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Chromatin programming by developmentally regulated 
transcription factors: lessons from studying hematopoietic 
specification and differentiation 
 

Nadine Obier and Constanze Bonifer 
Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, 

University of Birmingham, UK 

 

Abstract:  
While the body plan of individuals is encoded in their genomes, each cell type 

expresses a different gene expression program and thus accesses only a subset of 

this information. Alterations to gene expression programs are the underlying basis 

for the differentiation of multiple cell types and are driven by tissue-specific 

transcription factors (TFs) which interact with the epigenetic regulatory machinery to 

program the chromatin landscape into transcriptionally active and inactive states. 

The hematopoietic system has long served as a paradigm to study the underlying 

molecular principles of developmental specific gene expression control. In this 

review, we will summarize what is known about the mechanism of action of TFs 

regulating hematopoietic specification and differentiation and we will place this 

knowledge into the context of general principles of the control of development. 
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General principles of the developmental control of gene expression  
The control of development involves the successive activation and silencing of 

specific gene expression programs and thus the selective and cell-type specific use 

of the transcription machinery which needs to negotiate a chromatin template. 

Chromatin architecture is an important component of transcription regulation 

because in the absence of nucleosomes the normal dynamic range of transcription is 

lost [1]. However, compact chromatin also presents a formidable barrier to the 

transcription apparatus and requires the concerted action of multiple transcription 

factors to overcome it [2, 3]. Therefore activation of eukaryotic genes requires an 

opening up of chromatin structure along an entire genomic domain [4]. There are 

several ways of performing such a task. One is the passage of a RNA-polymerase 

complex and its associated factors that splits the two DNA strands as well as 

dislodges nucleosomes [5, 6]. The other way is via the formation of stable 

transcription factor (TF) complexes at specific sequences within an active gene 

domain which interact with each other in 3D space and form an active chromatin hub 

[7]. Such complexes consist of TFs recognizing specific DNA sequences which, in 

turn, recruit non-DNA binding co-factors such as chromatin remodellers and 

modifiers to initiate and maintain an active chromatin state (Figure 1). To 

understand, how genes are activated and silenced thus driving transitions between 

cell types during development, regeneration and homeostasis in development, we 

need to highlight a number of important concepts.  

Firstly, an active chromatin structure needs to be constantly maintained. It is 

now abundantly clear that each transcription cycle is regulated by the balance of 

activating and repressing factors which ensure that gene expression does not 

overshoot [8]. In the absence of activators, repressing factors, such as DNA-

methyltransferase and histone deacetylases take over, and establish an inactive 

chromatin structure which is characterised by the absence of TF binding, methylated 

DNA and deacetylated histones. The second important principle is that an inactive 

chromatin state is self-perpetuating [9]. This is assured by the deposition of inactive 

histone marks such as histone H3 lysine 9 methylation (H3K9me3) or H3K27 

trimethylation (H3K27me3) which bind silencing factors such as heterochromatin 

protein 1 (HP1) or Polycomb complexes, which, in turn recruit more co-repressors. 

Moreover, methylated DNA binds methyl-binding proteins that interact with co-

repressors as well. Since DNA methylation is faithfully copied during cell division [10] 



	
   3	
  

repressive complexes are restored and an inactive chromatin structure reforms at 

inactive genes.  

Inactive chromatin is compact, but at the same time highly dynamic. FRAP 

(fluorescence recovery after photo-bleaching) data employing GFP-tagged histone 

and chromatin components showed that while nucleosomes tend to bind with a long 

half-life, transcription factors and non-histone proteins whizz in and out of chromatin 

complexes within seconds [11, 12] thus presenting windows of opportunities where 

transcription factors can slip in. Single-molecule imaging studies showed that 

different  TFs patrol the genome and only briefly interact with DNA, but get locked 

into stable binding once a specific sequence is available for binding [13].  However, 

there are still open questions as to whether all TFs behave this way and whether all 

states of closed chromatin permit such highly dynamic scanning movements (such 

as Polycomb-associated chromatin, as discussed below [14]). Once binding has 

happened, TFs recruit co-activators, alter chromatin structure from an inactive to an 

active state, which, in the presence of activators is also maintained through mitosis 

as some factors can be mitotically retained at their binding sites [15]. In addition, 

tissue-specific transcription factors cooperate with remodellers to complete with 

nucleosomes post replication and re-establish nucleosome-free regions [16]. 

