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Summary:		

Hypermethylation	 of	 tumor	 suppressor	 gene	 (TSG)	 promoters	 confers	 growth	

advantages	to	cancer	cells,	but	how	these	changes	arise	is	poorly	understood.	Here,	

we	 report	 that	 tumor	 hypoxia	 reduces	 the	 activity	 of	 oxygen-dependent	 TET	

enzymes,	which	catalyze	DNA	de-methylation	 through	5-methylcytosine	oxidation.	

This	 occurs	 independently	 of	 hypoxia-associated	 alterations	 in	 TET	 expression,	

proliferation,	metabolism,	HIF	activity	or	reactive	oxygen,	but	directly	depends	on	

oxygen	shortage.	Hypoxia-induced	 loss	of	TET	activity	 increases	hypermethylation	

at	 gene	 promoters	 in	 vitro.	 Also	 in	 patients,	 TSG	 promoters	 are	 markedly	 more	

methylated	 in	 hypoxic	 tumors,	 independently	 of	 proliferation,	 stromal	 cell	

infiltration	 and	 tumor	 characteristics.	 Our	 data	 suggest	 cellular	 selection	 of	

hypermethylation	 events,	 with	 almost	 half	 of	 them	 being	 ascribable	 to	 hypoxia	

across	 tumor	types.	Accordingly,	 increased	hypoxia	after	vessel	pruning	 in	murine	

breast	 tumors	 increases	 hypermethylation,	 while	 restored	 tumor	 oxygenation	 by	

vessel	 normalization	 abrogates	 this	 effect.	 Tumor	 hypoxia	 thus	 acts	 as	 a	 novel	

regulator	underlying	DNA	methylation.		
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Mutational	 processes	 underlying	 oncogenesis	 are	 well	 studied.	 Apart	 from	

genetic	changes,	 tumors	are	also	epigenetically	distinct	 from	their	 tissue	of	origin.	

Most	 established	 are	 DNA	 methylation	 changes,	 but	 the	 mechanisms	 underlying	

these	are	poorly	understood1.	

In	 tumors,	 DNA	 methylation	 changes	 involve	 global	 hypomethylation,	 and	

local	 hypermethylation	 (HM)	 of	 CpG-rich	 gene	 promoters1.	 HM	 frequently	 affects	

tumor	 suppressor	 genes	 (TSGs),	 down-regulating	 their	 expression	 and	 thus	

contributing	 to	 oncogenesis.	 How	 methylation	 changes	 arise	 remains	 debated.	

Following	an	instructive	model,	genetic	changes	are	a	prerequisite	for	methylation	

changes2.	 For	 instance,	 BRAF	 mutations	 lead	 to	 HM	 in	 colorectal	 tumors3.	 A	

limitation	 of	 this	model	 is	 that,	while	 pervasive,	 HM	 of	 TSGs	 can	 be	 explained	 by	

somatic	mutations	in	only	a	fraction	of	tumors.	As	a	striking	example,	extensive	HM	

was	found	in	ependymomas	devoid	of	somatic	mutations4.	

In	contrast	to	methylation,	DNA	de-methylation	mechanisms	have	remained	

elusive,	until	 recently,	when	ten-eleven	translocation	methylcytosine	dioxygenases	

(TET1,	 TET2	 and	 TET3)	 were	 shown	 to	 oxidize	 5-methylcytosine	 (5mC)	 to	 5-

hydroxymethylcytosine	 (5hmC)5.	 5hmC	 and	 its	 further	 oxidized	 derivatives	 are	

subsequently	replaced	with	an	unmodified	C	by	base-excision	repair	to	achieve	de-

methylation6.	Reduced	5mC	oxidation	due	to	decreased	TET	activity	thus	increases	

DNA	methylation.	Mutations	suppressing	TET	activity	and	thus	reducing	5hmC	are	

often	 found	 in	myeloid	 leukemia	 and	 glioblastoma6-9,	 but	 less	 frequently	 in	 other	

tumor	types.	In	contrast,	5hmC	loss	is	pervasive	in	tumors	and	even	proposed	as	a	

cancer	hallmark10.	Thus,	similar	to	HM,	somatic	mutations	explain	the	loss	of	5hmC	

in	only	a	fraction	of	tumors,	and	it	remains	unclear	which	other	factors	trigger	this	

loss2.	

Interestingly,	 TET	 enzymes	 are	 Fe2+	 and	 α-ketoglutarate-(αKG)-dependent	

dioxygenases,	 similar	 to	 HIF-prolyl-hydroxylase	 domain	 proteins	 (PHDs)11.	 The	

latter	 are	 sensitive	 in	 their	 activity	 to	 oxygen	 and	 act	 as	 oxygen	 sensors:	 under	

normoxic	conditions	PHDs	hydroxylate	the	HIF	transcription	factors,	targeting	them	
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for	 proteasomal	 degradation,	 whereas	 under	 hypoxia	 they	 fail	 to	 hydroxylate,	

leading	 to	 HIF	 stabilization	 and	 hypoxia	 response	 activation12.	 Expanding	 tumors	

continuously	become	disconnected	 from	their	vascular	supply,	 resulting	 in	vicious	

cycles	 of	 hypoxia	 followed	 by	 HIF	 activation	 and	 tumor	 vessel	 formation13.	

Consequently,	 hypoxia	 pervades	 in	 solid	 tumors,	with	 oxygen	 levels	 ranging	 from	

5%	to	anoxia,	and	about	a	third	of	tumor	areas	containing	<0.5%	oxygen14.	Although	

DNA	HM	and	hypoxia	are	well-recognized	cancer	hallmarks,	 the	 impact	of	hypoxia	

on	 TET	 hydroxylase	 activity	 and	 subsequent	 DNA	 (de)methylation	 has	 not	 been	

assessed.	 We	 here	 hypothesize	 that	 a	 hypoxic	 micro-environment	 decreases	 TET	

hydroxylase	activity	in	tumors,	leading	to	an	accumulation	of	5mC	and	acquisition	of	

HM.		



Hypoxia	causes	hypermethylation	 	 	
	

Page	5	of	52	
	

Impact	of	hypoxia	on	DNA	hydroxymethylation	activity	

To	assess	whether	hypoxia	affects	TET	activity,	we	exposed	10	human	and	5	

murine	 cell	 lines	with	 detectable	 5hmC	 levels	 for	 24	 hours	 to	 21%	or	 0.5%	O2,	 a	

level	commonly	observed	in	tumors14.	Hypoxia	induction	was	verified	and	DNA	was	

extracted	 and	 profiled	 for	 nucleotide	 composition	 using	 LC/MS.	 11	 cell	 lines,	

including	eight	cancer	cell	lines,	displayed	5hmC	loss	(Figure	1a).	However,	this	did	

not	 translate	 into	 global	 5mC	 increases	 (Extended	 data	 figure	 1),	 presumably	

because	5mC	is	more	abundant	and	at	many	sites	not	targeted	by	TETs15.	The	effect	

of	 hypoxia	 was	 concentration-	 and	 time-dependent:	 a	 dose-response	 revealed	

gradual	 reductions	 from	1-2%	O2	onwards	 and	 a	 time	 course	 respectively,	 a	 20%	

and	 40%	 reduction	 after	 15	 and	 >24	 hours	 (Figure	 1b-c).	 Loss	 of	 5hmC	was	 not	

secondary	 to	 increased	 5hmC	 oxidation	 to	 5fC16,	 as	 hypoxia	 also	 decreased	 5fC	

levels	in	ES	cells	(Extended	data	figure	1).		

In	some	cell	lines,	5hmC	failed	to	decrease	under	hypoxia.	Particularly,	5hmC	

was	 unaffected	 in	H1299	 and	 4T1,	 and	 even	 increased	 in	 SHSY5Y	 and	 SK-N-Be2c	

neuroblastoma	 cells,	 as	 reported	 previously17	 (Figure	 1a).	 When	 profiling	 TET	

expression,	 neuroblastoma	 cells	 displayed	 potent	 hypoxia-induction	 of	 TET1	 and	

TET2,	H1299	and	4T1	exhibited	intermediate	increases,	and	all	other	cell	lines	no	or	

only	modest	increases	of	some	TET	paralogues	(Figure	1a).	Tet	expression	changes	

were	confirmed	at	the	protein	level	in	murine	cell	lines,	and	HIF1β-ChIP-seq	further	

confirmed	that	HIF	binds	near	the	promoters	of	TETs	that	are	upregulated,	but	not	

near	those	that	are	unaltered	(Extended	data	figure	2a-b),	in	keeping	with	the	cell-

type	 specificity	 of	 the	 hypoxia	 response12.	 Importantly,	 no	 cell	 line	 showed	

decreased	 TET	 expression,	 indicating	 that	 5hmC	 loss	 is	 not	 due	 to	 reduced	 TET	

expression.		

Since	 hypoxia	 differentially	 affects	TET	 expression,	we	 correlated	 hypoxia-

associated	 changes	 in	 overall	TET	 expression	 (the	 combined	 abundances	 of	TET1,	

TET2	and	TET3)	with	changes	in	5hmC	levels.	Hypoxia	reduced	5hmC	on	average	by	

44%	 (P=0.0097)	 in	 each	 cell	 line	 (Figure	 1d),	 independently	 of	 TET	 expression	

changes.	 Nevertheless,	 changes	 in	 TET	 expression	 also	 determined	 5hmC	 levels.	



Hypoxia	causes	hypermethylation	 	 	
	

Page	6	of	52	
	

This	was	 confirmed	by	 siRNA	knockdown	of	TET2,	which	 constitutes	~60%	of	 all	

TET	 expression	 in	MCF7	 cells:	 this	 reduced	5hmC	 levels	 also	 by	~60%	 (Extended	

data	 figure	2c).	Likewise,	Tet1-KO	ES	cells	displayed	 lower	5hmC	levels	 than	wild-

type	 ES	 cells,	 in	 which	 Tet1	 is	 the	 predominantly	 expressed	 Tet	 paralogue,	 both	

under	21%	or	0.5%	O2	(Figure	1a,	Extended	data	figure	2d).	

Hence,	5hmC	levels	after	hypoxia	appear	to	be	determined	by	altered	oxygen	

availability	and	by	changes	in	TET	abundance.	This	explains	why	cell	 lines	without	

hypoxia-induced	upregulation	of	TETs	display	5hmC	loss,	whereas	cell	lines	strongly	

upregulating	TETs	compensate	this,	resulting	in	equal	or	increased	5hmC	levels.	

Changes	secondary	to	hypoxia	do	not	affect	DNA	hydroxymethylation	

Apart	 from	gene	expression,	TET	activity	 is	affected	by	a	variety	of	 cellular	

processes,	 including	 changes	 in	 reactive	 oxygen	 species	 (ROS),	 Krebs	 cycle	

metabolites	and	proliferation7,11,17,18.	Since	such	changes	might	also	occur	secondary	

to	hypoxia,	we	investigated	whether	they	underlie	5hmC	reductions	in	hypoxia.		

Firstly,	ROS	could	affect	TETs	 in	 the	nucleus	 through	 inactivation	of	Fe2+	 in	

their	 catalytic	 domain.	 Although	 ROS	 was	 overall	 increased	 upon	 hypoxia,	 no	

increase	 in	 nuclear	 ROS	 was	 detected	 by	 a	 nucleus-specific	 ROS	 probe	 or	 8-oxo-

guanine	 quantification	 (Extended	 data	 figure	 3a-f).	 Ascorbate	 supplementation	 to	

counteract	ROS	increases19,	moreover	failed	to	rescue	5hmC	loss	(Figure	1e).	

Secondly,	changes	in	metabolites	such	as	succinate	and	fumarate	affect	TET	

function	 by	 competing	 with	 its	 cofactor	 αKG7.	 The	 concentration	 of	 these	

metabolites	was	however	not	increased	in	hypoxic	MCF10A	or	ES	cells,	and	only	3-

4-fold	 in	 MCF7	 cells	 (Extended	 data	 figure	 3g-i).	 The	 onco-metabolite	 2-

hydroxyglutarate	was	also	increased	in	hypoxic	MCF7	and	MCF10A	cells,	but	levels	

were	 only	 ~5-10%	 of	 αKG	 (Extended	 data	 figure	 3h,j),	 and	 therefore	 unlikely	 to	

affect	 TET	 activity,	 as	 affinity	 of	 these	 competing	metabolites	 for	 hydroxylases	 is	

lower	or	similar	to	αKG7,20.	Indeed,	culturing	MCF7	cells	in	glutamine-free	medium	

to	 decrease	 these	metabolite	 concentrations	 did	 not	 alter	 5hmC	 levels	 (Extended	

data	 figure	 3k).	 Exogenously	 adding	 cell-permeable	 αKG	 under	 hypoxia	 to	
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counteract	 putative	 competing	metabolites	 likewise	 did	 not	 rescue	 the	 5hmC	 loss	

(Figure	1f).	This	excludes	that	metabolite	competition	underlies	hypoxia-associated	

5hmC	loss.	

Thirdly,	 increases	 in	 cell	 proliferation	 have	 been	 linked	 to	 5hmC	 loss21.	

However,	cell	growth	was	unaffected	or	decreased	upon	exposure	to	hypoxia	in	all	

cell	 lines	 tested,	 indicating	 that	 increased	 proliferation	 does	 not	 underlie	 5hmC	

reduction	(Extended	data	figure	3l).	

Fourthly,	 to	 exclude	 cellular	 changes	 secondary	 to	 HIF	 activation,	 we	

pharmacologically	activated	the	hypoxia	response	program	by	exposing	5	cell	lines	

grown	in	atmospheric	conditions	to	IOX2,	a	small	molecule	inhibitor	displaying	high	

specificity	 for	 PHDs22	 (Extended	 data	 figure	 3m).	 Cell	 lines	 not	 characterized	 by	

hypoxia-induced	TET	expression	changes	(i.e.,	MCF10A,	A549	and	MCF7)	showed	no	

change	 in	 5hmC	 under	 IOX2,	while	 SK-N-Be2c	 and	 SHSY5Y,	 characterized	 by	TET	

upregulation,	did	show	an	increase	in	5hmC	(Figure	1g).	Thus,	upon	IOX2	exposure,	

5hmC	 changes	 mirrored	 changes	 in	 TET	 transcription.	We	 also	 prepared	 nuclear	

protein	extracts	from	MCF7	cells	grown	under	hypoxic	and	atmospheric	conditions,	

and	 then	 compared	 their	 5mC	 oxidative	 capacities	 at	 the	 same	 oxygen	 tension	 in	

vitro;	 these	were	 however	 identical	 (Extended	 data	 figure	 3n).	 Loss	 of	 5hmC	was	

therefore	not	secondary	to	activation	of	the	hypoxia	response	program.	

In	 a	 final	 experiment,	 we	 assessed	 the	 effect	 of	 varying	 oxygen	

concentrations	on	the	activity	of	recombinant	purified	Tet1	or	Tet2,	by	measuring	

conversion	of	5mC	to	5hmC	on	double-stranded	genomic	DNA.	We	observed	a	dose-

dependent	 loss	 of	 5hmC	 production	 with	 decreasing	 oxygen	 concentration.	

Importantly,	under	the	hypoxic	conditions	applied	in	this	study	(0.5%	O2),	Tet1	and	

Tet2	activity	were	reduced	by	45±7%	and	52±8%	(P=0.01;	Figure	1h-i).	

Together,	these	data	demonstrate	that	decreased	oxygen	availability	directly	

diminishes	the	oxidative	activity	of	TETs,	 independently	of	changes	in	HIF	activity,	

competing	metabolites,	proliferation,	nuclear	ROS	or	TET	expression.	

Genomic	loci	displaying	differential	DNA	hydroxymethylation		



Hypoxia	causes	hypermethylation	 	 	
	

Page	8	of	52	
	

To	analyze	where	in	the	genome	hypoxia	reduces	5hmC,	DNA	from	hypoxic	

and	control	MCF7	cells	was	immunoprecipitated	using	antibodies	targeting	5mC	or	

5hmC,	 and	 subjected	 to	 high-throughput	 sequencing	 (DIP-seq).	 We	 detected	

290,382	sites	enriched	for	5hmC.	Upon	hypoxia,	10,001	of	 these	peaks	exhibited	a	

decrease	 in	 5hmC	 (5%	 FDR),	 versus	 only	 18	 exhibiting	 an	 increase,	 thereby	

confirming	 the	 global	 5hmC	 loss	 (Figure	 2a;	 Supplementary	 table	 1).	 Genomic	

annotation	 of	 these	 peaks	 using	 chromHMM23	 revealed	 they	were	 predominantly	

found	at	gene	promoters,	but	also	at	enhancers	and	actively	transcribed	regions,	in	

line	with	known	TET	binding	(Figure	2b)15.	For	example,	5hmC	was	decreased	near	

transcription	 start	 sites	 of	 NSD1,	 FOXA1	 and	 CDKN2A	 (Extended	 data	 figure	 4).	

Analysis	of	5mC-DIP	signals	at	these	10,001	regions	highlighted	that,	 in	724	out	of	

875	altered	 regions	at	P<0.05,	 the	5mC	content	was	 increased,	 although	only	1	of	

these	 sites	 survived	 5%	 FDR	 correction	 (Figure	 2c;	 Supplementary	 table	 2).	

Increases	in	5mC	were	thus	more	subtle	than	decreases	observed	for	5hmC.	

