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Abstract 

The Amdeh Formation is a 3.4 km stack of sparsely fossiliferous quartzites and 

shales which crops out in the Al Hajar mountains near Muscat. Here we describe the 

uppermost member (Am5) that can be dated biostratigraphically as Darriwilian and 

which is the outcrop equivalent, and probably the seaward continuation, of the Saih 

Nihayda Formation in the Ghaba Salt Basin of northern Oman. The outcrops at Wadi 

Daiqa and Hayl al Quwasim consist of 690 m of quartzitic sandstones, shales and 

bivalve-rich shell beds. Trace fossils referable to the Cruziana and Skolithos 

ichnofacies abound. The member comprises storm-dominated shelf, shoreface and 

delta deposits. 

 

A number of new discoveries have been made in the outcrops: fragments of the 

arandaspid fish Sacabambaspis, ossicles and moulds of the early disparid crinoid 

Iocrinus, two new genera of conodont, an occurrence of the rare trinucleid trilobite 



Yinpanolithus, and palynological and sedimentological evidence of more continuous 

Floian–Darriwilian deposition than is usual in the region. Sea levels during the Middle 

Ordovician are estimated to have been 50–200 m above present levels and a wide, 

low-gradient shelf covered much of Arabia. Similar trace fossils and storm-

dominated, micro-tidal, sedimentary rocks occur throughout the region. Small 

changes of sea level, possibly caused by the growth and melting of polar ice sheets, 

could lead to substantial seaward or landward shifts of facies belts. The Am5 

deposits are thick compared to most equivalents in Arabia implying active 

subsidence and a ready supply of sediment.  

 

Keywords: Amdeh, Saih Nihayda, Haima Supergroup, sedimentology, acritarchs, 

conodonts, trilobites 
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1. Introduction 

The Amdeh Formation crops out along the southern margin of the Saih Hatat window 

in the Al Hajar mountains of the Sultanate of Oman (Fig. 1). A paucity of fossils, 

daunting thickness and an overprint of Late Cretaceous metamorphism have 

deterred the study of these quartzites and shales of ‘Grès Armoricain’ aspect. Our 

work began as an attempt to determine the equivalence of these outcrops to 

intervals of the Haima Supergroup which occur extensively in the Ghaba Salt Basin 

(Droste, 1997; Molyneux et al. 2006; Forbes et al. 2010, pp. 171-203). By doing so, 

the outcrops have greater interest as lateral equivalents and analogues of reservoir 

and seal intervals for hydrocarbons in the subsurface of northern Oman. 

 

We sought to build on the limited biostratigraphic successes of previous workers 

(Lovelock et al. 1981), sampling extensively for palynomorphs in the inliers of Wadi 

Daiqa and Hayl al Quwasim, collecting trilobite fragments from near Wadi Sarin, 

attempting to extract conodonts from sandy shell beds and trialing the dating of 

zircons from heavy mineral layers. Sampling for palynology and conodonts led to a 

number of unexpected discoveries from this little known Arabian margin of 

Gondwana (Sansom et al. 2009; Donovan et al. 2011; Heward & Penney, 2014). 

Others finds will be described in this paper that suggest the region may hold further 

insights into the development and dispersal of a number of faunal elements. 

SHRIMP dating of zircons from heavy mineral enrichments proved imprecise 

compared to biostratigraphy, but yielded interesting glimpses of sandstone 

provenance that are in keeping with others from north Gondwana. 

 

2. Materials and methods 



Our original sampling in the Daiqa inlier was mainly in the vicinity of the wadi and the 

access track at the time. With the completion of a dam project in 2009, the wadi and 

track were flooded and two of our successful locations for palynology, and that of 

Lovelock et al. (1981), now lie submerged beneath a water reservoir (Fig. 2a). Later 

work has mainly been on the northern flank of the inlier because of ease of foot 

access and as the section there is relatively un-faulted (Fig. 2b). In early 2014 we 

logged a number of sections in Wadi Daiqa and Hayl al Quwasim, and identified 

marker beds which allow our earlier sampling and work on fossil fish and crinoids to 

be placed in sequence (Figs. 2-5). Subsequently, we examined sections of 

equivalent Amdeh Members in other wadis in the Saih Hatat area for comparison 

with the composite sequence established from the eastern inliers. To compliment 

work on the Amdeh, we documented outcrops of similar age in the northern Al Hajar 

mountains of the United Arab Emirates (UAE) that were being lost to quarrying 

(Rickards et al. 2010; Fortey et al. 2011). 