Transcription factors also compete with the DNA-methylation machinery eventually 

leading to demethylation, either by a passive mechanism or by the active recruitment 

of demethylase complexes such as TET2 [17, 18]. Depending on which 

transcriptional regulators are expressed, gene expression patterns are either 

inherited, thus fulfilling the original definition of epigenetics, or change, driving 

differentiation. Here we will concentrate on the question of how the chromatin 

landscape presents itself to transcription factors in a developmental context.  

 

Regulation of the chromatin landscape in development 
Many textbooks and PhD theses, which describe gene regulation, tend to start with 

the statement that we find two types of chromatin in the eukaryotic nucleus: “open” 

euchromatin and “compact” heterochromatin, containing active and inactive genes, 

respectively. However, whilst this distinction is convenient, is comes nowhere near 

the true complexity of dynamic chromatin structure. For example, it is now clear that 

chromosomes are subdivided into topologically associated domains (TADs) which 

form the structural backbone of chromatin folding and which are able to partition 
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chromosomes into regulatory units [19, 20]. In addition, genomic regions associated 

with the nuclear lamina, so called lamina-associated domains (LADs), are known to 

represent repressive domains and for some examples it was shown that during 

development genes move into LADs when being repressed and move out of LADs 

when being activated [21, 22]. How this intranuclear architecture relates to TADs, 

however, is poorly understood so far. Moreover, chromatin modifications can be 

indicative of many different types of transcriptional states [23]. It is outside of the 

scope of this review to describe the myriad of chromatin proteins and histone 

modifications that regulate chromatin packaging which are the subject of recent 

reviews (such as [24]). However, in the context of this article it is relevant that 

activation and silencing of genes at the level of chromatin structure are gradual 

processes whereas the regulation of mRNA synthesis tends to be rapid and dynamic 

[25]. Alterations in transcription factor occupancy and chromatin structure and 

modifications in development involve the step-wise opening up of chromatin by the 

sequential assembly of factors in the absence of high-level transcription, a process 

that is called priming [25, 26]. Conversely, the inactivation of chromatin also occurs 

gradually, together with the alteration of the transcriptional network within the cell 

[27]. Transcription can be rapidly switched off which can leave genes in a transitory 

or poised state ready for further activation of repression, in response to outside 

signals. This poised state is mediated by Polycomb repressive complexes (PRC) 

consisting of many different subunits, but involving two types of complexes: PRC1 

and PRC2. PRC2 contains a histone modification enzyme (EZH1/2) that deposits 

one, two or three methyl groups on histone H3K27. The H3K27me3 mark comprises 

a binding site for PRC1 which then ubiquitinates histone H2A. The result of the 

formation of Polycomb complexes on promoters and the alteration of chromatin 

modification is a block of transcriptional elongation by RNA-Polymerase II. However, 

the non-elongating form of RNA-Polymerase is still binding to Polycomb-repressed 

promoters [28]. In contrast to the classical consecutive Polycomb-repression model 

where PRC1 follows PRC2, recent publications also describe a non-canonical class 

of PRC1 which acts independently of H3K27me3 and where PRC1-mediated 

H2AK119 ubiquitination recruits PRC2 [29-33].  

 How does this translate into chromatin architecture? A recent elegant study 

used FISH combined with super-resolution imaging (STORM) to ask the question of 

the actual level of compaction of actively transcribed, inactive as defined by a lack of 
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transcription factor binding and histone modification, and Polycomb-associated 

poised chromatin within the Drosophila nucleus [14]. The choice and classification of 

gene domains was based on published high-throughput gene expression and 

chromatin modification data. Bona-fide heterochromatic regions which represent 

permanently silenced genomic regions [3] such as telomeres or centromers were not 

analysed. Each of the three classes of chromatin domain had a different level of 

compaction, with, as expected, transcriptionally active chromatin carrying a high 

level of histone acetylation having the lowest level of compaction. A surprising result 

was that transcriptionally inactive and active regions strongly intermingle. In addition, 

Polycomb-associated chromatin showed the highest level of chromatin compaction 

which was dependent on the presence of Polycomb as shown by knock-down 

experiments, and displayed the least intermingling with other types of domains. 