Several	days	may	be	required	for	5hmC	changes	to	cause	5mC	changes19.	We	

therefore	 cultured	 cells	 for	 48	 (instead	 of	 24)	 hours	 under	 hypoxia,	 and	 used	

targeted	 bisulfite-sequencing	 (BS-seq)	 to	 obtain	 base-resolution	 quantitation	 of	

5mC	at	~85Mb	of	promoters	and	enhancers.	Using	 this	approach,	we	could	assess	

increases	in	5mC	for	1,894	of	the	10,001	regions	displaying	5hmC	loss.	As	observed	

upon	 5mC-DIP-seq,	 out	 of	 402	 altered	 sites	 (P<0.05),	 301	 displayed	 increased	

methylation.	 Likewise,	 60	 out	 of	 99	 altered	 sites	 at	 5%	 FDR	 were	 increased	

(P=2.8×10-3;	 Figure	 2d;	 Supplementary	 table	 3).	 ChromHMM	 annotation	 revealed	

that	these	60	sites	were	predominantly	in	gene	promoters	and	enhancers.	To	assess	

the	 impact	 of	 HM	 on	 gene	 expression,	 we	 performed	 RNA-seq	 on	 hypoxic	 MCF7	

cells.	 Genes	 depleted	 in	 5hmC	 and	 at	 the	 same	 time	 increased	 in	 5mC,	 were	

characterized	 by	 decreased	 expression	 upon	 hypoxia	 (Figure	 2e;	P=2.5×10-42	 and	

7.4×10-4,	respectively	for	3,660	genes	with	5hmC	loss	and	55	genes	with	both	5hmC	

loss	and	5mC	gain;	Supplementary	 table	4).	Reduced	TET	activity	 thus	 leads	 to	an	

accumulation	of	5mC,	decreasing	expression	of	associated	genes.	

Selection	of	HM	events	in	hypoxic	tumors	
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We	next	analyzed	whether	5hmC	loss	and	concomitant	5mC	gain	also	occur	

in	vivo.	We	 focused	on	gene	promoters	as	 they	are	more	 frequently	 affected	upon	

hypoxia,	 and	 directly	 linked	 to	 gene	 expression.	 Moreover,	 as	 cancer	 cells	 go	

through	multiple	 rounds	 of	 sustained	 hypoxia14,	we	 hypothesized	 that	 changes	 in	

5mC	 might	 be	 enriched	 for,	 as	 they	 provide	 a	 substrate	 for	 cellular	 selection	 of	

cancer	 cells,	 similar	 to	 somatic	mutations.	First,	we	assessed	5hmC	 levels	 in	 three	

patient-derived	 tumor	 xenografts,	 wherein	 we	 marked	 hypoxic	 areas	 with	

pimonidazole	 (Extended	 data	 figure	 5a).	 Immunofluorescence	 analysis	 revealed	

decreased	5hmC	in	hypoxic	areas,	linking	tumor	hypoxia	to	5hmC	loss	in	vivo.	

To	 model	 whether	 hypoxia-associated	 HM	 contributes	 to	 the	 oncogenic	

process,	we	analyzed	tumors	profiled	in	the	pan-cancer	study	of	The	Cancer	Genome	

Atlas	(TCGA)24.	We	selected	8	solid	tumor	types	(3,141	tumors)	for	which	both	DNA	

methylation	 (450K	 array)	 and	 gene	 expression	 (RNA-seq)	 data	were	 available	 for	

>100	 samples,	 and	 classified	 each	 as	 hypoxic,	 normoxic	 or	 intermediate	 using	 an	

established	 gene	 signature	 (Extended	data	 figure	 5b)25.	Next,	we	 analyzed	 tumor-

associated	DNA	HM	 in	 each	 tumor	 type	by	performing	unsupervised	 clustering	 of	

1,000	 CpGs	 that	 displayed	 the	 strongest	 HM	 in	 tumor	 versus	 normal	 tissue	

(Extended	data	 figure	5c).	 In	 the	3	 first	 clusters,	displaying	 low,	 intermediate	 and	

high	average	HM,	we	analysed	 the	enrichment	of	hypoxic	 tumors.	 For	 all	 8	 tumor	

types,	hypoxic	tumors	predominated	in	the	hypermethylated	cluster	and	normoxic	

tumors	 in	 the	 hypomethylated	 cluster	 (Figure	 3a;	 P=2×10-4),	 suggesting	 that	

hypoxia	leads	to	increased	methylation	in	tumors.		

Whereas	 the	 above	 analysis	 identifies	 uniform	 increases	 in	 methylation	

based	on	average	changes,	it	poorly	captures	exceptional	increases	in	HM	known	to	

occur	in	a	subset	of	tumors1,26.	We	therefore	also	modeled	tumor	HM	by	annotating	

increases	 in	 CpG	 methylation	 at	 gene	 promoters	 using	 a	 stringent	 threshold	

(Bonferroni-corrected	P<0.05)	as	HM	events.	 In	each	tumor	type	the	promoters	of	

187±38	out	of	29,649	genes	frequently	displayed	HM	events	(Supplementary	table	

5).	 Importantly,	hypoxic	 tumors	had	on	average	4.8-fold	more	HM	events	 in	 these	

genes	than	normoxic	tumors	(Figure	3b;	P=4.1×10-13).	These	events	were	functional,	
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reducing	gene	expression	in	tumors	carrying	these	HM	events	(Extended	data	figure	

5d).	They	primarily	affected	promoters	with	a	high	or	intermediate	CpG	content,	in	

line	with	TET	target	preference	(Extended	data	figure	5e)15.	Furthermore,	they	were	

not	restricted	to	a	small	subset:	77±6.5%,	49±9.3%	or	39±9.1%	of	hypoxic	tumors	

was	 affected	 by	 ≥1,	 ≥10	 or	 ≥20	HM	 events.	When	 considering	 HM	 frequencies	 in	

normoxic	tumors	as	baseline,	up	to	48%	of	HM	events	were	hypoxia-related.	

As	HM	can	also	be	genetically-encoded,	mutations	in	some	genes	correlated	

positively	 with	 HM	 (e.g.	 IDH1,	 TET1,	 TET3	 and	 BRAF;	 Supplementary	 table	 6).	

Importantly,	hypoxia	predicted	HM	independently	of	the	mutation	status	(P=6.1×10-

12).	Mutations	inhibiting	TET	activity	were	moreover	infrequent	(~1.8%	of	tumors),	

indicating	 that	HM	 is	not	genetically-encoded	 in	most	 tumors.	TET-mutant	 tumors	

were	also	not	more	hypoxic,	suggesting	that	hypoxia	induces	HM,	and	not	vice	versa	

(Extended	data	figure	5f).	Hypoxia-associated	HM	events	occurred	independently	of	

other	 tumor	 characteristics,	 such	 as	 tumor	 percentage,	 immune	 cell	 infiltration,	

tumor	 size,	 proliferation	 or	metastasis	 (P=4×10-13),	 and	were	 significant	 in	 7	 of	 8	

tumor	 types	 (Supplementary	 tables	 7-8).	 In	 line	 with	 an	 earlier	 report21,	 high	

proliferation	was	the	only	other	variable	significantly	predicting	HM	(P=5.3×10-10),	

although	 only	 in	 4	 of	 8	 tumor	 types	 (Extended	 data	 figure	 5g-h).	 Using	 multiple	

regression,	 we	 estimated	 contributions	 of	 tumor	 characteristics	 to	 HM	 variance.	

Based	 on	 partial	 correlation	 coefficients,	 proliferation	 predicted	 12.1±4.1%	 and	

hypoxia	33.3±5.7%	of	HM	events	explained	by	the	model	(Extended	data	figure	5i).	

Given	 the	 enrichment	 of	 HM	 events	 in	 hypoxic	 tumors,	 we	 next	 selected	

genes	 enriched	 for	HM	events	 in	hypoxic	versus	 normoxic	 tumors	 (5%	FDR).	This	

revealed	263±94	genes	per	tumor	type,	with	9.0±1.6%	being	shared	between	any	2	

types	 (Supplementary	 table	 9).	 Ontology	 analysis	 of	 hypermethylated	 genes	

revealed	 common	 biological	 processes,	 such	 as	 cell	 cycle	 arrest,	 DNA	 repair	 and	

apoptosis.	 In	 line	 with	 tumor	 hypoxia	 inducing	 glycolysis,	 angiogenesis	 and	

metastasis,	HM	was	also	observed	in	genes	suppressing	these	processes	(Extended	

data	figure	6a-c).	
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Reduced	TET	activity	underlies	HM	

Three	 strategies	were	 used	 to	 confirm	 the	 role	 of	 TET	 activity	 in	 hypoxia-

associated	 HM.	 First,	 we	 correlated	 TET	 expression	 with	 HM	 events,	 while	

correcting	 for	 hypoxia	 and	 proliferation.	 TET2	 and	 TET3	 expression	 correlated	

inversely	with	HM	 (P=0.046	and	0.0028,	Extended	data	 figure	7a),	 as	did	hypoxia	

and	 proliferation	 (P<1.2×10-13	 for	 both).	 Similar	 to	 our	 in	 vitro	 observations,	 this	

implicates	reduced	TET	activity	in	HM.		

Secondly,	 we	 assessed	 the	 overlap	 of	 HM	 events	 induced	 by	 hypoxia	 and	

IDH1R132	mutations8	 in	 63	 glioblastomas.	Among	 IDH1-wildtype	 glioblastomas,	 the	

HM	 frequency	 was	 3.4-fold	 higher	 in	 hypoxic	 tumors	 (Figure	 4a,	 Extended	 data	

figure	 7b).	 As	 expected,	 IDH1R132	 tumors	 showed	 HM,	 albeit	 3.9-fold	 more	 than	

hypoxic	tumors	(Figure	4a),	indicating	that	TET	enzymes,	being	fully	inactivated	in	

IDH-mutant	 tumors9,	 were	 only	 partially	 inactivated	 in	 hypoxia,	 similar	 to	 our	 in	

vitro	 observations.	 Of	 228	 genes	 frequently	 hypermethylated	 in	 glioblastomas,	

hypermethylated	genes	in	the	hypoxic	and	IDH-mutant	subgroups	displayed	a	58%	

overlap	 (P<10-16;	 Figure	 4b)	 and	 a	 reduced	 expression	 (Extended	 data	 figure	 7c),	

indicating	 that	 loss	 of	 TET	 activity	 affects	 the	 same	 genes,	 regardless	 of	 the	

underlying	trigger.	

Finally,	 to	 link	 hypoxia-associated	 HM	 to	 5hmC	 loss,	 we	 profiled	 24	 non-

small	cell	lung	tumors	for	5mC	and	5hmC	using	450K	arrays	(Extended	data	figure	

7d).	 This	 revealed	 a	 generalized	 loss	 of	 5hmC	 in	 hypoxic	 tumors	 (-7.1±1.1%;	

P=3.7×10-3;	Figure	4c).	Also	individual	probes	mostly	displayed	5hmC	loss	and	5mC	

gain	in	hypoxic	tumors	(respectively,	96.7%	and	65.4%	of	probes	altered	at	P<0.01;	

Supplementary	 table	 10).	 Of	 all	 probes	 displaying	 5mC	 gain,	 most	 (87%)	 also	

displayed	5hmC	 loss,	and	of	probes	altered	both	 in	5hmC	and	5mC	(P<0.01),	92%	

showed	 5hmC	 loss	 and	 5mC	 gain	 (Figure	 4d;	 P<10-16).	 This	 directly	 implicates	

hypoxia-induced	loss	of	5hmC	in	HM	of	hypoxic	tumors.	

Rescue	and	exacerbation	of	hypoxia-induced	HM	in	murine	breast	tumors	
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To	manipulate	 tumor	 oxygenation	 and	 confirm	 its	 impact	 on	HM,	we	 used	

mice	expressing	 the	polyoma	middle	T-antigen	under	 the	mouse	mammary	 tumor	

virus	 promoter	 (MMTV-PyMT).	 These	mice	 spontaneously	 develop	 breast	 tumors,	

with	hypoxic	areas	emerging	from	7	weeks	onwards,	encompassing	~20%	of	tumor	

at	16	weeks27.	Hypoxic	areas	 in	 these	 tumors	were	also	depleted	 in	5hmC	(Figure	

5a-b).	

We	monitored	HM	changes	by	targeted	BS-seq	of	TSG	promoters	commonly	

inactivated	 in	 cancer28.	 Hypoxic	 human	 breast	 tumors	 indeed	 display	 a	 specific	

increase	 in	 HM	 at	 these	 TSG	 promoters,	 whereas	 no	 effect	 was	 observed	 for	

oncogenes	 (Extended	 data	 figure	 8a).	 In	 line	 with	 the	 age-associated	 increase	 in	

tumor	hypoxia27,	HM	events	increased	dramatically	with	age	or	tumor	size,	but	not	

in	normal	mammary	glands	(Extended	data	figure	8b-d).	Importantly,	>95%	of	cells	

in	 these	 tumors	 were	 PyMT-positive,	 whereas	 cell	 proliferation	 and	 immune	 cell	

infiltration	were	comparable	between	hypoxic	and	normoxic	areas	(Extended	data	

figure	 8e-g).	 HM	 changes	 are	 therefore	 unlikely	 secondary	 to	 changes	 in	

proliferation	or	cellular	heterogeneity.	

To	 test	 whether	 reduced	 tumor	 oxygenation	 increases	 HM,	 9-week-old	

MMTV-PyMT	 mice	 were	 hydrodynamically	 injected	 with	 a	 soluble-Flk1	 (sFlk1)-

expressing	plasmid.	After	 3	weeks,	 this	 caused	 tumor	 vessel	 pruning	 and	hypoxia	

(Extended	 data	 figure	 9a-d).	 Shallow	 whole-genome	 sequencing	 for	 5hmC	 (TAB-

seq)	 revealed	 a	 global	 loss	 of	 5hmC	 upon	 sFlk1	 overexpression	 (-12.4±3.5%,	

P=0.040),	predominantly	at	gene-dense	regions	and	affecting	the	entire	gene	(Figure	

5c,	 Extended	 data	 figure	 9e),	 consistent	 with	 previously	 described	 5hmC	

distributions15.	Moreover,	 targeted	BS-seq	revealed	an	exacerbated	HM	phenotype	

after	sFlk1	overexpression	at	12	weeks,	and	this	in	TSGs	but	not	oncogenes	(10	out	

of	 15	 TSGs	 contained	 ≥1	HM	 event;	P=0.010,	 Figure	 5d,	 Extended	 data	 figure	 9f).	

Tumor	 growth	 and	 expression	 of	 proliferation	 markers,	 Tet	 paralogues	 and	 the	

immune	cell	marker	CD45	were	unaffected	by	sFlk1	overexpression,	indicating	that	

HM	occurs	independently	(Extended	data	figure	9g-j).	
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To	rescue	this	effect,	we	normalized	the	tumor	vasculature	by	intercrossing	a	

heterozygous	 Phd2	 loss-of-function	 allele	 with	 the	 PyMT	 transgene.	 This	

significantly	reduced	tumor	hypoxia	at	16	weeks27	(Extended	data	figure	9k).	TAB-

seq	revealed	a	5hmC	gain	(+25.3±4.7%,	P=0.0098),	primarily	at	gene-dense	regions	

and	affecting	the	entire	gene	(Figure	5c,	Extended	data	figure	9l).	Interestingly,	BS-

seq	 revealed	 that,	 whereas	 8	 out	 of	 15	 TSGs	 displayed	 ≥1	 HM	 event	 in	 Phd2+/+	

tumors,	 no	 HM	 was	 observed	 in	 Phd2+/-	 tumors	 (P=2.6×10-7,	 Figure	 5e).	 Again,	

oncogenes	 were	 unaffected	 (Extended	 data	 figure	 9m).	 Importantly,	 effects	 were	

independent	 of	 Phd2	 haplodeficiency	 in	 tumor	 cells,	 as	 similar	 effects	 were	

observed	 in	 PyMT	 mice	 having	 endothelial-cell-specific	 Phd2	 haplodeficiency	

(Extended	 data	 figure	 9n-o)27.	 Like	 the	 sFlk1	 model,	 also	 increasing	 tumor	

oxygenation	 by	 Phd2	 haplodeficiency	 did	 not	 affect	 tumor	 growth,	 expression	 of	

proliferation	markers,	Tets	or	CD45	(Extended	data	figure	9p-u).	

	

Discussion	

We	here	 show	 that	 tumor	 hypoxia	 directly	 reduces	 TET	 activity,	 causing	 a	

5hmC	 decrease	 predominantly	 at	 gene	 promoters	 and	 enhancers.	 Concomitantly,	

5mC	increases	at	these	sites,	and,	similar	to	genetic	mutations,	becomes	a	substrate	

for	oncogenic	selection	 in	vivo26.	Since	hypoxia	prevails	 in	tumors,	5mC	changes	in	

TSG	 promoters	 are	 enriched	 for,	 rendering	 hypoxic	 tumors	 hypermethylated	 at	

these	 sites. HM	 events	 in	 tumors	 have	 long	 been	 suspected	 to	 occur	 through	

selection	 of	 random	 DNA	 methylation	 variants29.	 However,	 the	 identification	 of	

genetically-encoded	 HM	 challenged	 this	 stochastic	model2.	 By	 demonstrating	 that	

hypoxia	 drives	 HM,	 we	 show	 that	 genetically-encoded	 and	 tumor	

microenvironment-driven	 models	 of	 epimutagenesis	 co-exist.	 However,	 since	

hypoxia	 is	 pervasive,	 the	 mechanism	 described	 here	 is	 relevant	 for	 most	 solid	

tumors:	up	to	48%	of	HM	events	was	hypoxia-related,	and	effects	were	replicated	in	

all	tumor	types	investigated,	 independently	of	mutation-	and	proliferation-induced	

HM.	 Importantly,	modest	hypoxia	 (2-5%	O2)	did	not	affect	TET	activity,	 indicating	

that	TET	enzymes	are	not	physiological	oxygen	sensors	like	the	PHDs,	as	reported30.	
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TET	activity	only	becomes	limiting	under	pathophysiological	oxygen	concentrations	

found	 in	 tumors14,	 and	 analogous	 to	 somatic	 TET	 haploinsufficiency,	 this	 partial	

reduction	 in	 TET	 activity	 contributes	 to	 oncogenesis.	 Our	 findings	 also	 suggest	

intriguing	avenues	of	investigation	into	other	ischemia-related	pathologies. 