 

Shale samples for palynological investigation were prepared by standard acid 

maceration and oxidized with concentrated nitric acid or Schulze’s reagent. Sieving 

of the residues was performed using 15 μm polyester gauzes and residues were 

mounted using solutions of polyvinyl alcohol and Petropoxy-154 resin. Only about 1 

in 10 samples of a favourable grey colour yielded a significant assemblage. 

 

Conodonts were extracted from carbonate nodules and from sandy shell beds using 

a standard treatment of buffered acetic acid (Jeppsson et al. 1999) and heavy liquid 

separation by sodium polytungstate. Samples ranged from less than 1 kg to 5 kg in 

weight and contained a large proportion of phosphate, some of it secondary, making 



complete picking of residues from larger samples impossible. As a result, most 

residues were split into 8th or smaller fractions for picking. 

 

Supplementary material: Figure S1 illustrates intraformational deformation affecting 

units 2.2 and 3 at Wadi Daiqa. Figure S2 records other faunal elements picked from 

the conodont residues including crinoid ossicles, various mollusca, ostracods and a 

number of features of unknown affinity. Table S1 provides co-ordinates for fossil 

locations. A regional overview of published palynomorph assemblages is presented. 

Preliminary descriptions of some of the more unusual acritarchs and a systematic 

description of the trilobite Yinpanolithus are also included in this material.  

 

3. Lithostratigraphy 

The Amdeh outcrops occur quite close to Muscat (Fig. 1) and initial descriptions 

were by pioneering geologists investigating the possibilities for oil in Oman. Pilgrim 

(1908) recorded purple and green quartzites in Wadi Amdeh, and Lees (1928) used 

the name Amdeh Quartzites, and briefly described their lithology, ripple markings 

and pre-Permian age. Glennie et al. (1974) formally defined the formation and 

Lovelock et al. (1981) measured a type section in Wadi Qahza of at least 3.4 km. 

The latter workers divided the formation into five conformable members dominated 

by either quartzite, siltstone or shale. They also visited Amdeh outcrops in wadis 

Sarin and Daiqa, and collected fragmentary trilobites and brachiopods, recovered a 

good assemblage of palynomorphs and recorded a number of trace fossils (Cruziana 

furcifera, C. rugosa, Daedalus, Phycodes).  Collectively these various fauna, flora 

and trace fossils were interpreted to indicate an Early to Middle Ordovician age. 

 



Geologists of the Bureau de Recherches Géologiques et Minières (BRGM) mapped 

the Saih Hatat area in the 1980s on behalf of the Ministry of Petroleum and Minerals 

of Oman (Le Métour et al. 1986; Villey et al. 1986). The BRGM geologists applied 

the five lithostratigraphic members in their mapping and, for convenience, labelled 

them Am1 to Am5. They also discovered a small inlier of Amdeh quartzites at Hayl al 

Quwasim and two more fossiliferous locations in wadis Sarin and Salil. Outcrops in 

the inliers of Wadi Daiqa and Hayl al Quwasim were assigned to the youngest Am5 

member (Le Métour et al. 1986; Upper Siltstone Member of Lovelock et al. 1981).	

 

Most of the Amdeh outcrops on the southern margin of Saih Hatat, and in the inliers 

of Wadi Daiqa and Hayl al Quwasim, are in the greenschist facies zone of Late 

Cretaceous regional metamorphism (Fig.1). Conodont elements recovered in this 

study have a colour alteration index of 3–4 equating to a palaeo-temperature of 150–

200°C. Palynomorphs are also highly carbonised and require careful oxidation to 

reveal their detail. The quartz schists of the Hulw and Sifah units on the northern 

margin of the Saih Hatat window may represent an Amdeh protolith at a higher 

metamorphic grade (Searle et al. 2004).  