Polycomb-associated domains showed a very high level of intermixing within their 

domains and behaved like sticky polymers, in line with other experiments in mouse 

ES cells demonstrating that PRC1 complexes are responsible for promoter-promoter 

contacts [34]. However, whether Polycomb-bound chromatin always has the highest 

level of compaction also in mammals is less clear [35]. It is also unclear, how histone 

modifications, other non-histone proteins and, in vertebrates, DNA-methylation 

contribute to the compaction status. In any case, these findings highlight the notion 

that actual chromatin folding is independent from the activity status of the 

transcription unit. Instead, chromatin architecture is under developmental control 

determining whether genes are going to be active, have been active or going to be 

inactive and thus present different targets for transcription factors to negotiate in 

different cell types.  

In the next chapter we will describe hematopoiesis as a model to highlight examples 

for these principles. 

  

The hematopoietic system as a model to study the developmental control of 
chromatin programming and gene expression 
During embryonic development blood cells emerge from the mesodermal germ layer 

and their formation occurs temporally and spatially distinctly: the first wave of mouse 

hematopoiesis takes place in the extra-embryonic blood islands of the yolk sac 

around day E8.5 and gives rise to primitive progenitor cells with limited potential, 

mostly erythroid and myeloid [36, 37]. In contrast, the second wave takes place at 
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day E10.5 at the ventral part of the dorsal aorta in the aorta-gonad-mesonephros 

(AGM) region of the embryo [38]. Cells emerging during the second wave of 

hematopoiesis are definitive hematopoietic stem cells (HSCs) that migrate first to the 

fetal liver and later to the bone marrow where they undergo self-renewal and 

differentiation throughout lifetime to sustain mature blood cell production. It is 

believed that a common precursor for hematopoietic and endothelial cells exists, the 

hemangioblast, which differentiates to a specialised endothelium in the dorsal aorta, 

the hemogenic endothelium (HE). Cells of the HE undergo an endothelial-to-

hematopoietic transition (EHT), during which they detach from the endothelial layer 

and give rise to intra-aortic clusters of cells comprising HSCs which are then 

transported to the fetal liver by blood circulation [39-41]. The in vitro differentiation of 

embryonic stem (ES) cells can be used to recapitulate these developmental 

transitions and proved to be a powerful tool in order to gain access to rare transient 

cell populations for studying molecular mechanisms of development [42, 43] (Figure 

2A). To this end, pluripotent ES cells are differentiated as embryoid bodies (EBs) 

and hemangioblast cells are purified based on surface expression of FLK1, i.e. 

VEGF receptor. Hemangioblast cells can be further differentiated in the presence of 

BMP4, Activin A and VEGF to smooth muscle, endothelial and hemogenic 

endothelial cells [39, 44, 45]. Like in the developing embryo, in vitro HE cells 

undergo an EHT and form hematopoietic progenitor cells which is accompanied by a 

downregulation of the endothelial program and an upregulation of the hematopoietic 

program. These developmental pathways are highly conserved in vertebrates and 

research from a variety of model organisms, including zebrafish and xenopus, 

contributed to the knowledge we have today [46-48]. Further, immortal hematopoietic 

precursor cell (HPC) lines have been established from differentiated mouse ES cells, 

such as the HPC7 line [49].         