Our	 model	 provides	 an	 elegant	 mechanism	 for	 the	 association	 between	

hypoxia	 and	 (mal)adaptive	 oncogenic	 processes:	 genes	 affected	 by	 HM	 were	

involved	 in	 cell-cycle	 arrest,	 DNA	 repair	 and	 apoptosis,	 but	 also	 glycolysis,	

metastasis	 and	 angiogenesis.	 Interestingly,	 high	 levels	 of	 angiogenesis	 inhibitors	

stimulate	 metastatic	 spreading	 in	 murine	 cancer	 models,	 at	 least	 in	 specific	

settings31,	 and	 tumor	 hypoxia	 is	 considered	 a	 driver	 of	 this	 behavior.	 The	

mechanism	described	here,	by	which	HM	accumulates	under	hypoxia,	may	underlie	

these	 escape	mechanisms.	 Contrastingly,	 low	 levels	 of	 VEGF	 inhibition	 can	 induce	

tumor	 vessel	 normalization	 and	 improve	 oxygenation32.	 Our	 observations	 in	

normalized	PyMT	tumors	suggest	that	therapeutic	benefits	of	vessel	normalization,	

such	 as	 decreased	 metastatic	 burden27,	 might	 occur	 by	 inhibiting	 hypoxia-

associated	 HM.	 Countering	 this	 HM,	 for	 instance	 through	 drugs	 inhibiting	 DNA	

methylation	 and/or	 by	 normalizing	 tumor	 blood	 supply,	 may	 thus	 prove	

therapeutically	beneficial.	
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Figure	legends	

Figure	 1	 |	Effect	 of	 hypoxia	 on	 5hmC	 in	 vitro.	 a,	 Levels	 of	 5hmC	 (upper),	 and	

overall	TET	expression	(lower)	 in	cell	 lines	grown	for	24	h	under	21%	or	0.5%	O2.	

RNA	expression	 is	expressed	relative	 to	 the	combined	estimated	 level	of	all	3	TET	

paralogues	under	21%	O2.,	b-c,	5hmC/C	levels	in	MCF7	cells	exposed	to	different	O2	

levels	for	24	h	(b),	or	0.5%	oxygen	for	indicated	times	(c).	d,	Correlation	of	changes	

in	overall	TET	expression	and	5hmC	upon	hypoxia.	Each	circle	represents	a	cell	line,	

the	full	line	the	correlation.	e-f,	Levels	of	5hmC	(e,	f)	and	α-ketoglutarate	(f)	in	MCF7	

cells	grown	with	ascorbate	(e),	water	or	dimethyl-α-ketoglutarate	(f)	under	21%	or	

0.5%	 O2	 (white	 or	 red).	 α-ketoglutarate	 changes	 are	 relative	 to	 matching	 water	

controls.	g,	As	(a),	but	for	cells	exposed	to	IOX2.	h-i,	Michaelis-Menten	curve	of	Tet1	

(h)	 and	 Tet2	 (i,	 n=3)	 for	 O2.	 Error	 bars	 denote	 s.e.m.,	 grey	 areas:	 95%	 c.i.,	 n	 =	 5	

replicates	for	panels	(a-h),	*P<0.05,	**P<0.01,	***P<0.001	by	t-test	(b,	c,	e)	or	ANOVA	

with	post-hoc	Tukey	HSD	(f).	

	

Figure	2	|	Genomic	profiles	of	5(h)mC	in	MCF7	following	hypoxia.	a,	Changes	in	

5hmC	 at	 290,382	 peaks	 detected	 using	 5hmC-DIP-seq.	 Peaks	 gaining	 and	 loosing	

5hmC	(red	and	blue)	are	highlighted	at	P<0.05	and	5%	FDR	adjustment	(lighter	and	

darker).	 b,	 Observed/expected	 fraction	 of	 5hmC	 peaks	 overlapping	 with	

chromHMM	 chromatin	 states	 and	 exhibiting	 hypoxia-associated	 5hmC	 loss	

(n=10,001,	blue)	or	not	(n=280,381,	grey).	c-d,	Changes	in	5mC	after	24	(c)	or	48	(d)	

hours	 of	 0.5%	 O2,	 assessed	 by	 5mC-DIP-seq	 at	 10,001	 hypohydroxymethylated	

peaks	 upon	 hypoxia	 (c)	 or	 by	 BS-seq	 at	 1,894	 regions	 capture-selected	 using	

SeqCapEpi	(d).	e,	Expression	changes	of	genes	in	hypohydroxymethylated,	and	both	

hypohydroxymethylated	and	hypermethylated	peaks.	Plots	depict	3	(a,	e),	4	(c)	or	5	

(d)	 replicates,	 P-values	 by	 negative	 binomial	 generalized	 linear	 models	 (a,	 c),	

Fisher’s	exact	(d)	or	t-test	(e,	***P<0.001).	

	

Figure	 3	 |	 Impact	 of	 hypoxia	 on	 hypermethylation	 in	 TCGA.	 a,	

Observed/expected	 number	 of	 hypoxic	 versus	 normoxic	 tumors	 in	 3	 methylation	
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clusters	 for	 1,000	 CpGs	 hypermethylated	 in	 tumor	 versus	 normal	 tissue.	 b,	

Percentage	of	HM	events	 in	promoters	of	 frequently	HM	genes.	n	 =	3,141	 tumors,	

*P<0.05,	 **P<0.01,	 ***P<0.001	 by	 Cochran-Armitage	 (a),	 generalized	 linear	model	

per	tumor	type	corrected	for	co-variates	(Supplementary	table	8)	(b).	

	

Figure	 4	 |	 Impact	 of	 hypoxia	 on	 TET	 activity	 in	 human	 tumors.	 a,	HM	 in	 19	

normoxic	(blue),	21	intermediate	(grey),	17	hypoxic	(red)	and	6	IDH1R132-mutated	

(yellow)	 glioblastomas.	 b,	 Overlap	 between	 genes	 hypermethylated	 in	 hypoxic	

versus	 IDH1R132-mutated	 glioblastomas.	 c-d,	 (c)	 5hmC	 measured	 across	 485,000	

CpGs	in	12	normoxic	versus	12	hypoxic	non-small-cell	lung	tumors,	and	(d)	changes	

in	5(h)mC	for	unaltered	CpGs	(grey),	and	CpGs	altered	in	both	5mC	and	5hmC	(25%	

FDR,	blue;	P<0.01,	red).	***P<0.001	by	Fisher’s	exact	(a),	**P<0.01	by	t-test	(c).	

	

Figure	5	|	Impact	of	vessel	pruning	and	normalization	on	5hmC	and	TSG	HM.	a-	

b,	 Immunofluorescence	 of	 breast	 tumors	 in	 tg(MMTV-PyMT)	 mice.	 (a)	

Representative	 image,	 scale:	 50	 µm.	 (b)	 Boxplot	 of	 5hmC	 signal	 in	 >150	 PyMT-

positive	nuclei	from	8	tumors,	stratified	for	pimonidazole	(yes/no)	and	normalized	

to	pimonidazole-negative	nuclei.	c,	5hmC	levels	±	s.e.m.	across	a	metagene	in	tumors	

of	12-week-old	mice	receiving	empty	or	sFlk1-overexpressing	plasmid	(left,	n=3),	or	

16-week-old	 mice	 with	 the	 indicated	 genotype	 (right,	 n=3	 for	 Phd2+/+;	 n=4	 for	

Phd2+/-).	d-e,	 HM	 in	 (d)	 tumors	 developing	 in	 12-week-old	mice	 receiving	 empty	

(n=19)	or	sFlk1-overexpressing	plasmid	(n=24)	3	weeks	earlier,	and	in	(e)	tumors	

developing	in	16-week-old	Phd+/-	(n=10)	and	Phd+/+(n=9)	mice.	Plotted	are	z-scores	

of	HM,	relative	to	normoxic	tumors	(empty	and	Phd2+/-	for	d	and	e).	Dotted	line:	5%	

FDR,	 darker	 dots:	 significant	 HM.	 Brca1	 and	 Timp3:	 not	 shown	 (no	 HM	 event	

detected).	 Hypermethylated	 genes	 on	 average	 had	 5.8%	 (d)	 and	 4.7%	 (e)	 more	

methylation.	*P<0.05,	**P<0.01,	***P<0.001	by	t-test.	
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Methods	

Materials	

All	materials	were	molecular	biology	grade.	Unless	noted	otherwise,	all	were	from	

Sigma	(Diegem,	Belgium).	

Analysis	of	global	5mC	and	5hmC	levels	in	cultured	cells	

Cell	lines	

MCF7,	MCF10A,	A549,	H1299,	SHSY5Y,	Hep	G2,	Hep	3B2,	HT-1080,	NCI-H358,	LLC,	

Neuro-2a,	 4T1	 and	 SK-N-BE2c	 cells	 lines	were	 obtained	 from	 the	 American	 Type	

Culture	Collection	 and	 their	 identity	was	not	 further	 authenticated.	 These	 are	not	

listed	 in	 the	 database	 of	 commonly	 misidentified	 cell	 lines	 maintained	 by	 ICLAC.	

LLC,	Neuro-2a,	4T1,	Hep	G2,	HT-1080,	Hep	3B2,	MCF7	and	A549	cells	were	cultured	

at	37°C	in	Dulbecco’s	modified	Eagle	medium	(DMEM)	with	10%	fetal	bovine	serum	

(FBS),	5ml	of	100	U/ml	Penicillin-Streptomycin	(Pen	Strep,	Life	Technologies)	and	

5ml	 of	 L-Glutamine	 200mM.	 NCI-H358,	 H1299	 and	 SK-N-BE2c	 cell	 lines	 were	

cultured	at	37°C	 in	Roswell	Park	Memorial	 Institute	 (RPMI)	1640	Medium	(RPMI)	

10%	FBS	1%	Pen	Strep	and	1%	L-Glutamine.	MCF10A	cells	were	cultured	at	37°C	in	

DMEM/F-12	 (Dulbecco's	 Modified	 Eagle	 Medium/Nutrient	 Mixture	 F-12)	

supplemented	 with	 5%	 horse	 serum	 (Life	 Technologies),	 20	 ng/ml	 human	

Epidermal	Growth	Factor	(Prepotec),	0.5	μg/ml	hydrocortisone,	100ng/ml	cholera	

toxin,	10	μg/ml	insulin,	and	100	U/ml	Pen	Strep.	The	SHSY5Y	cell	line	was	cultured	

at	37°C	 in	DMEM/F-12	 supplemented	with	10%	FBS,	2%	 (PenStrep)	 and	1%	Non	

Essential	 Amino	 Acids	 (MEM).	 Mouse	 J1	 ES	 cells	 were	 cultured	 feeder-free	 in	

fibroblast-conditioned	 medium.	 Cell	 cultures	 were	 confirmed	 to	 be	 mycoplasma-

free	every	month.	

Cell	line	treatment	conditions	

Control	cell	cultures	were	grown	at	atmospheric	oxygen	concentrations	(21%)	with	

5%	CO2.	To	render	cultures	hypoxic,	they	were	incubated	in	an	atmosphere	of	0.5%	

oxygen,	5%	CO2	and	94.5%	N2.	Where	indicated,	IOX2	(50	µM),	ascorbate	(0.5	mM,	a	

dose	known	to	support	TET	activity19)	or	dimethyl	α-ketoglutarate	(0.5	mM)	were	
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added	 to	 fresh	culture	medium,	using	an	equal	volume	of	 the	carrier	 (DMSO)	as	a	

control	for	IOX2.	Cells	were	plated	at	a	density	tailored	to	reach	80-95%	confluence	

at	the	end	of	the	treatment.	Fresh	medium	was	added	to	the	cells	just	before	hypoxia	

exposure.	 For	 glutamine-free	 culture	 experiments,	 dialysed	 FBS	 was	 added	 to	

glutamine-free	 DMEM,	 and	 supplemented	with	 glutamine	 (4	mM)	 for	 the	 control.	

Mouse	 J1	 ES	 cells	 and	 Tet1-gene-trap	 ES	 cells	 were	 cultured	 feeder-free	 in	

fibroblast-conditioned	medium.	

DNA	extraction	

After	 exposure	 to	 the	 aforementioned	 stimuli,	 cultured	 cells	 were	 washed	 on	 ice	

with	 ice-cold	phosphate-buffer	saline	(PBS)	with	deferoxamin	(PBS-DFO,	200	µM),	

detached	using	cell	scrapers	and	collected	by	centrifugation	(400	×G,	4°C).	Nucleic	

acids	 were	 subsequently	 extracted	 using	 the	 Wizard	 Genomic	 DNA	 Purification	

(Promega,	 Leiden,	 The	Netherlands)	 kit	 according	 to	 instructions,	with	 all	 buffers	

supplemented	with	DFO	(200	µM),	dissolved	in	80	µL	PBS-DFO	with	RNAse	A	(200	

units,	NEB,	Ipswich,	MA,	USA),	incubated	for	10	minutes	at	37°C.	After	proteinase	K	

addition	(200	units)	and	incubation	for	30	minutes	at	56°C,	DNA	was	purified	using	

the	QIAQuick	 blood	 and	 tissue	 kit	 (all	 buffers	 supplemented	with	DFO),	 eluted	 in	

100	µL	of	a	10	mM	Tris,	1mM	EDTA	solution	(pH	8)	and	stored	at	-80°C	until	further	

processing.	

LC-ESI-MS/MS	of	DNA	to	measure	5mC,	5hmC	and	8-oxoG	levels	

To	 measure	 the	 cytosine,	 5-methylcytosine	 (5mC),	 5-hydroxymethylcytosine	

(5hmC)	 and	 8-oxo-7,8-dihydroguanine	 (8-oxo-G)	 content	 of	 DNA	 samples,	 three	

technical	replicates	were	run	for	each	sample.	More	specifically,	0.5	to	2	µg	DNA	in	

25	µL	H2O	were	digested	as	follows:	an	aqueous	solution	(7.5	µL)	of	480	μM	ZnSO4,	

containing	42	units	Nuclease	S1,	5	units	antarctic	phosphatase,	and	specific	amounts	

of	labeled	internal	standards	were	added	and	the	mixture	was	incubated	at	37	°C	for	

3	h	 in	 a	 Thermomixer	 comfort	 (Eppendorf).	 After	 addition	 of	 7.5	μL	 of	 a	

520	µM	[Na]2-EDTA	solution	containing	0.2	units	snake	venom	phosphodiesterase	I,	

the	sample	was	incubated	for	another	3	h	at	37	°C.	The	total	volume	was	40	µL.	The	

sample	was	then	kept	at	-20	°C	until	the	day	of	analysis.	Samples	were	then	filtered	
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by	using	an	AcroPrep	Advance	96	filter	plate	0.2	μm	Supor	(Pall	Life	Sciences)	and	

then	analyzed	by	LC-ESI-MS/MS,	which	are	performed	using	an	Agilent	1290	UHPLC	

system	and	an	Agilent	6490	triple	quadrupole	mass	spectrometer	coupled	with	the	

stable	 isotope	dilution	technique.	DNA	samples	were	digested	to	give	a	nucleoside	

mixture	and	spiked	with	specific	amounts	of	the	corresponding	isotopically	labeled	

standards	before	LC-MS/MS	analysis.	The	nucleosides	were	analyzed	in	the	positive	

ion	 selected	 reaction	 monitoring	 mode	 (SRM).	 In	 the	 positive	 ion	 mode,	 [M+H]+	

species	were	measured.		

Determination	and	comparison	of	nucleoside	concentrations	

The	resulting	cytosine,	5mC,	5hmC	and	8-oxo-G	peak	areas	were	normalized	using	

the	 isotopically	 labeled	 standards,	 and	 expressed	 relative	 to	 the	 total	 cytosine	

content	 (i.e.	 C	 +	 5mC	 +	 5hmC).	 Concentrations	 were	 depicted	 as	 averages	 of	

independent	 replicates	 grown	 on	 different	 days,	 and	 compared	 between	 hypoxia	

and	normoxia	(21%	O2),	or	between	control	and	treated	conditions,	using	a	paired	

Student’s	t-test.	No	statistical	methods	were	used	to	predetermine	sample	size.	

	

TET	mRNA	concentrations	and	hypoxia	marker	gene	induction	

RNA	extraction,	cDNA	synthesis	and	qPCR	

For	RNA	extractions,	cell	culture	medium	was	removed,	TRIzol	(Life	Technologies)	

added	and	processed	according	to	manufacturers	guidelines.	Reverse	transcription	

and	qPCR	were	performed	using	2×	TaqMan®	Fast	Universal	PCR	Master	Mix	(Life	

Technologies),	 TaqMan	probes	 and	 primers	 (IDT,	 Leuven,	 Belgium),	 whose	

sequence	 is	 available	 under	 Supplementary	 table	 12.	 Thermal	 cycling	 and	

fluorescence	 detection	were	 done	 using	 a	 LightCycler	 480	 Real-Time	 PCR	 System	

(Roche).	 Taqman	 assay	 amplification	 efficiencies	 were	 verified	 using	 serial	 cDNA	

dilutions,	and	estimated	to	be	>95%.	

mRNA	concentration	analysis	and	statistics	

Ct	 values	 were	 determined	 for	 each	 sample	 and	 gene	 of	 interest	 in	 technical	

duplicates,	and	normalized	according	to	the	corresponding	amplification	efficiency.	