 

4. Sedimentology 

4.a. Studied outcrops 

The Am5 successions at Wadi Daiqa and Hayl al Quwasim comprise 690 m of 

quartzitic sandstones, siltstones, shales and thin shell beds (Figs. 2-6). The bulk of 

the sand is fine to medium-grained, though grain size is difficult to estimate in the 

more cemented quartzitic intervals. Moulds of crinoid ossicles and other shell debris 

are common in many of the thicker sandstones confirming their marine origin. Shell 



beds are typically thin (100-200 mm) partly de-calcified sandstones with moulds of 

marine fossils, principally bivalves, on their surface. Shell beds can often be 

recognised at a distance as they are distinctively orange-brown coloured and more 

cemented. Granules of quartz and phosphate, and pebble-size intraclasts occur in 

some shell beds. 

 

Six units and a number of sub-units can be recognised, numbered sequentially from 

base to top. The units vary from predominantly sandy (units 0 and 1), predominantly 

shaly (units 3 and 5), to interbeds of sand and shale (units 2 and 4; Fig. 5). The 

bioturbation index (MacEachern et al. 2010) varies from ‘sparse’ in some intervals, to 

‘common’ through much of units 2-4, to ‘abundant’ in certain Skolithos beds in Unit 1. 

Shell beds are most common in units 2 and 4. Units 1- 4.1 are exposed in the Wadi 

Daiqa inlier, and units 0, 4.1- 5 occur around the village of Hayl al Quwasim. 

Correlation between the two inliers is based on the distinctive characteristics of 

subunit 4.1 and their limited mid-Darriwilian palynological assemblages (Figs. 4, 5). 

 

Unit 0 is the oldest interval investigated, though not studied in detail. It consists of a 

ca. 500 m of quartzites in the Hayl al Quwasim inlier along a wadi towards the village 

of Fiq az Zamiyan (Figs. 3a, 5). The quartzose sandstone packages appear tabular 

on satellite images. Internally they are trough-cross bedded in sets 0.25-0.6 m thick 

with some overturning of foresets. Palaeocurrents are towards the north (range 

north-west – north north-east, n=7).  A single 2.5 m interval of sandstone with 

abundant Skolithos occurs and there are other silty intervals with questionable signs 

of bioturbation. Finer-grained intervals are uncommon and some may have been 



thinned tectonically during deformation. One green interval is unusual in consisting of 

mm-sized fragments of shale. 

	

Unit 0 has similarities to the Am4 (Upper Quartzite Member) in Wadi Qahza 

(Lovelock et al. 1981), but it lacks the common liquefaction structures, the repeated 

interbedding of marine intervals with Skolithos and Daedalus, and the thicker shales 

and sparse shell beds that occur towards the top of that section. Based on the 

sedimentary structures present, the paucity of trace fossils and the absence of shell 

beds, the unit is provisionally interpreted as a stack of predominantly sharp-based 

braided fluvial or braid-delta deposits that lacked the high water table required for 

widespread sediment liquefaction. Only one obviously marine intercalation with 

Skolithos occurs. The upper boundary with the Am5 (Unit 4) is probably faulted. 

	

Unit 1 is again sandy and occurs in the centre of the Wadi Daiqa inlier in faulted 

outcrops to the north and south of the reservoir. It was well exposed along parts of 

the main wadi that are now flooded (Figs. 2a, 4, 5). It comprises >75 m of white 

quartzites, softer green sandstone intervals and thin dark shales (Fig. 6a). The 

sandstones are trough-cross bedded with common m-scale liquefaction structures 

(Fig. 6b). The greener intervals are burrowed by Skolithos linearis and some 

intervals also contain Daedalus labechi. An exposure with interbedded dark shales 

along the main wadi yielded the Lovelock et al. (1981) and our DX3A palynological 

assemblages (Figs 2a, 6a). A sparse shell bed caps the uppermost quartzite and 

contains scattered moulds of bivalves and crinoid ossicles.  