Using such in vitro models of hematopoietic development helped elucidating 

the role of developmental stage-specific TFs and subsequent changes of the 

chromatin landscape [50]. For example, by using knockout ES cell lines it was shown 

that in the absence of the TF SCL/TAL1 differentiation of hemangioblast to HE cells 

was blocked, thus highlighting the requirement of SCL/TAL1 for this transition [39, 

51]. Further, RUNX1 was found to be essential for the EHT where it activates the 

hematopoietic program [39, 52], but also a role of RUNX1 was described in HE cells 

prior to the EHT where it positively regulates cell adhesion genes [53]. GFI1 proteins 



	
   7	
  

were identified as transcriptional repressors needed for silencing of endothelial 

genes during the EHT [54, 55], while SOX17 proteins were shown to repress 

hematopoietic genes to maintain the endothelial fate in HE cells [56]. Moreover, 

several groups mapped open chromatin, histone modifications and TF binding in a 

genome-wide fashion, revealing common and distinct target genes within highly 

dynamic transcriptional networks that regulate developmental transitions [42, 57].   

 
Chromatin activation and silencing during hematopoiesis occur in stages   
A large number of single gene studies have given us a first insight into how 

transcription factors assemble during hematopoietic differentiation from lineage-

committed progenitors. As already alluded above, also here it was obvious that the 

activation of individual genes at the level of chromatin remodelling starts way ahead 

of its high level transcriptional activation.  A good example for this notion is the Csf1r 

locus which encodes the receptor for colony-stimulating-factor 1 (CSF1-R), an 

essential growth factor for macrophage development ([58]). This gene is expressed 

at a very low level in early hematopoietic progenitor cells, but is strongly up-

regulated in committed macrophage precursors. However, even at an early 

differentiation stage, the gene is occupied by transcription factors and its chromatin 

is already reorganized and unmethylated. In fact, a number of studies have shown 

that demethylation of DNA predicts enhancer activity later in development ([59-61]. 

The up-regulation of the expression of this gene during macrophage differentiation 

and its response to stimuli is accompanied by the dynamic assembly of different 

transcription factors [62, 63]. Conversely, the silencing of this gene during B-

lymphopoiesis is a gradual process as well, whereby mRNA synthesis ceases first, 

caused by the silencing of the promoter by the B-cell commitment factor PAX5, 

followed by a gradual inactivation of chromatin and increased DNA methylation ([64]. 

Such general behaviour of activation and repression of cis-regulatory elements in 

alternate lineages, with some lineage-specific variation, has now been multiple times 

been shown to be true at the genome-wide level (for examples see [42, 65-67].  

Development occurs via a series of lineage choices whereby daughter cells 

eventually start to diversify and switch specific genes on from the silent state.  As 

outlined above, the silent state comes in different flavours and involves various types 

of chromatin (inactive, repressed, permanently silenced (hetero-)chromatin). How do 

different types of transcription factors recognise DNA in these different states? This 
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question is not only important if we want to understand normal development, but also 

in the context of reprogramming the epigenetic landscape towards pluripotency from 

somatic cells. As it turns out, life uses multiple mechanisms to solve the problem that 

most transcription factors have trouble reading the DNA sequence when it is covered 

by a nucleosome. One mechanism involves a class of transcription factors capable 

of binding to nucleosomes which mark inactive chromatin for successive activation 

and successive factor assembly, so called “pioneer factors” the most prominent of 

which is the winged-helix factor FOXA2 [68, 69]. However, other pioneer factor 

types, such as EBF1 have also been found [70]. In addition, TFs can recognise 

partial binding sequences and cooperate to destabilize nucleosomes, followed by the 

recruitment of histone remodelers and modifiers once a stable complex has formed 

[71].   It also has been found that the presence of TFs per se leads to a gradual 

increase in DnaseI accessibility at their cognate binding elements via transient 

binding without forming a stable factor complex. This only forms once all factors 

participating in such a complex are present [72]. Once such a stable complex is 

formed, it recruits chromatin remodellers and modifiers that, in the presence of a 

sufficiently high concentration of participating transcription factors maintain gene 

expression activity (Figure 1). Recent studies described another hit-and-run 

mechanism of interactions between transcription factors and chromatin (assisted 

loading) whereby one type of factor transiently binds to an accessible region in 

chromatin, recruits chromatin remodellers and leaves in favour of another factor 

which binds to the same region [73]. In summary, these different studies show 

clearly that transcription factors cooperate in a highly dynamic and flexible fashion to 

negotiate chromatin. It is therefore likely that these negotiations will be subtly 

different for each gene. We still have only a rudimentary understanding of how the 

cooperation between transcription factors and the epigenetic regulatory machinery 

ensures that genes are expressed at the right time and the right level [74]. 