Per	sample,	TET	expression	was	expressed	relative	to	β-2-microglobulin	(human)	or	
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Hypoxanthine	 Phosphoribosyltransferase	 1	 (mouse)	 levels	 by	 subtraction	 of	 their	

average	 Cts.	 Concentrations	 were	 expressed	 as	 averages	 of	 at	 least	 5	 replicates	

extracted	on	different	days.	For	Figure	1a,	 copy	number	estimates	 for	TET1,	TET2	

and	TET3	were	 expressed	 for	 each	 cell	 line,	 relative	 to	 the	 summed	 copy	number	

estimates	 of	 TET1,	 TET2	 and	 TET3	 under	 control	 conditions	 (21%	 O2).	

Concentrations	were	compared	between	hypoxia	and	normoxia,	or	between	control	

and	treatment	conditions	using	a	Student’s	t-test.	No	statistical	methods	were	used	

to	predetermine	sample	size.		

Hypoxia	marker	gene	induction		

To	further	verify	induction	of	the	hypoxia	response	program,	hypoxia	marker	gene	

expression	 was	 verified.	 We	 analyzed	 mRNA	 levels	 of	 genes	 encoding	 the	 E1B	

19K/Bcl-2-binding	 protein	 Nip3	 (BNIP3)	 and	 fructose-bisphosphate	 aldolase	

(ALDOA),	 2	 established	 hypoxia	 marker	 genes33.	 RT-qPCR	 was	 performed	 as	

described	for	the	TET	mRNA	concentration	assays,	and	differential	expression	was	

calculated	 using	 the	 ΔΔCt	 method34.	 We	 moreover	 excluded	 that	 the	 increase	 in	

HIF1α	 protein	 concentrations	was	 secondary	 to	 a	 transcriptional	upregulation,	by	

assessing	HIF1A	mRNA	expression	in	parallel.	mRNA	concentrations	were	expressed	

relative	 to	 normoxic	 controls	 (21%	O2).	 Differences	 in	mRNA	 concentration	were	

assessed	 using	 a	 Student’s	 t-test	 on	 5	 or	 more	 independent	 replicates	 grown	 on	

different	days.	

	

Validation	of	hypoxia	induction	and	Tet	protein	expression	

Western	blotting	for	Hif1α,	Tet1,	Tet2	and	Tet3	

To	assess	HIF1α	protein	stabilization,	proteins	were	extracted	from	cultured	cells	as	

follows:	cells	were	placed	on	ice,	and	washed	twice	with	ice-cold	PBS.	Proteins	were	

extracted	with	extraction	buffer	(50	mM	Tris	HCl,	150	mM	NaCl,	1%	Triton	X-100,	

0.5%	Na-deoxycholate	 and	0.1%	SDS)	with	 1×	 protease	 inhibitor	 cocktail.	 Protein	

concentrations	 were	 determined	 using	 a	 bicinchoninic	 acid	 protein	 assay	 (BCA,	

Thermo	 Scientific)	 following	 the	 manufacture’s	 protocol,	 and	 an	 estimated	 60	 µg	

protein	was	loaded	per	well	on	a	NuPAGE	Novex	3-8%	Tris-Acetate	Protein	gel	(Life	
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Technologies),	separated	by	electrophoresis	and	blotted	on	polyvinylidene	fluoride	

membranes.	Membranes	were	activated	with	methanol	and	washed,	and	incubated	

with	antibodies	targeting	β-actin	(4967,	Cell	Signaling),	Tet1	(09-872,	Millipore)	and	

Tet3	 (61395,	Active	Motif),	 at	 1:1000	dilution,	 targeting	Tet2	 (124297,	Abcam)	at	

1:250	dilution,	 and	targeting	HIF-1α	 (C-Term)	 (Cayman	Chemical	 Item	10006421)	

at	 1:3000	 dilution.	 Secondary	 antibodies	 and	 detection	were	 according	 to	 routine	

laboratory	practices.	Western	blotting	was	done	on	6	independent	replicates	grown	

on	different	days.	

	

Analysis	of	HIF1β 	target	genes	using	ChIP-seq	

To	confirm	that	hypoxia-associated	differential	expression	of	TET	genes	is	induced	

by	 the	HIF	pathway,	we	performed	HIF1β	ChIP-seq.	Because	HIF1β	 is	 the	obligate	

binding	 partner	 of	 all	 3	 HIFα	 proteins	 stabilized	 and	 activated	 upon	 hypoxia35,	

HIF1β	ChIP-seq	reveals	all	direct	HIF	target	genes.		

Chromatin	immunoprecipitation	

25-30×106	cells	were	 incubated	 in	 hypoxic	 conditions	 for	 16	 hours.	 Cultured	 cells	

were	 subsequently	 immediately	 fixed	 by	 adding	 1%	 Formaldehyde	 (16%	

Formaldehyde	(w/v),	Methanol-free,	Thermo	Scientific)	directly	in	the	medium	and	

incubating	 for	8	minutes.	Fixed	cells	were	 incubated	with	150	µM	of	glycine	 for	5	

min	 to	 revert	 the	 cross-links,	 washed	 twice	 with	 ice-cold	 PBS	 0.5%	 Triton-X100,	

scraped	 and	 collected	 by	 centrifugation	 (1000	 ×G	 5min	 at	 4°C).	 The	 pellet	 was	

resuspended	in	1400	µL	of	RIPA	buffer	(50	mM	Tris-HCl	pH	8,	150	mM	NaCl,	2	mM	

EDTA	 pH	 8,	 1%	 Triton-X100,	 0.5%	 Sodium	 deoxycholate,	 1%	 SDS,	 1%	 protease	

inhibitors)	and	 transferred	 in	a	new	eppendorf	 tube.	The	 lysate	was	homogenized	

by	 passing	 through	 an	 insulin	 syringe,	 and	 incubated	 on	 ice	 for	 10	 min.	 The	

chromatin	was	sonicated	for	3	min	by	using	a	Branson	250	Digital	Sonifier	with	0.7	s	

'On'	and	1.3	s	'Off'	pulses	at	40%	power	amplitude,	yielding	a	size	of	100	to	500	bp.	

The	sample	was	kept	ice-cold	at	all	times	during	the	sonication.	The	samples	were	

centrifuged	(10	min	at	16000	×G	at	4°C)	and	the	supernatant	were	transferred	in	a	

new	 eppendorf	 tube.	 The	 protein	 concentration	was	 assessed	 using	 a	 BCA	 assay.	
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Fifty	µL	of	shared	chromatin	was	used	as	“input”	and	1.4	µg	of	primary	ARNT/HIF-

1β	monoclonal	antibody	(NB100-124,	Novus)	per	1	mg	of	protein	was	added	to	the	

remainder	 of	 the	 chromatin,	 and	 incubated	 overnight	 at	 4°C	 in	 a	 rotator.	 Pierce	

Protein	 A/G	Magnetic	 Beads	 (Life	 Technologies)	 were	 added	 to	 the	 samples	 in	 a	

volume	that	is	4X	the	volume	of	the	primary	Ab	and	incubated	at	4°C	for	at	least	5	

hours.	 A/G	Magnetic	Beads	were	 collected	 and	 the	 samples	were	washed	5	 times	

with	 the	 washing	 buffer	 (50	 mM	 Tris-HCl,	 200	 mM	 LiCl,	 2	 mM	 EDTA,	 pH	 8,	 1%	

Triton,	 0.5%	 Sodium	 deoxycholate,	 0.1%	 SDS,	 1%	 protease	 inhibitors),	 and	 twice	

with	TE	buffer.	The	A/G	magnetic	beads	were	 resuspended	 in	50	µL	of	TE	buffer,	

and	1.5	µL	of	RNAse	A	(200	units,	NEB,	 Ipswich,	MA,	USA)	were	added	to	the	A/G	

beads	samples	and	to	the	input,	incubated	for	10	minutes	at	37°C.	After	addition	of	

1.5	µL	of	proteinase	K	(200	units)	and	overnight	 incubation	at	65°C,	 the	DNA	was	

purified	using	1.8×	volume	of	Agencourt	AMPure	XP	(Beckman	Coulter)	according	to	

the	manufactory	instructions,	and	then	eluted	in	15	µL	of	TE	buffer.	The	input	DNA	

was	quantified	on	NanoDrop.	

ChIP-seq,	mapping	and	analysis.	

Five	 µg	 of	 input	 and	 all	 of	 the	 immunoprecipitated	 DNA	 were	 converted	 into	

sequencing	 libraries	using	 the	NEBNext	DNA	 library	prep	master	mix	set.	A	single	

end	of	these	 libraries	was	sequenced	for	50	bases	on	a	HiSeq	2000,	mapped	using	

Bowtie	and	extended	for	the	average	insert	size	(250	bases).	ChIP	peaks	were	called	

by	 Model-based	 Analysis	 for	 ChIP-Seq36,	 with	 standard	 settings	 and	 using	 a	

sequenced	input	sample	as	baseline.	

	

Patient-derived	xenografted	tumors	

Patient-derived	xenografts		

To	 assess	 whether	 tumor-associated	 hypoxia	 reduces	 5hmC	 levels	 in	 vivo,	

redundant	material	from	2	endometrial	tumors	and	a	breast	tumor,	removed	during	

surgery,	was	grafted	in	the	interscapular	region	of	nude	mice.	Informed	consent	was	

obtained	 from	 the	 patient,	 following	 the	 ethical	 approval	 of	 the	 local	 ethical	

committee.	 All	 animal	 experiments	were	 approved	 by	 the	 local	 ethical	 committee	
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(P098/2014).	 Each	 tumor	 was	 allowed	 to	 grow	 until	 1	 cm3,	 after	 which	 it	 was	

harvested.	10%	of	this	tumor	was	reimplanted	in	a	nude	mouse,	and	the	tumor	was	

thus	 propagated	 for	 3	 generations	 until	 it	was	 used	 for	 this	 experiment.	 To	mark	

hypoxic	 areas,	 mice	 were	 injected	 with	 pimonidazole	 (60	 mg/kg,	 Hypoxyprobe,	

Massachusetts,	USA)	i.p.	1	hour	before	sacrifice.		

	

Immunofluorescence	staining	and	analysis		

Tumors	 were	 harvested,	 fixed	 in	 formaldehyde	 and	 embedded	 in	 paraffin	 using	

standard	procedures.	 Slides	were	deparafinated	and	 rehydrated	2	xylene	baths	 (5	

minutes),	followed	by	5	times	3	minutes	in	EtOH	baths	at	decreasing	concentrations	

(100%,	 96%,	 70%,	 50%	and	water)	 and	 a	 3	minute	Tris-buffered	 saline	 (TBS;	 50	

mM	Tris,	150	mM	NaCl,	pH	7.6)	bath.		

The	 following	 antibodies	 were	 used	 for	 immunofluorescence	 staining:	 primary	

antibodies	 were	 FITC-conjugated	 mouse	 anti-pimonidazole	 (HP2-100,	

Hydroxyprobe),	rabbit	anti-5hmC	(39791,	Active	Motif),	rat	anti-polyoma	middle	T	

(AB15085,	Abcam),	rat	anti-CD31	(557355,	BD	Biosciences),	rat	anti-CD45	(553076,	

BD	 Biosciences),	 rabbit	 anti-Ki67	 (AB15580,	 Abcam)	 and	 mouse	 anti-pan	

cytokeratin	(C2562,	Sigma).	Secondary	antibodies	were	Alexa	fluor	405-conjugated	

goat	anti-rabbit	(A31556,	Thermo	Fisher),	Alexa	Fluor	647	conjugated	goat	anti-rat	

(A-21247,	 Life	 technologies),	 peroxidase-conjugated	 goat	 anti-FITC	 (PA1-26804,	

Pierce),	 biotinylated	 goat	 anti-rat	 (A10517,	 Thermo	 Fisher)	 and	 biotinylated	 goat	

anti-rabbit	 (E043201,	 Dako).	 Signal	 amplification	 was	 done	 using	 the	 TSA	

Fluorescein	 System	 (NEL701A001KT,	Perkin	Elmer)	or	 the	TSA	Cyanine	5	 System	

(NEL705A001KT,	Perkin	Elmer).		

Different	 protocols	 were	 implemented	 depending	 on	 the	 epitopes	 of	 interest.	

Staining	 for	 the	 following	epitopes	was	combined:	CD45,	5hmC,	pimonidazole	and	

DNA;	PyMT,	5hmC,	pimonidazole	and	DNA;	Ki67,	pimonidazole	and	DNA;	CD31	and	

pimonidazole;	and	pan-cytokeratin,	5hmC,	pimonidazole	and	DNA.		

Antigen	retrieval	for	CD31,	CD45	and	pan-cytokeratin	was	done	by	a	7	min	trypsin	

digestion,	 for	 pimonidazole	 and	Ki67	 using	AgR	 at	 100°C	 for	 20	min,	 followed	 by	

cooling	 for	 20	min.	 Slides	 were	 washes	 in	 TBS	 for	 5	min,	 permeabilized	 in	 0.5%	
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Triton-X100	 in	 PBS	 for	 20	 min.	 For	 5hmC	 antigen	 retrieval,	 slides	 were	 next	

denatured	in	2	N	HCl	for	10	min,	with	the	HCl	being	neutralized	for	2	min	in	borax,	

1%	in	PBS	pH	8.5,	and	washed	twice	for	5	min	in	PBS.		

For	 all	 slides,	 endogenous	 peroxidase	 activity	was	 quenched	 using	H2O2	 (0.3%	 in	

MeOH),	 followed	 by	 three	 5	 min	 washes	 in	 TBS.	 Slides	 were	 blocked	 using	 pre-

immune	 goat	 serum	 (X0907,	 Dako;	 20%	 in	 TNB;	 TSA	 Biotin	 System	 kit,	 Perkin	

Elmer,	Waltham,	MA).	 Binding	 of	 primary	 antibodies	 (anti-5hmC,	 anti-CD45,	 anti-

CD31	and	anti-pan	cytokeratin	or	FITC-conjugated	anti-pimonidazole;	all	1/100	 in	

TNB)	 was	 allowed	 to	 proceed	 overnight.	 Slides	 were	 washed	 3×	 in	 TNT	 (0.5%	

Triton-X100	in	TBS)	for	5	min,	after	which	secondary	antibodies	(all	1/100	in	TNB	

with	10%	pre-immune	sheep	serum)	were	allowed	to	bind	for	45	min:	sheep-anti-

FITC-PO	(for	pimonidazole),	goat	anti-rabbit-Alexa	Fluor	405	(for	5hmC),	goat	anti-

rat-Alexa	 Fluor	 647	 (for	 CD45),	 and	 biotinylated	 goat	 anti-mouse	 (for	 pan-

cytokeratin).	Slides	were	washed	3×	5	min	in	TNT,	after	which	signal	amplification	

was	done	for	8	min	using	Fluorescein	Tyramide	(1/50	in	amplification	diluent).		

Slides	stained	for	pimonidazole	that	required	co-staining	slides	for	Ki67	or	PyMT,	or	

slides	stained	 for	pan-cytokeratin	 that	required	co-staining	 for	pimonidazole	were	

subjected	to	a	second	indirect	staining	for	the	latter	epitopes:	after	5	min	of	TNT	and	

5	min	 of	 TBS,	 slides	were	 quenched	 again	 for	 peroxidase	 activity	 using	H2O2	 and	

blocked	using	pre-immune	goat	serum,	prior	a	second	overnight	round	of	primary	

antibody	binding	(anti-Ki67,	FITC-anti-pimonidazole	or	anti-PyMT,	all	1/100).	The	

next	 day,	 3×	 5	 min	 washes	 with	 TNT	 were	 followed	 by	 a	 1	 h	 incubation	 with	 a	

biotinylated	goat	anti-rabbit	antibody	(for	Ki67)	or	goat	anti-rat	(for	PyMT),	again	

3×	 5	 min	 washes	 with	 TNT,	 a	 30	 min	 incubation	 with	 peroxidase	 conjugated	 to	

streptavidine	 (for	 Ki67	 and	 PyMT)	 or	 to	 anti-FITC	 (for	 pimonidazole),	 again	 3×	 5	

min	washes	with	 TNT	 and	 signal	 amplification	 for	 8	min	 using,	 for	 pimonidazole,	

Fluorescein	 Tyramide	 and	 for	 others	 Cyanine	 5	 Tyramide	 (1/50	 in	 amplification	

diluent).		
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Finally,	 slides	 were	 stained	 with	 propidium	 iodide	 +	 RNAse	 (550825;	 BD	

biosciences)	 for	15	min,	washed	for	5	min	 in	PBS	and	mounted	with	Prolong	Gold	

(Life	Technologies).	