These quartzites and intervals with Skolithos are interpreted as shallow marine 



shoreface deposits. The dewatering features that characterise some intervals imply 

rapid sedimentation, fluid-saturated sands, favourable grain size and a common 

trigger for liquefaction or fluidisation (storm or flood-related turbulence, fresh-water 

springs, seismicity?). The quartzitic nature and maturity of the Amdeh sandstones is 

probably a reflection of provenance, weathering and aeolian activity on un-vegetated 

land surfaces (e.g., Davies & Gibling, 2010), rather than reworking in beach or shelf 

environments. Heavy mineral separations dominated by zircons imply that the 

‘quartzites’ of the Amdeh Formation were largely recycled from older sandstones 

(Forbes pers. comm. to APH, 2006). 

Unit 2 is a marked change in facies to a shale-sandstone sequence with numerous 

shell beds. There are no indications of an unconformity, a conglomerate, a 

phosphatic horizon or any prolonged break in sedimentation, just a thicker laminated 

shale interval that, unfortunately, is too colour-bleached to be worth sampling for 

palynology. Unit 2 is about 350 m thick and divided into two parts by another thicker 

shale (Figs. 2b, 4, 5). The lower part, subunit 2.1, is sand-dominated and there are a 

series of tabular sandstones that can be mapped from satellite images. The upper 

part, subunit 2.2, comprises two thicker tabular sandstones (#1 and #2), and a 

further interval of sands and shales with numerous shell beds.  

Unit 2 is characterised by abundant trace fossils of the Cruziana ichnofacies, 

particularly in thin cm-dm sand beds (Cruziana furcifera, C. rugosa, C. goldfussi, 

Teichichnus rectus; Fig. 6c, d). Many of the thicker sandstones contain moulds of 

marine fossils or orange stained, decalcified shelly lenses. Sandstones are parallel-

laminated and low-angle, hummocky, swaley or trough-cross stratified (Figs. 6e, f). 

Trough-cross stratification occurs in coarser and thicker sandstones in sets generally 



less than 0.5 m. The largest set forms part of a laterally extensive coset that in 

places reaches 1.5 m. Palaeocurrents are predominantly towards the north north-

east and east (Figs. 4, 5). The shell beds mostly contain moulds of the bivalve 

Redonia and a variety of other fossils (Fig. 6g). Crinoidal debris is common, including 

the distinctive pentastellate columnals of Iocrinus. A few shell beds contain evidence 

of current action in the form of convex-upward packing of bivalve shells, cross 

bedding or the orientation of elongate fossils. A number of these shell beds are 

sufficiently distinctive to be used as marker beds to correlate sections around the 

Wadi Daiqa inlier. One contains a layer of edgewise carbonate flat-pebble 

conglomerate, a facies more typical of Ediacaran and Cambrian shallow-marine 

deposits in Oman and elsewhere (Wright & Cherns, 2015). The upper part of unit 2 is 

affected by block faulting, small-scale folding and, over some fault blocks, up to 50 m 

of missing section (Fig. S1; Heward & Penney, 2014, fig. 3). This deformation does 

not affect overlying intervals or formations.  

 

The unit is interpreted to have formed on a storm-dominated continental shelf in 

water depths of a few to a few tens of metres (see Immenhauser, 2009 for the 

difficulties of estimating palaeo-bathymetry). There is surprisingly little evidence of 

tidal sedimentary features, apart from a few possibly bipolar palaeocurrent 

measurements. There are four minor flooding surfaces represented by the thicker 

shales and two major regressive shoreface intervals that form the thicker sandstones 

(Fig. 5). One of these thicker shales yielded the 06P5 palynological assemblage 

which is marginal marine in character. Cruziana are particularly abundant in the 

upper parts of three of the thicker shale intervals where there is an influx of thin 

sands. The ichnofauna are typical of Upper Tremadoc to Darriwilian sandstones of 



Gondwana, and represent broadly the shaly, shelfal Cruziana, and sandy, shoreface 

Skolithos ichnofacies (Mángano & Droser, 2004; Seilacher, 2007, pp. 187-195).  