 

Hematopoietic specification and differentiation is regulated by a relay of 
transcription factors 
The recent years have seen a flurry of genome-wide studies of chromatin alterations 

during adult hematopoiesis as well as TF binding studies within specific 

differentiation steps of the hematopoietic hierarchy. A number of studies used ES 
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cell differentiation to gain insights into the question of how transcription factors 

regulate embryonic hematopoietic specification [42, 67, 75-78].  

The most comprehensive of these studies by Goode et al. [42] mapped both 

global transcription factor binding and the effects of this binding on chromatin 

structure and modification over six consecutive stages of hematopoietic specification 

and differentiation up to the terminally differentiated macrophage stage. The study 

shows that developmental stage-specific TFs successively become activated and 

often enhance their own expression as well as the expression of stage-specific 

genes. In many cases TFs bind to distal regulatory elements of genes before these 

genes are expressed, a phenomenon called “priming”, whereby in the next 

differentiation stage these genes acquire promoter histone modifications associated 

with activation, such as H3K4me3 or H3K9ac, and transcription is initiated. A good 

example for the gradual process of gene activation during development is the gene 

encoding the transcriptional repressor GFI1B which is needed during EHT to down-

regulate the endothelial program [54, 55]. Gfi1b is not expressed in mesodermal or 

hemangioblast cells and is expressed at low levels in HE cells. Transcription is 

highest in HP cells but is then down-regulated and no longer expressed in 

macrophages. Although the gene is not expressed at the hemangioblast stage, 

hematopoietic TFs such as SCL, GATA2 and LMO2 bind to Gfi1b regulatory regions, 

while the promoter is still marked by the repressive Polycomb modification 

H3K27me3 (Figure 2). Subsequently, in HE and HP cells H3K27 methylation is 

absent, the promoter is marked by H3K4me3 and distal elements are cooperatively 

bound by a combination of TFs such as GATA1, GATA2, FLI1, ERG, LMO2, RUNX1 

and SCL. In macrophages these factors no longer bind to Gfi1b, the promoter re-

gains H3K27me3 and transcription is abrogated. This example demonstrates how 

tissue-specific TFs in a combinatorial fashion program the chromatin template in 

order to control gene expression at specific developmental stages. However, there is 

more and more evidence that it is not only tissue-specific TFs alone that perform 

these programming events, but in many developmental contexts ubiquitously 

expressed and signalling-inducible TFs cooperate with them. For example, from 

motif analyses of DNA sequences within DNaseI hypersensitive, i.e. chromatin sites 

which are accessible due to TF binding it could be shown that the Hippo-signalling-

sensitive TF TEAD4 binds to sites occupied by tissue-specific TFs such as FLI1 and 

SCL/TAL1 during early hematopoietic specification and that binding and the 
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interaction with its co-factor YAP is essential for the generation of hematopoietic 

cells in vitro [42]. Further, in the absence of the ubiquitous TF SP1 during early 

embryonic hematopoiesis, later stages of differentiation are severely affected, 

highlighting the role of such factors for tissue-specific gene regulation and chromatin 

programming [76].   

While some TFs are known for their potential to activate gene expression, 

others have repressive potential during hematopoietic specification. Examples are 

GFI1/GFI1B proteins which repress the endothelial program during the EHT [54, 55], 

or SOX17 which represses hematopoietic genes in HE cells [56]. However, it 

remains a challenge for researchers to understand how exactly some TFs at defined 

genomic elements, in combination with specific other factors, at distinct 

developmental stages can act either as activators or repressors. The induction of 

RUNX1 during the EHT results in a vast number of genes being bound by RUNX1, 

and while most of them are transcriptionally activated, some others are down-

regulated, e.g. Sox17 [75]. Also SCL/TAL1, PAX5 and EBF1 were shown to have a 

context-dependent activating or repressive effect on gene expression [79-82]. It is 

therefore likely that the nature of TF assemblies determines a context-dependent 

recruitment of activating or repressive members of the epigenetic regulatory 

machinery.  