Slides	were	imaged	on	a	Nikon	A1R	Eclipse	Ti	confocal	microscope.	3-5	sections	per	

slide	 were	 imaged,	 and	 processed	 using	 Image	 J.	 More	 specifically,	 nuclei	 were	

identified	 using	 the	 propidium	 iodide	 signal,	 and	 nuclear	 signal	 intensities	 for	

Fluorescein	and	Cy3	(pimonidazole	and	5hmC)	measured.	Analyses	were	exclusively	

performed	on	slide	regions	showing	a	regular	density	and	shape	of	nuclei,	in	order	

to	 avoid	 inclusion	of	 acellular	or	necrotic	 areas.	The	pimonidazole	 signal	will	 also	

not	stain	necrotic/acellular	areas	37,	and	was	used	to	stratify	viable	cell	nuclei	into	

normoxic	 (pimonidazole	 negative)	 and	 hypoxic	 (pimonidazole	 positive)	 regions;	

and	 the	 5hmC	 signal	 in	 both	 populations	 was	 compared	 using	 ANOVA.	 PyMT-

negative	 and	 CD45-positive	 cells	 were	 counted	 directly.	 The	 fraction	 of	

pimonidazole	and	CD31-positive	areas	was	directly	quantified	using	ImageJ	across	

10	images	per	slide.		

	

Metabolite	levels	

Metabolite	and	protein	extraction		

For	 metabolite	 extractions,	 12-well	 cell	 culture	 dishes	 were	 placed	 on	 ice	 and	

washed	twice	with	ice-cold	0.9%	NaCl,	after	which	500	µL	of	ice-cold	80%	methanol	

was	added	to	each	well.	Cells	were	scraped	and	500	µL	was	transferred	to	a	vial	on	

ice.	Wells	were	washed	with	500	µL	80%	methanol,	which	was	combined	with	the	

initial	 cell	 extracts.	 The	 insoluble	 fraction	 was	 pelleted	 at	 4°C	 by	 a	 10	 minute	

21,000×G	centrifugation.	The	pellet	(containing	the	proteins)	was	dried,	dissolved	in	

0.2	N	NaOH	at	96°C	for	10	minutes	and	quantified	using	a	bicinchoninic	acid	protein	

assay	(BCA,	Pierce,	Erenbodegem,	Belgium),	whereas	the	supernatant	 fraction	was	

processed	for	metabolite	profiling.	

Derivation	and	measurement	of	metabolites		

The	supernatant	fraction	containing	metabolites	was	transferred	to	a	new	vial	and	

dried	 in	a	Speedvac.	The	dried	supernatant	 fraction	was	dissolved	 in	45	µL	of	2%	
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methoxyamine	 hydrochloride	 in	 pyridine	 and	 held	 for	 90	 minutes	 at	 37°C	 in	 a	

horizontal	 shaker,	 followed	 by	 derivatization	 through	 the	 addition	 of	 60	 µL	 of	 N-

(tert-butyldimethylsilyl)-n-methyl-trifluoroacetamide	 with	 1%	 tert-

butyldimethylchlorosilane	 and	 a	 60	 minute	 incubation	 at	 60°C.	 Samples	 were	

subsequently	centrifuged	for	5	minutes	at	21,000	×G,	and	85	µL	was	transferred	to	a	

new	vial	and	analysed	using	a	gas-chromatography	based	mass	spectrometer	(triple	

quadrupole,	Agilent)	operated	in	Multiple	Reaction	Monitoring	(MRM)	mode.		

Analysis	of	metabolite	concentrations		

For	 each	 sample,	 metabolite	 measurements	 were	 normalized	 per	 sample	 to	 the	

corresponding	protein	 concentration	 estimates,	 and	 expressed	 relative	 to	 control-

treated	 samples.	 Four	 technical	 replicates	 were	 run	 for	 each	 sample,	 and	 the	

experiment	was	repeated	4	times	using	independent	samples	(n=16).	Differences	in	

metabolite	concentration	were	assessed	using	a	two-tailed	paired	Student’s	t-test	or	

using	analysis	of	variance	with	post-hoc	Tukey	HSD	when	repeated	measures	were	

compared.	

	

ROS	measurement	using	2',7'-dichlorodihydrofluorescein	diacetate	

MCF7	cells	were	 cultured	 in	24	well	plates	and	exposed	to	21%	(control)	or	0.5%	

O2	(hypoxia)	 for	 24	 hours.	 DMEM	 used	 for	 staining	 was	 pre-equilibrated	 to	 the	

required	O2	tension,	and	all	steps	performed	at	21%	(control)	or	0.5%	O2	(hypoxia)	

using	a	glove	box.	The	cells	were	washed	2×	with	500	µL	DMEM,	and	incubated	for	

30	 min	 in	 2',7'-dichlorodihydrofluorescein	 diacetate	 (DCF-DA;	 10	 μM)	 in	 500µL	

DMEM,	 keeping	 2	 wells	 unstained	 by	 DMEM	without	 DCF-DA.	 Cells	 were	 treated	

with	the	indicated	concentrations	of	H2O2	in	DMEM	for	30	min	at	37	°C,	and	fixed	by	

adding	33.3	µL	of	16%	methanol-free	paraformaldehyde	(Thermo	Fisher)	for	8	min	

at	RT.	The	 fixative	was	quenched	using	glycine	(150	µM),	cells	were	washed	2×	 in	

ice-cold	PBS,	 scraped	 to	detach	 them	and	 transfer	 them	 to	pre-cooled	FACS	 tubes	

over	 cell	 strainers.	 Cells	 were	 kept	 on	 ice	 until	 they	 were	 analysed	 by	 flow	

cytometry	using	a	FACSVerse	(BD	Biosciences).	
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Nuclear	ROS	measurement	using	Nuclear	Peroxy	Emerald	1.	

MCF7	cells	were	 seeded	on	12	well	 glass	bottom	plates	and	after	24	h	exposed	to	

21%	(control)	or	0.5%	O2	(hypoxia)	for	24	h.	PBS	used	for	subsequent	staining	was	

pre-equilibrated	to	the	required	O2	tension,	and	all	washing,	treatment	and	staining	

steps	were	 performed	 at	 the	 appropriate	O2	tension	 (21%	or	 0.5%)	using	 a	 glove	

box.	 Cells	 were	 loaded	 with	Nuclear	Peroxy	 Emerald	 1	 (NucPE1;	 5	 µM)38,39	 and	

Hoechst	 33342	 (10	 µg/mL)	 in	 PBS	 for	 15	 min	 at	 37	 °C.	 After	 washing	 3×	 in	

PBS,	control	cells	were	incubated	with	H2O2	(0.5	mM	in	PBS)	as	a	positive	control,	or	

with	 water	 (control	 and	 hypoxia	 cells)	 in	 PBS	 at	 37	 °C	 for	 20	min.	 Cells	 were	

washed	3×	 in	PBS,	 placed	on	 ice	 and	 immediately	 imaged	by	 confocal	microscopy.	

The	 nuclear	 NucPE1	 signal	 was	 measured,	 and	 averaged	across	 >100	 nuclei	 per	

replicate	using	ImageJ.	This	experiment	was	repeated	5	times	on	different	days,	and	

signals	compared	using	a	t-test.	

	

Cell	growth	measurement	using	Sulforhodamine	B	

5,000	cells/well	were	seeded	in	three	96-well	plates.	After	48	h,	one	plate	was	fixed	

using	trichloroacetic	acid	(3.3%	wt/vol)	for	1	h	at	4	°C,	one	plate	incubated	for	24	h	

at	37	°C	under	hypoxic	and	one	under	control	conditions	(resp.	0.5%	and	21%	O2).	

The	 latter	 2	 plates	 were	 subsequently	 also	 fixed	 using	 trichloroacetic	 acid	 (3.3%	

wt/vol)	 for	 1	 h	 at	 4	 °C,	 and	 all	 3	 plates	 were	 next	 analyzed	 using	 the	 In	 Vitro	

Toxicology	 Assay	 Kit,	 Sulforhodamine	 B-based	 (Sigma)	 as	 per	 the	 manufacturers	

instructions.	Growth	inhibition	was	calculated	as	described40.	

	

siRNA	transfection	

siRNA	ON-TARGETplus	SMART	pools	(Thermo)	were	diluted	in	Optimem	I	reduced	

serum	 medium	 using	 Lipofectamine	 RNAiMAX	 (Life	 technologies)	 to	 reverse	

transfect	MCF7	cells	in	10	cm	dishes	(for	DNA)	or	6	well	plates	(for	RNA).	Cells	were	

transfected	72	h	before	RNA	and	DNA	extraction	as	described.	

	

Hydroxylation	assay	using	nuclear	extracts.	
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MCF7	cells	were	cultured	for	24	h	under	control	or	hypoxic	conditions	(resp.	21	and	

0.5%	O2),	chilled	on	 ice	and	processed	 for	extraction	of	nuclear	proteins	using	the	

NE-PER	Nuclear	and	Cytoplasmic	Extraction	Kit	(Thermo	Scientific).	The	activity	of	

control	 and	 hypoxic	 extracts	 was	 assessed	 in	 parallel	 using	 the	 Colorimetric	

Epigenase	 5mC-Hydroxylase	 TET	 Activity/Inhibition	 Assay	 Kit	 (Epigentek,	

Farmingdale,	USA)	according	to	manufacturers	instructions.	Reactions	were	allowed	

to	 proceed	 for	 one	 hour,	 after	 which	 washing	 and	 detection	 of	 5hmC	were	 done	

according	 to	manufacturers	 instructions.	Differences	between	hypoxia	and	control	

were	analyzed	using	ANOVA,	for	5	independent	experiments.	

	

DNA	hydroxymethylation	assay	using	purified	Tet	enzyme.	

The	genomic	DNA	used	in	this	assay	was	extracted	from	Tet-triple-knockout	ES	cells	

(a	 gift	 from	 Prof.	 Guo-Liang	 Xu,	 State	 Key	 Laboratory	 of	 Molecular	 Biology,	 CAS,	

Shanghai,	 China),	 and	 it	 therefore	 was	 devoid	 of	 5hmC41.	 To	 enable	 efficient	

denaturation,	it	was	digested	using	MseI	prior	to	the	assay	and	purified	using	solid	

phase	 reversible	 immobilisation	 paramagnetic	 beads	 (Agencourt	 AMPure	 XP,	

Beckman	Coulter,	USA).	The	assays	were	performed	in	Whitley	H35	Hypoxystations	

(don	Whitley	Scientific,	UK)	at	37°	C,	5%	CO2,	N2,	plus	the	following	oxygen	tensions:	

0.1%,	0.25%,	0.5%,	1%,	2.5%,	5%,	10%	and	21%.	Hypoxystations	were	calibrated	

less	 than	 1	month	 prior	 to	 all	 experiments.	 Optimized	 assay	 components	were	 as	

follows:	1.0	µg/µL	bovine	serum	albumin	(New	England	Biolabs),	50	mM	Tris	 (pH	

7.8),	100	µM	dithiothreitol	 (Life	Technologies),	2ng/µL	digested	gDNA,	250	µM	α-

ketoglutarate,	 830	 µM	 ascorbate,	 200	 µM	 FeSO4	 and	 45	 ng/µL	 Tet1	 enzyme	

(Wisegene,	 USA).	 The	 major	 assay	 components	 (H20,	 BSA	 and	 Tris)	 used	 for	 all	

samples	 were	 allowed	 to	 pre-equilibrate	 at	 0.1%	 O2	 for	 1	 hour.	 These	 and	 the	

remaining	 assay	 buffer	 components	 (<100	 µL)	 were	 then	 pre-equilibrated	 at	 the	

desired	oxygen	tension	for	15	min,	and	mixed	prior	to	addition	of	Tet1	enzyme	in	a	

total	reaction	volume	of	25	µL.	Reactions	were	allowed	to	proceed	for	3	min,	longer	

incubations	 showed	 a	 decrease	 in	 activity.	 Reactions	 were	 stopped	 with	 80	 mM	

EDTA	 and	 stored	 at	 -80°	 C.	 To	 measure	 the	 resulting	 5hmC	 content	 of	 the	 DNA,	

reactions	were	 diluted	 to	 100	 µL,	 denatured	 for	 10	min	 at	 98°	 C	 and	 analysed	 in	
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duplicate	 using	 the	 Global	 5-hmC	 Quantification	 Kit	 (Active	 Motif)	 following	

manufacturers	 instructions.	Michaelis-Menten	 and	 Lineweaver-Burk	 plots	 and	 the	

resulting	KM	values	were	estimated	using	R.	

	

Hypoxia-induced	changes	in	genomic	distribution	of	5(h)mC	in	MCF7	cells	

DIP-seq		

To	 assess	 where	 in	 the	 genome	 the	 levels	 of	 5mC	 and	 5hmC	 were	 altered,	 we	

performed	 DNA	 immunoprecipitations	 coupled	 to	 high-throughput	 sequencing	

(DIP-seq).	MCF7	cells	were	selected	for	these	experiments	as	they	were	a	cancer	cell	

line	with	high	levels	of	5hmC	and	expression	of	TETs	under	control	conditions,	and	a	

cell	 growth	 that	 is	 unaffected	 by	 hypoxia,	 thus	 enabling	 us	 to	 study	 effects	 of	

hypoxia	on	TET	activity	in	a	cell	line	that	shows	high	endogenous	activity,	but	that	is	

isolated	 from	hypoxia-induced	changes	 in	 cell	proliferation.	MCF7	cell	 culture	and	

DNA	 extractions	were	 as	 described	 for	 LC/MS	 analyses.	 Library	 preparations	 and	

DNA	 immunoprecipitations	 were	 as	 described42,	 using	 established	 antibodies	

targeting	 5mC	 (clone	 33D3,	 Eurogentec,	 Liege,	 Belgium)	 and	 5hmC	 (Active	 Motif	

catalogue	number.39791,	 La	Hulpe,	Belgium).	 For	5hmC-DIP-seq,	 paired	barcoded	

libraries	prepared	 from	DNA	of	hypoxic	 and	 control	 samples	were	mixed	prior	 to	

capture,	to	enable	a	direct	comparison	of	5hmC-DIP-seq	signal	to	the	input.	A	single	

end	of	these	 libraries	was	sequenced	for	50	bases	on	a	HiSeq	2000,	mapped	using	

Bowtie	and	extended	for	the	average	insert	size	(150	bases).	Mapping	statistics	are	

summarized	in	Supplementary	table	11.	

For	analysis	of	 sequencing	data,	MACS	peak	 calling,	 read	depth	quantification	and	

annotation	 with	 genomic	 features	 as	 annotated	 in	 EnsEMBL	 build	 77	 was	 done	

using	 using	 SeqMonk.	 Differential	 (hydroxy-)methylation	 was	 quantified	 by	

EdgeR43,	using	either	3	or	5	independent	pairs	of	control	and	hypoxic	samples	(resp.	

for	 5hmC-DIP-seq	 and	 5mC-DIP-seq).	 These	 cells	 were	 cultured	 and	 exposed	 to	

hypoxia	 (0.5%	O2)	or	 control	 conditions	 (21%	O2)	on	different	days.	Results	were	

reported	 for	5hmC	peak	 areas	 that	 exhibited	 a	 change	 significant	 at	 a	P<0.05	 and	

5%	FDR.		
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Target	enrichment	BS-seq	using	SeqCapEpi	

To	 confirm	 enrichment	 of	 5mC	 at	 gene	 promoters	 using	 an	 independent	method,	

DNA	 libraries	 were	 prepared	 using	 methylated	 adapters	 and	 the	 NEBNext	 DNA	

library	 prep	 master	 mix	 set	 following	 manufacturer	 recommendations.	 Libraries	

were	 bisulfite-converted	 using	 the	 Imprint	 DNA	 modification	 kit	 (Sigma)	 as	

recommended,	and	PCR	amplified	for	12	cycles	using	barcoded	primers	(NEB)	and	

the	 KAPA	 HiFi	 HS	 Uracil+	 ready	 mix	 (Sopachem,	 Eke,	 Belgium)	 according	 to	

manufacturers	instructions.	Fragments	were	selected	from	these	libraries	using	the	

SeqCapEpi	 CpGiant	 Enrichment	 Kit	 (Roche)	 following	 the	 manufacturers	

instructions,	sequenced	from	both	ends	for	100	bases	on	a	HiSeq	2000.		

For	analyzing	these	sequences,	sequencing	reads	were	trimmed	for	adapters	using	

TrimGalore	 and	mapped	 on	 a	 bisulfite-converted	 human	 genome	 (GRCh37)	 using	

BisMark.	 The	 number	 of	 methylated	 and	 unmethylated	 cytosines	 in	 captured	

regions	 were	 quantified	 using	 Seqmonk	 for	 each	 experiment.	 Differential	

methylation	 of	 regions	 of	 interest	 was	 assessed	 by	 Fisher’s	 exact	 test	 and	 for	 5	

independent	 replicates	 grown	on	different	days.	 t-scores	were	 averaged	 following	

Fisher’s	method.	Mapping	statistics	are	summarized	in	Supplementary	table	11.	

RNA-seq	

To	assess	 the	 impact	 of	 the	 increased	5mC	occupancy	 at	 gene	promoters	on	 their	

expression,	RNA-seq	was	performed.	Briefly,	 total	RNA	was	extracted	using	TRIzol	

(Invitrogen),	 and	 remaining	 DNA	 contaminants	 in	 17-20ug	 of	 RNA	 was	 removed	

using	Turbo	DNase	(Ambion)	according	to	the	manufacturers	instruction.	RNA	was	

repurified	 using	 RNeasy	Mini	 Kit	 (Qiagen).	 Ribosomal	 RNA	 present	 was	 depleted	

from	5ug	of	 total	RNA	using	 the	RiboMinus	Eukaryote	 System	 (Life	 technologies).	

cDNA	 synthesis	 was	 performed	 using	 SuperScript®	 III	 Reverse	 Transcriptase	 kit	

(Invitrogen).	 3	 µg	 of	Random	Primers	 (Invitrogen),	 8	 µL	 of	 5×	 First-Strand	Buffer	

and	10	µL	of	RNA	mix	was	 incubated	at	94°C	for	3	min	and	then	at	4°C	 for	1	min.	