 

The two sharp-based shoreface units are remarkably tabular, internally and in overall 

geometry, and have mixed Skolithos-Cruziana ichnofaunas. The lower one has 

lenses of coarser granule to pebble-grade material close to its base (of quartz, 

phosphate and intraformational shale). This influx of pebble-grade material may 

correlate with pebbly horizons at a similar level in wadis Qahza and Amdeh (55-40 

km distant) and represent a forced regression of regional extent (Posamentier & 

Morris, 2000). These sharp-based shoreface units possibly reflect mid-Darriwilian 

falls in sea-level due to the growth of polar ice caps and the four shale intervals, 

containing minor flooding surfaces, corresponding rises in sea level due to the 

melting of ice caps. 

 

Shell beds are common constituents of Palaeozoic shallow-marine shelf deposits 

where they have been interpreted as storm coquinas (Kreisa & Bambach, 1982; 

Sepkoski, 1982). The fossils contained may be shallow infauna that has become 

exposed by storm currents (e.g., bivalves like Redonia), benthic detritus picked up or 

broken off and transported shelfward (brachiopods, algae, crinoids, fish ichthyoliths, 

conodonts), or the remains of pelagic organisms (orthocones). There is no evidence 

of abrasion, boring or encrustation of shell material and burial appears to have been 

rapid, leading to, for example, the preservation of complete crinoid fossils (Donovan 

et al. 2011). The interpretation of the blockfaulting, folding and missing section will 

be discussed later, under unit 3, parts of which are also affected. 

 



 

Unit 3 is around 50 m thick and represents a further marked change of facies to one 

dominated by siltstone and shale (Figs. 4, 5). Again there is no sign of an 

unconformity or a conglomerate. A horizon of nodular carbonate near the base of the 

shales yields conodonts (C2008-10, C2012) and other phosphatised fossil remains 

including the small trinucleid trilobite Yinpanolithus. A few carbonate cemented, 

hummocky cross-stratified sandstones occur along with a thicker (0.35 m), tabular to 

concretionary, iron carbonate bed that is characterised by large orthoconic nautiloids 

(Fig. 6h).  

The interval is deformed to some extent and the orthocone carbonate and beds in 

the underlying subunit 2.2 are folded locally. Folds are tight, flat-lying or upright, and 

fold axes close to the north-east or north. All appear to have formed at shallow depth 

and lack quartz veins. This deformation may relate to a further period of forced 

regression, and rotational sliding and slumping at a shelf edge or the margin of a 

submarine canyon (Figs. 5, S1). 

This is the thickest shale interval at Wadi Daiqa, and probably the most marine and 

deepest water, but still above storm-wave base. It is likely that the mid-Darriwilian 

maximum flooding surface O30 of Simmons et al. (2007) occurs here, too. The shale 

was not sampled for palynology as it appears an unpromising colour. It was 

repeatedly searched for graptolites, but none were found; nor were deeper-water 

trace fossils observed.  

	

Unit 4 is more than 160 m thick and divided into two subunits. Subunit 4.1 is ca. 60 

m thick, and is the only interval that occurs in both the Wadi Daiqa and Hayl al 



Quwasim inliers. A number of palynological samples from both localities have 

yielded poor mid-Darriwilian assemblages. On the southern flank of the Wadi Daiqa 

inlier there is about 10 m of no exposure between deformed unit 3 strata and un-

deformed laminated silts and fine-grained sandstones of subunit 4.1 (Fig. 4, section 

D). This sequence is different to any other interval at Wadi Daiqa, and it was a 

surprise to recognise the same heterolithic, coarsening-upward sequence in the core 

of Hayl al Quwasim anticline and in water-worn sections in the adjacent wadis (Figs. 

3a, 3b, 4, section HaQ A). The top of the sequence is strongly iron-stained, contains 

lenses of bivalve shell bed and is strongly burrowed by Daedalus (D. labechi and D. 

halli).  

 

The coarsening-upward sequence is interpreted as possibly a prograding delta 

mouth-bar deposit (and different from the sharp-based, braid-delta, sheet 

sandstones that often seem to characterise deltaic deposits within older formations 

of the Haima Supergroup of Oman; Droste, 1997; Millson et al. 2008). The greenish 

and iron-stained colour probably reflects different clay mineralogy and depositional 

conditions than found previously in the Am5.  