 

The epigenetic regulatory machinery modifying transcription factors and 
chromatin components is essential for hematopoietic development 
A variety of regulatory mechanisms can be used by a cell to regulate TF activities 

such as modulating transcription of the TF gene itself, post-translational 

modifications that allow or prevent nuclear localisation, and post-translational 

modifications that affect the protein stability and activity. Second, TFs often act 

together with other TFs and for some genes spatial and temporal co-expression of a 

set of co-operative TFs and their co-binding is a prerequisite for transcriptional 

initiation. Third, TFs recruit enzymatic co-factors which remodel and modify the 

chromatin template, make it more accessible and in case of promoter-enhancer 

looping support the assembly and initiation of the transcriptional machinery at the 

target promoters.  

An example of a TF that can be subject to modifications itself and that recruits 

chromatin modifiers is RUNX1. Depending on cell type and genomic region, RUNX1 
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was reported to interact with a multitude of different modifiers such as histone 

acetyltransferases [83, 84] and the nucleosome remodeller SWI/SNF [85] that 

support the activating role of RUNX1. However, RUNX1 can also recruit repressive 

complexes like Suv39H1 [86], mSin3A [87] or Polycomb group proteins [88] as well 

as histone deacetylases [89] reflecting that it can also act as a repressor of 

transcription. Further, it has been shown that MAPK signalling via ERK can causes 

phosphorylation of the RUNX1 protein which subsequently leads to the 

disaggregation of a complex that RUNX1 can form with the repressor mSin3A, thus 

removing repressive potential from the TF and enhancing its activating roles [87]. 

Moreover, the histone acetyltransferases p300/CBP and MOZ can have a dual role 

when forming a complex with RUNX1: i) recruited by RUNX1 these enzymes boost 

histone acetylation of the nearby nucleosomes, help opening up the chromatin fibre 

and provide a binding platform for other activators containing bromodomains, ii) 

p300/CBP and MOZ can use RUNX1 itself as their substrate and thus increase its 

transactivation potential [83, 84]. In the light of this complexity it is not surprising that 

mutations, deletions or translocations affecting chromatin modifiers can lead to 

disturbed differentiation and cancer [90].  However, the molecular mechanisms of 

how such mutations derail normal differentiation are still largely unknown and a 

matter of extensive current research. 

 

Conclusions and Perspectives 
The interaction of transcription factors with the chromatin landscape comprises a 

robust, but also highly flexible and dynamic system geared towards a regulated 

response to outside signals and developmental cues. Intermolecular interactions are 

at the heart of these processes and these interactions are specific for each gene. We 

are slowly approaching the point at which we can begin to construct transcriptional 

networks allowing predictions of the transcriptional response of individual cell types 

to changing TF expression levels [91]. However, the integration of the chromatin 

landscape as a dynamic modulator of the transcriptional response of differentiating 

cells into such models presents a formidable problem whose solution is still in its 

infancy. 
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Figure 1: The interaction of transcription factors with chromatin  
(A) Simplified scheme how different ways how transcription factors negotiate the 

chromatin landscape. Transcription factor binding motifs which are placed at different 

position relative to nucleosomes are depicted as coloured rectangles. TF: 

transcription factors which have different properties depending on whether they can 

bind to nucleosomal DNA or not. H1: histone H1 (B) Once a stable transcription 

factor complex has formed, SWI/SNF-type complexes evict nucleosomes and 

facilitate TF binding and co-activator (histone modifier) recruitment. Ac: Histone 

acetylation 
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Figure 2: The developmental activation and deactivation of the Gfi1b locus 
(A) Scheme depicting the differentiation of hemangioblasts, hematopoietic 

progenitors and macrophages from differentiated mouse embryonic stem cells. (B) 

Assembly of transcription factors and histone modifications at the Gfi1b locus 

(modified from Goode et al; 2016) 
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