Then,	2	µL	of	10	mM	dNTP	Mix	(Invitrogen),	4	µL	of	0.1	M	DTT,	2	µL	of	SUPERase•	

In™	RNase	Inhibitor	20U/	µL	(Ambion),	2	µL	of	SuperScript™	III	RT	(200	units/µL)	

and	8	µL	of	Actinomycin	D	(1µg/µL)	were	added	and	the	mix	were	incubated	5	min	
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at	25°C,	60	min	at	50°C	and	15	min	at	70°C	 to	heat	 inactivating	 the	 reaction.	The	

cDNA	was	purified	by	using	80	µL	(2×	volume)	of	Agencourt	AMPure	XP	and	eluted	

in	50	µL	of	 the	 following	mix:	5	µL	of	10X	NEBuffer	2,	1.5	µL	of	10	mM	dNTP	mix	

(10mM	dATP,	dCTP,	dGTP,	dUTP,	Sigma),	0.1µL	of	RNaseH	(10	U/µL,	Ambion),	2.5	

µL	of	DNA	Polymerase	 I	Klenov	 (10U/µL,	NEB)	and	water	until	 50	µL.	The	eluted	

cDNA	 was	 incubated	 for	 30	 min	 at	 16°C,	 purified	 by	 Agencourt	 AMPure	 XP	 and	

eluted	in	30	µL	of	dA-Tailing	mix	(2	µL	of	Klenow	Fragment,	3	µL	of	10X	NEBNext	

dA-Tailing	Reaction	Buffer	and	25	µL	of	water).	After	30	min	incubation	at	37°C,	the	

DNA	was	purified	by	Agencourt	AMPure	XP,	eluted	 in	TE	buffer	and	quantified	on	

NanoDrop.	 Subsequent	 library	 preparation	 was	 done	 using	 the	 DNA	 library	 prep	

master	 mix	 set	 and	 sequencing	 was	 performed	 as	 described	 for	 ChIP-seq.	

Expression	 levels	 (reads	 per	 million)	 of	 genes	 displaying	 significant	 increases	 in	

methylation	at	their	gene	promoter,	as	determined	using	SeqCapEpi,	was	compared	

between	 control	 and	 hypoxic	 samples	 using	 t-test.	 Mapping	 statistics	 are	

summarized	in	Supplementary	table	11.	

	

TCGA	samples	and	data	analysis	

Sample	description	

From	 the	 TCGA	 pan-cancer	 analysis,	 we	 selected	 all	 solid	 tumor	 types	 for	 which	

>100	 tumors	were	 available	with	 both	 gene	 expression	 data	 (RNA-seq)	 and	 DNA	

methylation	data	(Illumina	Infinium	HumanMethylation450	BeadChip).	These	were	

408	bladder	 carcinomas,	 691	breast	 carcinomas,	 243	 colorectal	 adenocarcinomas,	

520	head	and	neck	squamous	cell	carcinomas,	290	kidney	renal	cell	carcinomas,	430	

lung	 adenocarcinomas,	 371	 lung	 squamous	 cell	 carcinomas,	 and	 188	 uterine	

carcinomas,	 representing	 in	 total	 3,141	 unique	 patients.	 Corresponding	 RNA-seq	

read	counts	as	well	as	DNA	methylation	data	from	Infinium	HumanMethylation450	

BeadChip	 arrays	 were	 downloaded	 from	 the	 TCGA	 server.	 Breast	 tumor	 subtype	

was	 annotated	 for	 208	 tumors,	 and	 for	 the	 remaining	 tumors	 imputed	 by	

unsupervised	 hierarchical	 clustering	 of	 genes	 in	 the	 PAM50	 gene	 expression	

signature44.	 Other	 clinical	 and	 histological	 variables	 were	 available	 for	 >95%	 of	
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tumors,	and	missing	values	were	encoded	as	not	available.	Gene	mutation	data	was	

available	 for	 129	 bladder	 carcinomas,	 646	 breast	 carcinomas,	 200	 colorectal	

adenocarcinomas,	306	head	and	neck	squamous	cell	carcinomas,	241	kidney	renal	

cell	carcinomas,	182	lung	adenocarcinomas,	74	lung	squamous	cell	carcinomas,	and	

3	uterine	carcinomas.		

Stratification	of	tumors	for	hypoxia	and	proliferation	

To	identify	which	of	these	tumor	samples	were	hypoxic	or	normoxic,	we	performed	

unsupervised	 hierarchical	 clustering	 based	 a	 modification	 (Ward.D	 of	 the	 clusth	

function	 in	 R`s	 stats	 package)	 of	 the	 Ward	 error	 sum	 of	 squares	 hierarchical	

clustering	 method45,	 on	 normalized	 log-transformed	 RNA-seq	 read	 counts	 for	 14	

genes	 that	make	up	 the	hypoxia	metagene	 signature	 (ALDOA,	MIF,	TUBB6,	P4HA1,	

SLC2A1,	PGAM1,	ENO1,	LDHA,	CDKN3,	TPI1,	NDRG1,	VEGFA,	ACOT7	and	ADM)25.	 In	

each	case	the	top	3	subclusters	identified	were	annotated	as	normoxic,	intermediate	

and	 hypoxic.	 To	 identify	 which	 of	 these	 tumor	 samples	 were	 high-	 or	 low-

proliferative,	 we	 performed	 unsupervised	 hierarchical	 clustering	 based	 a	

modification	(Ward.D	of	the	clusth	function	in	R`s	stats	package)	of	the	Ward	error	

sum	of	squares	hierarchical	clustering	method45,	and	this	for	all	genes	annotated	to	

an	 established	 tumor	proliferation	 signature	 (MKI67,	NDC80,	NUF2,	PTTG1,	RRM2,	

BIRC5,	CCNB1,	CEP55,	UBE2C,	CDC20	and	TYMS)46.	Tumors	in	the	top	2	subclusters	

identified	were	labeled	as	high-	or	low-proliferative.	

Analysis	of	the	top	1000	CpGs	most	hypermethylated	versus	normal	tissue	

To	identify	tumor-associated	HM	events,	we	compared	450K	methylation	data	from	

tumors	and	normal	tissues.	All	available	DNA	methylation	data	from	normal	tissue	

(matched	 or	 unmatched	 to	 tumor	 samples,	 on	 average	 59	 per	 tumor	 type,	

representing	 472	 in	 total,	 range	 =	 21-160)	 were	 downloaded.	 For	 each	 of	 the	 8	

tumor	types	 investigated,	we	selected	the	 top	1,000	CpGs	that	showed	the	highest	

average	 tumor-associated	 increases	 in	 DNA	 methylation.	 Per	 tumor	 type,	

unsupervised	hierarchical	clustering	based	on	a	modification	of	the	Ward	error	sum	

of	squares	hierarchical	clustering	method	(Ward.D	of	the	clusth	function	in	R`s	stats	

package)45	annotated	the	first	3	clusters	identified	as	having	low,	intermediate	and	
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high	 hypermethylation.	 Cluster	 co-membership	 for	 methylation	 and	 hypoxia	

metagene	 expression	 were	 analysed	 using	 the	 Cochran-Armitage	 test	 for	 trend.	

Analyses	using	the	top	100,	500,	5,000	or	10,000	CpGs	yielded	near	identical	results	

(not	shown).		

Analysis	of	HM	events	

We	next	applied	a	method	to	identify	those	CpGs	that	exhibit	exceptional	increases	

in	HM	but	that	are	hypermethylated	only	in	a	subset	of	all	tumors.	Such	more	rare	

events	are	typically	found	in	cancer,	where	HM	inactivates	a	gene	in	only	a	subset	of	

tumors.	 HM	 of	 individual	 CpGs	 at	 gene	 promoters	 (i.e.	 on	 average	 3.7	 CpGs	 per	

promoter	are	represented	on	the	450K	array)	in	individual	tumors	was	assessed	as	

follows:	 To	 achieve	 a	 normal	 distribution,	 all	 β-values	 were	 transformed	 to	 M-

values47	 using	M	 =	 log2(β/(1-β)).	 For	 each	 tumor	 type,	 the	mean	 μ	 and	 standard	

deviation	σ	of	the	M	value	across	all	control	(normoxic)	tumors	was	next	calculated,	

irrespective	of	mutational	status,	for	each	CpG,	and	used	to	assign	Z-values	to	each	

CpG	 in	 each	 tumor	 using	 Z	 =	 (M	 -	 μ)/σ.	 These	 Z-values	 describe	 the	 deviation	 in	

normal	 methylation	 variation	 for	 that	 probe.	 To	 identify	 CpGs	 that	 display	 an	

extreme	 deviation,	we	 selected	 those	 for	which	 the	 Z-value	 exceeded	 5.6	 (i.e.	 the	

mean	plus	5.6	times	the	standard	deviation,	corresponding	to	a	Bonferroni-adjusted	

P-value	of	0.01);	they	were	considered	as	hypermethylation	events	in	that	particular	

tumor.	 This	 analysis	 was	 preferred	 over	 Wilcoxon-based	 models	 that	 assess	

differences	in	the	average	methylation	level	between	subgroups,	as	the	latter	do	not	

enable	the	identification	or	quantification	of	the	more	rare	HM	events	in	individual	

promoters	or	CpGs.		

To	 identify	 genes	 with	 frequently	 hypermethylated	 CpGs	 in	 their	 promoter,	 the	

number	of	HM	events	in	that	promoter	was	counted	in	all	tumors,	and	contrasted	to	

the	expected	number	of	HM	events	in	that	promoter	(i.e.	the	general	HM	frequency	×	

the	 number	 of	 CpGs	 assessed	 in	 that	 promoter	 ×	 the	 number	 of	 tumors)	 using	

Fisher’s	exact	test.	Genes	with	an	associated	Bonferroni-adjusted	P-value	below	0.01	

were	retained	and	considered	as	frequently	hypermethylated	in	that	tumor	type.		
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To	assess	what	 fraction	of	 these	HM	events	 are	hypoxia-related,	we	assumed	 that	

the	fraction	of	events	detected	under	normoxia	was	hypoxia–unrelated,	and	that	all	

excess	 events	 detected	 in	 intermediate	 and	hypoxic	 tumors	were	hypoxia-related.	

For	 example,	 in	 691	 breast	 carcinomas,	 0.25%	 of	 CpGs	were	 hypermethylated	 in	

251	normoxic	tumors,	0.81%	in	350	intermediate	and	1.40%	in	90	hypoxic	tumors.	

So,	0.56%	and	1.15%	of	HM	events	in	respectively	intermediate	and	hypoxic	tumors	

were	 hypoxia-related.	 Taking	 into	 account	 the	 number	 of	 tumors,	 0.25%	 of	 HM	

events	 (i.e.	 (0.25%	×	 251	 +	 0.25%	×	 350	 +	 0.25%	×	 90)	 ÷	 691)	 are	 not	 hypoxia-

related,	and	0.43%	are	hypoxia	related	(i.e.	(0%	×	251	+	0.56%	×	350	+	1.15%	×	90)	

÷	 691).	 Hence,	 63%	 of	 all	 HM	 events	 (i.e.	 0.43÷(0.43+0.25)).	 To	 assess	 the	

contribution	 of	 hypoxia	 to	HM	 relative	 to	 other	 covariates,	 partial	R2	 values	were	

calculated	for	the	contribution	of	each	covariate	in	a	linear	model,	and	compared	to	

the	total	R2	achieved	by	the	model.	

To	 identify	 genes	 with	 CpGs	 in	 their	 promoter	 that	 are	 more	 frequently	

hypermethylated	in	hypoxic	than	normoxic	tumors,	the	number	of	HM	events	in	that	

promoter	was	counted	in	all	hypoxic	tumors,	and	contrasted	to	the	number	found	in	

normoxic	tumors.	Differences	in	frequencies	were	assessed	using	Fisher’s	exact	test,	

and	 genes	 with	 a	 Bonferroni-adjusted	 P<0.01	 were	 retained	 and	 considered	

hypermethylated	 upon	 hypoxia.	 Enrichment	 of	 ontologies	 associated	 with	 these	

genes	was	assessed	using	Fisher’s	exact	test	as	implemented	in	R`s	topGO	package.	

Analysis	of	the	impact	of	HM	events	on	the	expression	of	associated	genes	

To	 enable	 a	 direct	 comparison	 between	 the	 expression	 of	 different	 genes,	 we	

transformed	gene	expression	values	(reads	per	million)	to	their	respective	z-scores.	

To	 assess	 the	 impact	 of	 HM	 events	 on	 the	 expression	 of	 associated	 genes,	 we	

compared	 the	 expression	 z-scores	 of	 all	 frequently	HM	 genes	 that	 contain	 one	 or	

more	 HM	 events	 in	 their	 promoter	 (i.e.,	 on	 average	 each	 promoter	 contains	 3.7	

CpGs;	 if	 one	 of	 these	 is	 hypermethylated	 the	 associated	 gene	 is	 considered	

hypermethylated	 in	 that	 particular	 tumor),	 to	 the	 expression	of	 all	 frequently	HM	

genes	 that	 do	 not	 contain	 a	 HM	 event.	 The	 effect	 of	 HM	 on	 gene	 expression	was	

plotted	for	the	8	main	tumor	types	stratified	into	normoxic,	intermediately	hypoxic	
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and	hypoxic	tumors,	and	for	glioblastomas	stratified	into	normoxic,	 intermediately	

hypoxic,	 hypoxic	 and	 IDH-mutant	 tumors	 (n=4).	 The	 difference	 in	 expression	 z-

scores	between	genes	not	carrying	and	carrying	a	HM	event	in	their	promoter	was	

assessed	using	a	t-test.	

Analysis	of	the	impact	of	frequent	mutations	on	the	occurrence	of	HM	events		

To	assess	 the	 impact	of	 somatic	mutations	on	hypoxia-associated	HM	 frequencies,	

we	analyzed	the	top	20	genes	described	to	be	most	frequently	mutated	in	the	pan-

cancer	analysis,24	and	supplemented	this	 list	with	genes	known	to	cause	HM	upon	

mutation	(i.e.	IDH1,	IDH2,	SDHA,	FH,	TET1,	TET2	and	TET3).	Mutations	in	IDH1	and	

IDH2	were	retained	if	they	respectively	affected	amino	acid	R132,	and	amino	acids	

R140	 or	 R172.	 Mutations	 in	 other	 genes	 were	 scored	 using	 Polyphen,	 and	 only	

mutations	classified	as	probably	damaging	were	retained.	7	mutations	were	 found	

in	lung	tumors,	3	mutations	in	colorectal	tumors,	8	mutations	in	breast	tumors	and	

6	mutations	(all	IDH1R132)	in	glioblastomas.	None	of	these	mutations	were	enriched	

in	hypoxic	subsets.	In	multivariate	analyses	of	variance,	in	each	of	the	tumor	types	

analyzed,	mutations	in	these	genes	were	significantly	associated	with	increased	HM	

frequencies,	 but	 also	hypoxia	was	 independently	 and	 significantly	 associated	with	

the	HM	frequency.		

Correlation	between	HM	and	expression	of	TET	or	DNMT	enzymes	

Gene	 expression	 values	 (reads	 per	 million)	 of	 DNMT	 and	 TET	 enzymes	 were	

determined	for	each	tumor	using	available	RNA-seq	data.	The	number	of	HM	events	

at	significantly	hypermethylated	genes	in	each	tumor	was	determined	as	described	

above.	 Hypermethylation	 in	 each	 tumor	 was	 subsequently	 correlated	 to	 TET	 or	

DNMT	 gene	 expression	 in	 that	 tumor,	 correcting	 for	 hypoxia	 and	 proliferation	

status,	using	ANOVA.	

	

5mC	and	5hmC	profiling	using	450K	arrays	for	24	lung	tumors	

Tumor	samples	

Newly	 diagnosed	 and	 untreated	non-small-cell	 lung	 cancer	 patients	 scheduled	 for	

curative-intent	 surgery	 were	 prospectively	 recruited.	 Included	 subjects	 had	 a	
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smoking	history	of	at	least	15	pack-years.	The	study	protocol	was	approved	by	the	

Ethics	 Committee	 of	 the	 University	 Hospital	 Gasthuisberg	 (Leuven,	 Belgium).	 All	

participants	 provided	 written	 informed	 consent.	 In	 the	 framework	 of	 a	 different	

project48,	 RNA-seq	 was	 performed	 on	 39	 tumors	 from	 these	 patients.	 Gene	

expression	for	these	samples	was	clustered	for	their	hypoxia	metagene	signature25.	

This	 yielded	 2	 clear	 clusters,	 containing	 respectively	 24	 and	 15	 normoxic	 and	

hypoxic	tumors.	Twelve	samples	were	randomly	selected	from	each	cluster,	in	order	

to	perform	5hmC	and	5mC	profiling.	

Illumina	Infinium	HumanMethylation450	BeadChips		

For	 Tet-assisted	 bisulfite	 (TAB)-chip,	 DNA	 was	 glycosylated	 and	 oxidized	 as	

described49,	using	 the	5hmC	TAB-Seq	Kit	 (WiseGene,	Chicago,	USA).	Subsequently,	

bisulfite	conversion,	DNA	amplification	and	array	hybridization	were	done	following	

manufacturers	instructions.		

Analysis	of	TAB-chip	and	BS-chip	

Data	processing	was	 largely	as	described50.	 In	brief,	 intensity	data	 files	were	 read	

directly	 into	 R.	 Each	 sample	 was	 normalized	 using	 Subset-quantile	 within	 array	

normalization	 (SWAN)	 for	 Illumina	 Infinium	 HumanMethylation450	 BeadChips49.	