 
Subunit 4.2 is a change back to an alternating shale-sand sequence with numerous 

shell beds (Fig. 4, HaQ Section A). Many of the sandstones show classical features 

of storm event beds, but contain relatively few traces of the Cruziana ichnofacies. 

Phycodes circinatum occurs restricted to the tops of sand beds and two sandstones 

are unusual in being only partly penetrated by Skolithos (to depths of 0.25-0.3 m). 

The shell beds contain various fully marine fossils (brachiopods, orthocones, corals 

and cobble-sized clasts of colonial coral) and an abundance of phosphate granules. 

Several of the shell beds are distinctive in their form and fossil content; one of which 



yielded the C2011 conodont microfauna (Figs. 4, 5). Another bed consists of a stack 

of three thin limestones packed with ribbed brachiopods. Despite the evidence of 

open marine faunas in the shell beds, the overall paucity of traces, restriction of 

burrowing to the tops of beds and the abundance of phosphate may indicate anoxic 

conditions at a shallow depth beneath the sea floor (Fig. 5). 

 

The upper part of subunit 4.2 is again noticeably green-coloured and iron-stained, 

and contains several 5-10 m intervals that are full of load structures, implying rapid 

sedimentation on an unstable substrate.  The loads do not have any preferred 

asymmetry, as one would expect with slumps, and deformed intervals are overlain 

by beds that are undeformed. There continue to be a number of shell beds that 

contain bivalves rather than any more diverse fauna. This interval is interpreted 

again possibly a stack of prograding delta deposits. 

 

The contact between subunit 4.2 and Unit 5 is not exposed. However, it appears that 

the latter is higher in the sequence and yields a younger palynological assemblage 

(Fig. 5). There is a shaly section exposed in the main wadi (Arabiyin) and in outcrops 

a few 100 m west around the 05P1 locality (Fig. 3a). The section is predominantly of 

grey shales with evidence of bioturbation, and some thinner rippled and loaded 

sands. Several shell beds occur with bivalves, small ribbed brachiopods and 

granules of phosphate. A feature of some of the shales is the presence of yellow-

weathered moulds of fossils including orthocones, Neseuretus tristani and a non-

asaphid trilobite. One of the shales yielded the 05P1 (late Darriwilian) assemblage. 

These shales are interpreted to represent a further minor flooding event that led to 

deeper marine conditions. The top of the sequence is not exposed beneath the 



outcrops of the Permian Saiq Formation on the northern side of main wadi. 

4.b. Equivalent outcrops in Saih Hatat 

In Wadi Qahza, Lovelock et al. (1981) logged 805 m of Upper Siltstone Member 

(Am5 equivalent; Fig. 7). The section is relatively poorly exposed, strongly cleaved 

and quartz veined. It is shaly, thinly bedded, bioturbated and contains a number of 

shell beds, some of which show a diversity of fauna (bivalves, orthocones, trilobites, 

and round and pentagonal crinoid columnals, but not pentastellate ones). Fragments 

of Sacabambaspis and a worn conodont were extracted from one of these beds 

(Sansom et al. 2009). Pebbles (<30 mm) of sub-angular quartz and siltstone are 

present in two, slightly younger, beds 0.1-1.0 m thick. They are the most coarsely 

grained and only extra-formational material present in the member. There are fewer 

trace fossils seen here than in Wadi Daiqa, but the diversity is comparable. A dark 

shale near the base of the section yielded fragmentary and carbonised acritarchs 

attributed to genera Arkonia, Micrhystridium, Protoleioshaeridium, Striatotheca and 

Veryhachium (Lovelock et al. 1981). Our re-sampling of this locality yielded a similar, 

poorly preserved, assemblage. The base of the Upper Siltstones Member is 

transitional, without any obvious break in deposition.  

