiogenic 

responses. 

(A) Treatment with EIPA or knockdown of CDC42 inhibits VEGF-induced activation of 

ERK1/2 and Akt. HUVECs treated with vehicle or EIPA (upper panels) or HUVECs treated 

with siRNAs against CDC42 (bottom panels) were stimulated with VEGF and subjected to 

immunoblotting analysis using antibodies against ERK1/2 and Akt (phosphorylated or total). 

Bar graphs on the right show quantification of the immunoblots (n=3, mean ± S.D., *P<0.05, 

***P<0.001, two-way ANOVA, Bonferroni). 

(B) VEGF-induced endothelial cell sprouting is inhibited by EIPA or knockdown of CDC42. 

(left) HUVEC spheroids were embedded in 3D collagen gels and were treated with vehicle or 

EIPA in the presence of VEGF for 16h (upper panel). Similarly, HUVEC spheroids derived 

from cells treated with siRNAs against CDC42, CHC, or dynamin 2 were treated with VEGF 

as above (lower panel). Images are representative of 3 independent experiments. 

Quantification of the mean sprout length of 8 randomly selected spheres for each 

experimental setting is shown on the right of the images (mean ± S.D., **P<0.01, ***P<0.001, 

t-test). 

(C) Knockdown of CDC42 or treatment with EIPA abolishes VEGF-induced migration of 

endothelial cells. Confluent HUVEC cultures of cells treated with siRNAs against CDC42, 

CHC, or dynamin 2, or, EIPA-treated cells (30 min), were scratched linearly with a pipette tip 

and stimulated with VEGF for 14h. VEGF untreated cells were analysed in parallel. The bar 

graph depicts the average migration of the cells towards the centre of the wound (distance in 

µm) (n=12 injury areas from 3 independent experiments, mean ± S.D., ***P<0.001, t-test). 

(D) VEGF-induced survival of endothelial cells is CDC42-dependent. The cell viability of 

HUVECs treated with siRNAs against CDC42, CHC, or dynamin 2, was assessed by the 

MTT assay. Bar graph depicts % fold of VEGF-induced survival of HUVECs relatively to 
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VEGF-untreated cells. Values are representative of three independent experiments carried 

out in triplicates (mean± S.D., *P<0.05, ***P<0.001, t-test). 

 

Figure 7. Schematic representation (model) of constitutive and stimulated 

internalisation routes of VEGFR2 and their role in VEGFR2 function. (left) At steady 

state, quiescent VEGFR2 is internalised via the clathrin-dependent internalisation route 

(CME). (right) In the presence of VEGF, VEGFR2 is endocytosed via both CME and 

macropinocytosis, the later being the preferred route. Macropinocytosis of VEGFR2 is 

mediated by CDC42 and is critical for VEGF-induced signalling. 
