Batch	effects	between	chips	and	experiments	were	corrected	using	the	runComBat	

function	from	the	ChAMP	bioconductor	package51.	For	obtaining	5mC-specific	beta	

values,	 TAB-chip	 generated	 normalized	 beta	 values	 were	 substracted	 from	 the	

standard	450K	generated	normalized	beta	values,	exactly	as	described50.		

	

Murine	cancer	models	

All	 the	 experimental	 procedures	 were	 approved	 by	 the	 Institutional	 Animal	 Care	

and	Research	Advisory	Committee	of	the	KU	Leuven.	

Hypoxia	induction	using	sFlk1-overexpression	

For	 sFlk1-overexpression	 studies,	 male	 Tg(MMTV-PyMT)	 FVB	 mice	 were	

intercrossed	 with	 WT	 FVB	 female	 mice.	 Female	 pups	 of	 the	 Tg(MMTV-PyMT)	

genotype	were	retained,	and	tumors	allowed	to	develop	for	9	weeks.	Subsequently,	

2.5	µg	of	plasmid	(Flk1-overexpressing	or	empty	vector;	randomly	assigned	within	
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litter	mates)	per	gram	of	mouse	body	weight	was	 introduced	 in	 the	blood	 stream	

using	hydrodynamic	tail	vein	injections52.	Flk1	overexpression	was	monitored	at	4	

days	after	 injection	and	at	 the	day	of	sacrifice	(18	days	after	 the	 injection),	by	eye	

bleeds	followed	by	an	enzyme-linked	immunosorbent	assay	for	sFlk1	(R&D	Systems,	

Abingdon,	 UK)	 in	 blood	 plasma.	 At	 12	 weeks	 of	 age,	 mice	 were	 sacrificed	 and	

mammary	tumors	harvested	blinded	for	treatment.		

Hypoxia	reduction	using	Phd2	haplodeficiency	

For	 the	 Phd2+/-	 experiments,	 male	 Tg(MMTV-PyMT)	 FVB	mice	 were	 intercrossed	

with	 female	 Phd2-/+	 mice,	 yielding	 litters	 of	 which	 half	 have	 either	 a	 Tg(MMTV-

PyMT)	 genotype	 or	 a	 Tg(MMTV-PyMT);Phd2-/+	 genotype.	 For	 the	 Phd2wt/fl	

experiments,	male	Tg(MMTV-PyMT)	FVB	mice	were	intercrossed	with	female	Tie2-

cre;Phd2wt/fl	mice	 as	 described27,	 yielding	 litters	 of	which	 half	 have	 either	 a	Tie2-

cre;Tg(MMTV-PyMT);Phd2wt/wt	 genotype	 or	 a	 Tie2-cre;Tg(MMTV-PyMT);Phd2-/+	

genotype.	 At	 16	weeks	 of	 age,	 female	mice	were	 sacrificed	 and	mammary	 tumors	

harvested.		

qPCR	analysis	of	expression	of	Tets	and	marker	genes	

RNA	was	 extracted	 from	 fresh-frozen	 tumors	 (stored	 at	 -80°C)	 using	 TRIzol	 (Life	

Technologies),	and	converted	to	cDNA	and	quantified	as	described	for	the	cell	lines.	

TaqMan	probes	 and	 primers	 (IDT,	 Leuven,	 Belgium	 or	 Life	 technologies)	 are	

described	under	Supplementary	table	12.	

TAB-sequencing	(TAB-seq)	of	PyMT	tumors	

TAB-seq	 libraries	 were	 prepared	 as	 described,	 using	 the	 5hmC	 TAB-Seq	 Kit	

(WiseGene).	DNA	was	bisulfite-converted	using	 the	EZ	DNA	Methylation-Lightning	

Kit	(Zymo	Research)	and	sequenced	as	described	for	SeqCapEpi	experiments.	Reads	

were	mapped	to	the	mouse	genome	(build	Mm9)	and	further	data	processing	was	as	

for	 SeqCapEpi	 experiments.	 DNA	 from	 3	 independent	 tumors	 were	 selected	 per	

condition.	 TET	 oxidation	 efficiency	 was	 required	 to	 exceed	 99.5%	 as	 estimated	

using	a	fully	CG-methylated	plasmid	spike-in,	5hmC	protection	by	glycosylation	was	

65%	 as	 estimated	 using	 a	 fully	 hydroxymethylated	 plasmid	 spike-in,	 bisulfite	

conversion	 efficiencies	 were	 estimated	 to	 exceed	 99.8%	 based	 on	 nonCG	
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methylation	 (=hmCpH	 %).	 Mapping	 statistics	 are	 summarized	 in	 Supplementary	

table	11.	

Targeted	deep	BS-seq	

As	no	murine	 capture	kit	was	available	 for	 targeted	BS-seq,	 a	 specific	 ampliconBS	

was	developed	 for	 a	 set	 of	 15	 tumor	 suppressor	 gene	 promoters	 and	 5	 oncogene	

promoters.	More	 specifically,	 DNA	was	 bisulfite-converted	 using	 the	 Imprint	 DNA	

modification	kit	and	amplified	using	the	MegaMix	Gold	2×	mastermix	and	validated	

primer	 pairs.	 Per	 sample,	 PCR	 products	were	mixed	 to	 equimolar	 concentrations,	

converted	into	sequencing	libraries	using	the	NEBNext	DNA	library	prep	master	mix	

set	and	sequenced	 to	a	depth	of	~500×.	Mapping	and	quantification	were	done	as	

described	for	SeqCapEpi.	The	average	and	variance	of	methylation	level	M	values	in	

normal	mammary	 glands	were	 used	 as	 baseline,	 and	 amplicons	 displaying	 over	 3	

standard	 deviations	 more	 methylation	 (FDR-adjusted	 P<0.05)	 than	 this	 baseline	

were	 called	 as	 hypermethylated.	 At	 least	 9	 different	 tumors,	 each	 from	 different	

animals,	 were	 profiled	 per	 genotype	 or	 treatment,	 and	 differences	 in	 HM	

frequencies	between	sets	of	tumors	were	assessed	using	Mann-Whitney’s	U-test.	

	

Statistics	

Data	entry	and	analysis	was	performed	in	a	blinded	fashion.	Statistical	significance	

was	calculated	by	two-tailed	unpaired	t-test	(Excel)	or	analysis	of	variance	(R)	when	

repeated	 measures	 were	 compared.	 Data	 were	 tested	 for	 normality	 using	 the	

D’Agostino–Pearson	omnibus	test	(for	n	>	8)	or	the	Kolmogorov–Smirnov	test	(for	n	

≤	8)	and	variation	within	each	experimental	group	was	assessed.	Data	are	presented	

as	means	±	standard	error	of	mean.	DNA	methylation	and	RNA-seq	gene	expression	

data	 distributions	were	 transformed	 to	 a	 normal	 distribution	 by	 conversion	 to	M	

values	 and	 log2	 transformation	 respectively.	 Sample	 sizes	 were	 chosen	 based	 on	

prior	 experience	 for	 in	 vitro	 and	 murine	 experiments,	 or	 on	 sample	 and	 data	

availability	for	human	tumor	analyses.	Other	statistical	methods	(mostly	related	to	

specific	 sequencing	 experiments)	 are	 described	 together	 with	 the	 experimental	

details	in	other	sections	of	the	methods.	
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Extended	data	figure	legends	

Extended	 data	 figure	 1	 |	 Hypoxia-induced	 changes	 in	 5hmC,	 5mC	 and	 TET	

expression.	 Global	 5hmC/C	 and	 5mC/C	 content	 of	 DNA,	 TET1,	 TET2	 and	 TET3	

mRNA	expression	and	hypoxia	marker	gene	expression	in	15	cell	lines	grown	for	24	

h	under	control	 (21%	O2,	white)	or	hypoxic	 (0.5%	O2,	 red)	conditions.	TET	mRNA	

copy	number	 is	 expressed	 relative	 to	B2M	 for	 human	 cell	 lines	 (HepG2,	HT-1080,	

MCF10A,	H358,	MCF7,	Hep3B,	A549,	H1299,	SK-N-Be2c	and	SHSY5Y),	and	 to	Hprt	

for	murine	cell	lines	(LLC,	N2A,	4T1,	ESC-wt	and	ESC-Tet1-KO).	Shown	are	cell	lines	

derived	from	liver	cancer	(HepG2	and	Hep3B),	lung	cancer	(H358,	A549,	H1299	and	

LLC),	breast	cancer	(MCF7	and	4T1),	fibrosarcoma	(HT1080),	neuroblastoma	(SK-N-

Be2c	and	SHSY5Y),	normal	breast	epithelium	(MCF10A)	and	the	inner	cell	mass	of	

blastocyst-stage	mouse	embryos	(ESC-wt	and	ESC-Tet1-KO).	ALDOA	and	BNIP3	are	

expected	to	be	increased,	and	HIF1A	 to	be	decreased	upon	hypoxia.	The	global	5fC	

content	 of	 ES	 cells	 is	 depicted,	 but	 was	 undetectable	 in	 cancer	 cell	 lines.	 Bars	

represent	 the	mean	 ±	 s.e.m.	 of	 5	 different	 replicate	 samples.	 DNA	 and	 RNA	 from	

these	 replicates	 was	 extracted	 from	 cells	 derived	 from	 the	 same	 stock	 vial	 but	

grown	on	different	days.	*	P<0.05,	**	P<0.01,	***	P<0.001	by	paired	t-tests.	

	

Extended	data	 figure	 2	 |	 Impact	 of	 hypoxia	 on	TET	 expression.	 a,	Changes	 in	

Tet1,	 Tet2	 and	 Tet3	 expression	 in	mouse	 cell	 lines,	 at	 the	 protein	 level	 (top	 row,	

n=6)	 and	 the	 mRNA	 level	 (bottom	 row,	 n=5).	 middle	 row:	 representative	

immunoblot	 images	 of	 Hif1a,	 Tet1,	 Tet2	 and	 Tet3.	 α-Tubulin	 serves	 as	 loading	

control,	 and	 expression	 of	 the	 corresponding	 coding	 gene	 (Tuba)	 was	 used	 to	

normalize	mRNA	expression,	 enabling	 a	direct	 comparison	of	 relative	protein	 and	

relative	 mRNA	 expression	 changes.	 For	 the	 same	 reason,	 mRNA	 expression	 was	

depicted	relative	 to	control	 conditions,	 in	contrast	 to	 the	absolute	 levels	 shown	 in	

Extended	 data	 figure	 1.	 Changes	 in	 Tet	 mRNA	 and	 protein	 expression	 correlate	

strongly	 (Pearson’s	 R:	 0.855,	 P=4	 ×	 10-4).	 For	 example,	 both	 4T1	 and	 N2A	 cells	

displayed	 increased	 Tet2	 expression	 at	 the	 protein	 and	mRNA	 level.	 Likewise,	 ES	

cells	showed	no	pronounced	changes	at	the	protein	nor	at	mRNA	level.	The	overall	
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expression	of	Tet	enzymes	was	moreover	not	altered	in	any	of	these	cell	 lines.	For	

gel	source	data,	see	Supplementary	figure	1.	b,	HIF1β	ChIP-seq	at	the	promoters	of	

TET1,	TET2	and	TET3	and	at	hypoxia	markers	genes	(BNIP3	and	ALDOA),	with	peaks	

or	 promoter	 regions	 highlighted	 using	 colored	 boxes.	 Green	 and	 red	 boxes	

correspond	to	respectively	overexpression	and	no	overexpression	(specified	in	the	

figure	panel)	of	the	corresponding	gene,	as	determined	using	TaqMan	in	Extended	

data	 figure	 1.	 Scale:	 reads	 per	 million	 reads	 and	 per	 basepair.	 c,	 (left)	 TET2	

expression	 in	 MCF7	 cells	 transfected	 with	 control	 (white)	 or	 TET2-targeting	

(purple)	 siRNAs,	 and	 (right)	 corresponding	 5hmC	 levels	 as	 determined	 using	

LC/MS.	d,	5hmC	levels	as	determined	using	LC/MS,	 in	wild-type	(white)	and	Tet1-

knockout	 (purple)	 ES	 cells	 grown	 under	 21%	 (left)	 and	 0.5%	 (right)	 oxygen	

tensions.	Bars	 in	 c	 and	d	 represent	 the	mean	±	 s.e.m.	 of	 5	 replicate	 samples	 from	

cells	 derived	 from	 the	 same	 stock	 vial	 but	 grown	 on	 different	 days.	 *	 P<0.05,	 **	

P<0.01,	***	P<0.001	by	paired	t-tests	(a,	c,	d)	

	

Extended	data	figure	3	|	Effects	secondary	to	hypoxia.	a-e,	ROS	production	and	

redox	state	of	MCF7	cells	cultured	for	24	h	under	control	(21%	O2,	white)	or	hypoxic	

(0.5%	O2,	 red)	 conditions.	 Shown	are	 (a)	GC/MS	quantifications	of	 changes	 in	 the	

cellular	 energy	 state	 as	 represented	 by	 the	 adenylate	 energy	 charge	 (AEC)	

(calculated	 as	 [ATP	 +	 0.5	 ×	 ADP]/[ATP	 +	 ADP	 +	 AMP]);	 the	 cell’s	 reducing	

equivalents	as	 represented	by	 the	relative	NADH	and	NADPH	 levels	 (calculated	as	

NADH/[NAD+	 +	 NADH]	 and	 NADPH/[NADP+	 +	 NADPH])	 and	 the	 cell’s	 reductive	

capacity	as	represented	by	the	levels	of	glutathione	(calculated	as	GSH/[GSH	+	GSSG	

×	2]).	b-c,	Quantication	(b)	and	representative	FACS	intensity	traces	(c)	of	total	ROS	

levels	 in	 MCF7	 cells	 exposed	 to	 hypoxia	 or	 H2O2,	 as	 assessed	 using	 2',7'-

dichlorodihydro-fluorescein	 diacetate	 (DCF-DA).	 d,	 Nuclear	 ROS	 in	 MCF7	 cells	 as	

assessed	 using	 the	 Nuclear	 Peroxy	 Emerald	 1	probe	 (NucPE1)39.	MCF7	 cells	were	

exposed	to	21%	(control)	or	0.5%	O2	(hypoxia)	for	24	h,	after	which	live	cells	were	

loaded	with	NucPE1	(5	µM)	and	Hoechst	33342	(10	µg/mL)	in	O2	pre-equilibrated	

PBS	for	15	minutes.	After	washing,	control	cells	were	incubated	with	H2O2	(0.5	mM	
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in	PBS)	as	a	positive	control,	or	with	water	(control	and	hypoxia	cells)	in	PBS	for	20	

minutes.	Cells	were	washed	again	and	immediately	imaged	by	confocal	microscopy.	

Representative	 images	 are	 shown;	 scale:	 50	 µm.	 e,	 The	 nuclear	 NucPE1	 signal,	

averaged	across	>100	nuclei	and	expressed	relative	to	control	conditions.	f,	LC/MS	

quantification	of	8-oxoguanine	concentrations	in	DNA	of	cells	lines	cultured	for	24	h	

under	control	(21%	O2,	white)	and	hypoxic	(0.5%	O2,	red)	conditions.	8-oxoguanine	

serves	 as	 a	marker	 of	 nuclear	 ROS53.	 g-i,	 GC/MS	 quantification	 of	 changes	 in	 the	

indicated	metabolite	levels	in	mouse	embryonic	stem	cells	(g),	MCF10A	cells	(h)	and	

MCF7	cells	(i)	grown	for	24	h	under	control	(21%	O2,	white),	hypoxic	(0.5%	O2,	red)	

or	glutamine-free	conditions	(21%	O2,	black).	j,	Quantities	of	α-ketoglutarate	and	2-

hydroxyglutarate	in	MCF7	cells,	expressed	relative	to	α-ketoglutarate	levels	in	MCF7	

cells	 grown	 under	 control	 conditions	 (21%	O2).	k,	 LC/MS	 quantification	 of	 5hmC	

levels	 in	 response	 to	 hypoxia	 (0.5%	 O2)	 and	 glutamine-free	 culture	 conditions.	 l,	

Growth	of	 cell	 lines	 cultured	 for	24	h	under	 control	 (21%	O2,	white)	 and	hypoxic	

(0.5%	O2,	red)	conditions,	as	assessed	using	a	sulforhodamine	B	colorimetric	assay.	

Changes	 in	cell	density	after	24	h	are	depicted	relative	to	control	conditions	(21%	

O2).	m,	 IOX2-induced	 changes	 in	 the	 global	 5hmC	 content	 of	 DNA,	 in	TET	 mRNA	

expression	and	 in	hypoxia	marker	gene	expression	of	5	 cell	 lines	 treated	 for	24	h	

with	DMSO	(carrier,	white)	or	IOX2	(50	µM,	blue).	n,	5mC	hydroxylation	activity	of	

nuclear	 lysates	 from	MCF7	 cells	 grown	 for	24	h	under	21%	or	0.5%	O2	 (white	or	

red).	 Bars	 represent	 the	 mean	 ±	 s.e.m.	 of	 5	 (b,	 k,	m),	 6	 (a,	 e),	 16	 (g-j)	 or	 24	 (l)	

samples	prepared	on	different	days.	*	P<0.05,	**	P<0.01,	***	P<0.001	by	t-test	(b,	e,	

h-m).	