 

The underlying Upper Quartzite Member (Am4) is better exposed and notable for the 

tabular geometry of its units over kilometres between tributary wadis. It is dominated 

by thick quartzitic sandstones (50-200 m thick) with trough-cross bedding, extensive 

dewatering features and interbedded thinner (0.5-10 m) intervals with Skolithos and 

Daedalus (15 recorded by Lovelock et al. 1981 in 1677 m). The overall diversity of 

trace fossils is low and Cruziana are rare. A number of sparse bivalve shell beds 

occur towards the top of the member, as do several intervals of dark grey siltstone 



and shale that are traceable for kilometres on satellite images. The lowest of these 

was taken erroneously(?) as the base of the Am5 by BRGM geologists. Periods of 

shallow-water and exposure are indicated by heavy mineral placers, runzel-marked 

surfaces and possible mudcracks. Zircons from a heavy mineral sample were 

successfully dated using the SHRIMP technique. An Early Cambrian detrital core 

carried a Late Ordovician xenotime overgrowth. Detrital zircons of Neoproterozoic, 

Palaeoproterozoic and Archaean age were also noted (500-1100 Ma, 1600-2000 

Ma, and >2400 Ma age; Forbes pers. comm. to APH, 2006). This and other samples 

from the Am4 are dominated by zircon, with minor rutile, tourmaline, apatite and 

monazite. 

	

Sixteen kilometres away in Wadi Amdeh the Am5 is better exposed, particularly the 

basal 100 m that forms southwesterly-dipping bedding-plane exposures. BRGM 

geologists again mapped the base of the member ca. 400 m deeper here than the 

overall change in lithology from thick quartzites with Skolithos interbeds to a dm- 

bedded, siltstone-dominated, interval with more diverse trace fossils. There are 

indications of shallow water conditions on bedding planes covered with mini wave 

and interference ripples. Rudimentary shell beds are also present. Skolithos, 

Cruziana, Teichichnus and several unidentified types of trace fossil occur, including 

large, vertical, Conostichus-like burrows (also noted in two locations in subunit 2.2 of 

Wadi Daiqa).  

 

The remaining ca. 550 m of Am5 on the opposite side of the wadi is less well 

exposed. Skolithos continues to be present near the base, and then Cruziana and 

Teichichnus occur sporadically through the remaining succession. A few shell beds 



are present in the middle of the sequence and contain mainly bivalves, round and 

pentagonal crinoid ossicles and rod-shaped fragments of calcareous algae. One of 

the shell beds contains granules and small pebbles of quartz and siltstone, similar to 

those in Wadi Qahza. Shell debris lenses up to 0.6 m occur in one of the sandstones 

and broken shells of inarticulate brachiopods are quite abundant at the tops of 

thicker sandstones higher in succession.  

 

These sequences of Am5 in Wadis Qahza and Amdeh appear to represent less 

open-marine conditions than present in the Wadi Daiqa and Hayl al Quwasim 

exposures. Shell beds are less common and hummocky and swaley-cross 

stratification is not obviously present. The pebble bearing beds in both wadis are 

possibly correlated with the sharp-based regressive shoreface #1 in Wadi Daiqa 

(Fig. 7).  

 

The underlying Am4 are probably an unusually thick stack of braid-delta deposits 

(Davies & Gibling, 2010) with shallow-marine intercalations (with Skolithos). The 

abundance of liquefaction features implies that high water-table conditions prevailed.	

The Am4 is most probably the seaward continuation and an increasingly marine 

equivalent of the subsurface Ghudun Formation (Fig. 7). There appear to be lateral 

variations in the outcrops, between more marine-influenced (Wadi Qahza and Wadi 

Daiqa unit 1) and more fluvially-dominated outcrops (Hayl al Quwasim, unit 0) of this 

interval.  

 

Le Métour et al. (1986) measured a >540 m sandstone-rich section they assigned to 

the Am5 near the village of Dim, just north of Wadi Sarin. The most notable feature 



of this section is the presence of a 10 m interval with numerous thin bivalve shell 

beds in cleaved siltstones.  The shell beds also contain trilobite moulds and, less 

commonly, brachiopods (?dalmanellids, Lovelock et al. 1981; Le Métour et al. 1986). 