	

Extended	data	figure	4	|	Genomic	profiles	of	5mC	and	5hmC.	Shown	are	results	

from	 DIP-seq	 of	 DNA	 from	MCF7	 cells	 cultured	 for	 24	 h	 under	 21%	 or	 0.5%	 O2	

(control	 and	 hypoxia),	 with	 examples	 of	 5hmC-DIP-seq	 (top)	 and	 5mC-DIP-seq	

(bottom)	 read	 depths	 (FPM,	 fragments	 per	 basepair	 per	 million	 fragments)	 at	

regions	surrounding	the	transcription	start	site	of	NSD1,	FOXA1	and	CDKN2A.	These	

show	5hmC	loss	(FDR<5%)	and	a	5mC	gain	that	is	more	subtle,	perhaps	because	the	

resolution	 of	 5mC-DIP-seq	 is	 limiting:	 regions	 rich	 in	 5hmC	 tend	 to	 be	 poorer	 in	
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5mC54,	and	thus	have	less	substrate	available	for	pull-down.	5mC-DIP-seq	moreover	

captures	 all	 methylated	 sites,	 so	most	 of	 the	 5mC-DIP-seq	 signal	 does	 not	 derive	

from	sites	that	are	actively	turning	over	5hmC.		

	

Extended	data	figure	5	|	Impact	of	hypoxia	on	hypermethylation	frequency	in	

tumors.	 a,	 Immunofluorescence	 analysis	 of	 patient-derived	 tumor	 xenografts,	

stained	for	pimonidazole	(PIMO,	white),	5hmC	(red),	DNA	(propidium	iodide,	blue)	

and	 pan-cytokeratin	 (green).	 Shown	 are	 representative	 images	 of	 a	 breast	 and	 2	

endometrial	tumor	xenografts.	The	inset	on	the	right	shows	boxplots	illustrating	the	

signal	 in	 normoxic	 pimonidazole-negative	 nuclei	 (blue),	 and	 in	 hypoxic	

pimonidazole-positive	 nuclei	 (red).	 b,	 Hypoxia	 marker	 gene	 expression	 clusters,	

with	the	first	3	clusters	used	to	define	normoxic,	intermediate	and	hypoxic	tumors.	

c,	Unsupervised	clustering	of	1,000	CpGs	showing	the	highest	average	methylation	

increase	 in	 tumor	 versus	 corresponding	 normal	 tissues.	 The	 first	 3	 clusters	 were	

used	 to	define	 tumors	of	 low,	 intermediate	and	high	HM.	The	 color	bar	above	 the	

clusters	annotates	each	tumor	as	normoxic,	intermediate	or	hypoxic,	as	determined	

in	Extended	data	figure	5b.	d,	Boxplots	showing	the	relative	expression	(z-score)	of	

genes	in	tumors	wherein	they	have	either	0	or	≥1	hypermethylation	(HM)	event	in	

their	 promoter,	 stratified	 into	 normoxic,	 intermediate	 and	 hypoxic	 tumors	 (resp.	

blue,	grey	and	red).	Diamonds	indicate	means,	boxplot	wedges	indicate	2	times	the	

standard	error	of	the	median.	Genes	having	≥1	HM	events	in	their	promoters	have	a	

lower	average	expression	 level	 (P<0.01	 for	each	 tumor	 type).	 e,	Fraction	of	genes	

having	 a	 promoter	 that	 is	 rich,	 intermediate	 or	 poor	 in	 CpGs,	 out	 of	 all	 gene	

promoters	 that	 are	 assessed	 on	 the	 450K	 array	 (450K),	 and	 out	 of	 all	 gene	

promoters	 that	 are	 frequently	 hypermethylated	 in	 the	 indicated	 tumor	 types.	 f,	

Fraction	 of	 1,742	 TET-wildtype	 tumors	 and	 39	 TET-mutant	 that	 are	 normoxic,	

intermediate	 and	 hypoxic.	 P>0.2	 for	 all	 comparisons.	 g,	 Cell	 proliferation	marker	

gene46	expression	clusters,	with	the	first	2	clusters	used	to	define	high-proliferative	

and	 low-proliferative	 tumors.	 h,	 HM	 frequencies	 in	 low	 and	 high-proliferative	

tumors,	 with	 asterisks	 representing	 P-values	 from	 linear	 models	 correcting	 for	

variables	 specified	 in	 Supplementary	 table	 8.	 i,	 Partial	 correlation	 coefficient	
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(partial	 R2)	 estimates	 of	 the	 relative	 contribution	 of	 tumor	 characteristics	

(annotated	 in	 TCGA)	 to	 the	 variance	 in	 HM	 observed	 in	 these	 tumors.	 Partial	 R2	

values	 were	 obtained	 from	 linear	model	 estimation	 using	 ordinary	 least	 squares,	

and	expressed	as	a	fraction	of	the	total	variance	(i.e.	total	R2)	explained	by	the	model	

when	 taking	 into	 account	 all	 indicated	 variables,	 as	 indicated	 between	 brackets	

under	 each	 tumor	 type.	 *	 P<0.05,	 **	 P<0.01,	 ***	 P<0.001	 by	 t-test	 (a)	 or	 by	

generalized	 linear	 model	 (h);	 BLCA	 bladder	 carcinoma;	 BRCA	 breast	 carcinoma,	

COAD	 colorectal	 adenocarcinoma,	 HNSC	 head	 and	 neck	 squamous	 cell	 carcinoma,	

KIRC	 kidney	 renal	 clear	 cell	 carcinoma,	 LUAD	 lung	 adenocarcinoma,	 LUSC	 lung	

squamous	cell	carcinoma,	UCEC	uterine	corpus	endometrial	carcinoma.	

	

Extended	 data	 figure	 6	 |	 Functional	 annotation	 of	 genes	 more	 frequently	

hypermethylated	 in	 hypoxic	 tumors.	 a,	 Ontology	 terms	 enrichment	 analysis	 of	

genes	that	are	more	frequently	hypermethylated	at	their	gene	promoters	in	hypoxic	

than	 normoxic	 tumors,	 for	 8	 tumor	 types	 characterized	 in	 the	 TCGA	 Pan-Cancer	

effort.	A	 representative	 set	 of	 terms	 is	 displayed,	 selected	 from	 terms	 enriched	 in	

most	 tumor	 types.	 P-values	 as	 defined	 by	 the	 grey-scale	 insert.	 Enrichment	

calculated	using	topGO.	b,	Selected	examples	of	HM	frequencies	in	the	promoter	of	

key	 tumor	 suppressor	 genes	 (PTEN,	 CDKN1C,	 ATM)	 more	 frequently	

hypermethylated	 in	 normoxic	 than	 hypoxic	 tumors.	 c,	 HM	 frequency	 in	 the	

promoter	of	selected	genes	involved	in	the	processes	indicated.	P<0.05	for	all	genes	

(asterisks	are	not	displayed).	Bars	in	b	and	c	represent	the	HM	frequency	±	s.e.m.	P-

values	in	(a)	by	Fisher’s	exact	test.		

	

Extended	data	figure	7	|	Impact	of	hypoxia	on	TET	activity	in	human	tumors.	a,	

The	t-value	of	correlation	between	HM	and	expression	of	TET	or	DNMT	genes	across	

3,141	tumors	of	8	 tumor	types	(bladder,	breast,	colorectal,	head	and	neck,	kidney,	

lung	 adeno,	 lung	 squamous,	 and	 uterine	 carcinoma)	 profiled	 in	 TCGA	 for	 gene	

expression	 and	 DNA	 methylation,	 while	 correcting	 for	 tumor	 type,	 hypoxia	 and	

proliferation.	The	dotted	line	represents	P<0.05,	negative	t-values	represent	inverse	

correlations.	b,	Hypoxia	metagene	signature	applied	to	63	glioblastoma	multiforme	
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tumors	from	TCGA.	c,	Boxplots	showing	the	relative	expression	(z-score)	of	genes	in	

tumors	 wherein	 they	 have	 either	 0	 or	 ≥1	 hypermethylation	 (HM)	 event	 in	 their	

promoter,	 stratified	 into	 IHD1WT	 tumors	 that	 are	 normoxic	 (n=19),	 intermediate	

(n=21)	and	hypoxic	(n=17)	(resp.	blue,	grey	and	red),	and	IDH1R138-mutated	tumors	

(n=4,	 yellow).	 Diamonds	 indicate	 means,	 boxplot	 wedges	 indicate	 2	 times	 the	

standard	error	of	the	median.	Genes	having	≥1	HM	events	in	their	promoters	have	a	

lower	 average	 expression	 level.	No	HM	events	were	detected	 in	 IHD1WT	normoxic	

tumors.	d	Hypoxia	metagene	signature	applied	to	12	normoxic	and	12	hypoxic	non-

small-cell	lung	tumors.	*	P<0.05,	***	P<0.001	by	t-test	(c).	

	

Extended	data	figure	8	|	5hmC,	hypoxia	and	TSG	HM	in	murine	breast	tumors.	

a,	Frequency	of	HM	events	in	the	promoters	of	all	genes,	all	oncogenes	and	all	tumor	

suppressor	genes	(TS	genes)	as	annotated28,	in	695	human	breast	tumors	available	

through	TCGA	and	stratified	 into	normoxic,	 intermediate	and	hypoxic	subsets.	b-c,	

DNA	 was	 extracted	 from	 53	 tumors	 developing	 in	 MMTV-PyMT	 mice	 of	 the	

indicated	ages	(c)	or	weights	(d)	and	sequenced	to	a	depth	of	~500x.	Plotted	are	z-

scores	of	HM	(y	axis,	exponential)	for	15	TSGs,	relative	to	the	tumors	from	11-week-

old	mice.	The	dotted	line	represents	the	threshold	for	a	Bonferroni-adjusted	P<0.05,	

and	 bold	 darker	 dots	 are	 used	 for	 tumors	 displaying	 significantly	 increased	 HM	

events.	d,	DNA	extracted	from	20	normal	mammary	glands	from	14-week-old	mice,	

PCR-amplified	for	15	TSGs	and	sequenced	to	a	depth	of	~500x.	Plotted	are	z-scores	

of	HM	relative	to	11-week-old	tumors.	e,	Staining	of	PyMT	tumors	for	5hmC	(red),	

DNA	(propidium	iodide,	blue),	pimonidazole	(white)	and	PyMT	(green),	and	fraction	

of	 PyMT-positive	 cells	 in	 normoxic	 and	 hypoxic	 areas.	 The	 area	 outlined	

corresponds	 to	 the	 hypoxic,	 pimonidazole-positive	 section,	 arrowheads	 point	 to	

PyMT-negative	cells,	scale:	25µm.	The	bar	chart	inset	illustrates	the	relative	number	

of	PyMT-positive	cells	in	normoxic	and	hypoxic	areas	(resp.	grey	and	red;	n=19).	f,	

Ki67-positive	 cells	 in	 PyMT	 tumors:	 representative	 image	 of	 staining	 for	 DNA	

(propidium	 iodide,	 blue),	 Ki67	 (red)	 and	pimonidazole	 (green);	 scale:	 50	 µm.	The	

bar	chart	 inset	 illustrates	 the	quantification	of	Ki67-positive	cells	 in	normoxic	and	

hypoxic	areas	 (resp.	grey	and	red)	across	6	 tumors,	analysing	3	 field	of	view	with	
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over	 150	 cells	 per	 field	 of	 view.	 g,	 CD45-positive	 cells	 in	 PyMT	 tumors:	

representative	 image	 of	 staining	 for	 DNA	 (propidium	 iodide,	 blue),	 5hmC	 (red),	

pimonidazole	 (green)	 and	 CD45	 (white);	 scale:	 100	 µm.	 The	 bar	 chart	 inset	

illustrates	 the	quantification	of	CD45-positive	 cells	 in	normoxic	and	hypoxic	areas	

(resp.	white	and	red)	of	11	tumors,	capturing	on	average	~2,500	nuclei	per	analysis.	

***	P<0.001	in	(a)	by	Fisher’s	exact	test,	significance	relative	to	all	genes.	

	

Extended	data	figure	9	|	Manipulation	of	tumor	oxygenation	in	murine	breast	

tumors,	 and	 effects	 on	 5hmC,	 TSG	 HM	 and	 confounders.	 a,	 Plasma	 sFlk1	

concentrations	at	 the	 indicated	 times	after	hydrodynamic	 injection	with	an	empty	

(n=7)	 or	 sFlk1-overexpression	 plasmid	 (n=5)	 (resp.	 grey	 and	 red).	 b-c	

Quantification	 of	 tumor	 vessel	 number	 (b)	 and	 hypoxic	 areas	 (c)	 of	 tumors	 from	

tg(MMTV-PyMT)	 mice,	 hydrodynamically	 injected	 with	 an	 empty	 or	 sFlk1-

overexpression	 plasmid,	 with	 representative	 images	 of	 blood	 vessels	 stained	 for	

CD31	(b)	and	hypoxic	areas	stained	 for	pimonidazole	adducts	(c);	scale:	100µm.	d	

Changes	 in	 RNA	 expression	 of	 hypoxia	 marker	 genes	 that	 are	 known	 to	 be	

downregulated	(Mrc1)	or	upregulated	(Bnip3,	Car9,	Ddit4)	in	hypoxic	conditions.	e,	

5hmC	levels	(y	axis)	across	mouse	chromosome	18	(x	axis)	in	400kb	bins,	with	the	

location	 of	 RefSeq	 genes	 (middle),	 and	 differences	 in	 5hmC	 levels	 (lower).	 5hmC	

levels	were	determined	using	 shallow	TAB-seq,	 and	 chromosome	18	was	 selected	

because	it	has	 large	stretches	of	gene	deserts	that	 illustrate	the	5hmC	depletion	in	

these	areas	(n=3).	5hmC	levels	decrease	by	12.4±3.5%	after	sFlk1	overexpression,	

although	technical	limitations	of	TAB-seq	(incomplete	5hmC	protection	or	bisulfite	

conversion)	 may	 partially	 obscure	 the	 magnitude	 of	 effects.	 f,	 HM	 in	 tumors	

developing	 in	 12-week-old	mice	 receiving	 hydrodynamic	 injection	with	 an	 empty	

(n=19)	or	sFlk1-overexpressing	plasmid	(n=24)	3	weeks	earlier.	DNA	was	bisulfite	

converted,	PCR-amplified	for	the	indicated	oncogenes,	and	sequenced	to	a	depth	of	

~500x.	 Plotted	 are	 z-scores	 of	 HM	 (y	 axis,	 exponential),	 relative	 to	 the	 more	

normoxic	tumors	(i.e.	empty).	The	dotted	line	represents	the	threshold	at	5%	FDR,	

and	bold	darker	dots	 the	 tumors	displaying	significantly	 increased	HM	events.	g-j,	

(g)	 Relative	 weights	 of	 tumors	 from	 tg(MMTV-PyMT)	 mice,	 hydrodynamically	
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injected	with	an	empty	 (grey,	n=19)	or	 sFlk1-overexpression	plasmid	 (red,	n=24),	

and	corresponding	RNA	expression	of	Ptprc	(the	gene	encoding	CD45,	n=5)	(h),	of	

Tet	 enzymes	 (i,	 n=15	 for	 empty	 plasmid,	 n=12	 for	 sFlk1-overexpressing	 plasmid)	

and	of	cell	proliferation	markers	(j,	n=5	for	each).	k-m,	As	in	(d-f),	but	for	16-week	

old	 tg(MMTV-PyMT)	mice	of	 the	 indicated	genotype.	n=5	(k),	n=3	 for	Phd2+/+;	n=4	

for	 Phd2+/-	 (l)	 and	 n=9	 (m)	 n,	 as	 in	 (d),	 but	 for	 16-week	 old	 Tie2-Cre;tg(MMTV-

PyMT)	mice	of	the	indicated	genotypes	(n=5).	o,	DNA	was	extracted	from	17	breast	

tumors	developing	in	Tie2-Cre;Phd2fl/wt;tg(MMTV-PyMT)	mice	(blue)	and	13	breast	

tumors	developing	in	Tie2-Cre;Phd2wt/wt;tg(MMTV-PyMT)	mice	(grey),	all	16	weeks	

old.	 DNA	was	 bisulfite	 converted,	 PCR-amplified	 for	 the	 indicated	 TSGs	 (left)	 and	

oncogenes	(middle)	and	sequenced	to	a	depth	of	>500x.	Plotted	are	z-scores	of	HM	

(y	 axis,	 exponential),	 relative	 to	 the	more	 normoxic,	 Phd2wt/fl,	 tumors.	 The	 dotted	

line	represents	the	threshold	for	a	Bonferroni-adjusted	P<0.05,	and	bold	darker	dots	

the	tumors	displaying	significantly	increased	HM	events.	(right)	5hmC	levels	±	s.e.m.	

across	a	metagene	in	tumors	of	16-week-old	mice	with	the	indicated	genotype	(n=3	

for	 Phd2fl/fl;	 n=4	 for	 Phd2wt/fl).	 p-u,	 Relative	 weights	 of	 tumors	 from	 Phd2+/-

;tg(MMTV-PyMT)	mice	and	Phd2+/+;tg(MMTV-PyMT)	mice	(n=10	and	9	resp.)	 (p-r)	

and	 from	 Tie2-Cre;Phd2fl/wt;tg(MMTV-PyMT)	 and	 Tie2-Cre;Phd2wt/wt;tg(MMTV-

PyMT)	mice	(n=17	and	13	resp.)	(s-u),	and	the	corresponding	RNA	expression	of	cell	

proliferation	markers	(n=5)	(p,	s),	of	Tet	enzymes	(n=5)	(q,	t)	and	of	Ptprc	(n=5),	the	

gene	encoding	CD45	(r,	u).	#	P<0.10,	*	P<0.05,	**	P<0.01,	***	P<0.001	by	t-test.	
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