Overall this sequence is very sandy compared to others of the Am5, and the 

presence of well-developed Skolithos beds, thick quartzite packages with cross 

bedding, dewatering features and heavy mineral placers, and the lack of Cruziana 

and crinoidal debris are features more in keeping with the Am4. 

 

Le Métour also logged a ~190 m section of ‘Am5’ loosely located in Wadi Salil that is 

included as the upper part of their Amdeh section of (Le Métour et al. 1986, fig. 4). It 

is notable for showing two intervals of coarse conglomerate with clasts of quartz, 

quartzite and volcanic rocks, and a middle interval of shale containing shell beds with 

fragmentary trilobites (Neseuretus (Neseuretinus) of possible Caradoc age; 

Béchennec et al. 1993, pp. 21).  

 

Sections southeast of Al Habubiyah (23°15'52"N, 58°45'10.7"E) appear of typical 

Upper Quartzite Am4 facies with quartzites with Skolithos and Daedalus. On the 

north side of Wadi Salil (23°15'47.39"N, 58°46'38.46"E) there are a series of sparse 

shell beds in schistose shales. These beds yield bivalves, moulds of round and 

pentagonal crinoid columnals and possible trilobite fragments. Poor examples of 

Cruziana, Teichichnus, Phycodes and Skolithos were also found. At the entrance to 

the Wadi Mijlas gorge (23°15'31.9"N, 58°47'43.1"E) there are a series of purple 

siltstones, quartz and feldspar-rich sandstones and boulder conglomerates 

containing quartzite clasts. The presence of boulders of quartzite (Amdeh-like) 

suggests the conglomerates are younger (Heward & Penney, 2014). Scrappy 



exposures south of the old Quryat road (23°13'47.90"N, 58°48'13.40"E) contain 

outcrops of a brachiopod and bivalve limestone that resemble the ‘3 limestone shell 

bed’ marker of subunit 4.2 at Hayl al Quwasim (Fig. 4). 

 

There is not an obvious sequence of deposits yielding Late Ordovician faunas 

comparable with those we have documented from the Rann Formation of the UAE 

(Fortey et al. 2011). However, given the proximity of siltstones and sandstones of 

that age in several wells in the Ghaba Salt Basin close to the Amdeh outcrops 

(Mount et al. 1998; Molyneux et al. 2006), such a sequence could be expected in the 

area. 

	

5. Biostratigraphy  

See also supplementary material for locations, regional overview of palynomorph 

assemblages and systematic descriptions. 

 

5.a. Palynology 

Lovelock et al. (1981) reported microfloral assemblages from two locations in the 

Amdeh Formation. A shale near the base of the Wadi Daiqa section was the most 

productive, yielding both acritarchs and chitinozoa. The acritarchs were attributed to 

Arkonia, Striatotheca, Stelliferidium, Peteinosphaeridium, Veryhachium and other 

genera, and the rare chitinozoa to Lagenochitina and Conochitina. A less well-

preserved assemblage was obtained from a similar stratigraphic level in Wadi 

Qahza. Both assemblages were highly carbonized, especially from Wadi Qahza, 

where the chitinozoa were only recovered as fragments. The assemblages were 



interpreted as being Ordovician, with the presence of Arkonia lending support to a 

Darriwilian age. 

 

The localities of Lovelock and co-workers were re-sampled during the present study 

along with many additional sites in other wadis. Organic recovery was obtained from 

all samples, but those from wadis Amdeh and Sarin and most of the samples from 

Wadi Qahza failed to yield palynomorphs. Good microfloral assemblages were 

obtained from Wadi Daiqa and Hayl al Quwasim. The Wadi Daiqa sample DX3A is 

from the same, or a very similar horizon, to that of Lovelock et al. (1981), but 

improved preparation techniques enabled the recovery of a much richer and more 

informative assemblage (Fig. 8). A sample from a locality 813 m west and up-section 

(06P5), yielded a quite different acritarch assemblage, while the recovery from the 

Hayl al Quwasim sample 05P1 differs again, but adds further to our understanding of 

the depositional system during the Middle Ordovician (Fig. 9). The interpretations we 

place on these assemblages have been greatly assisted by the study of the Saih 

Nihayda Formation (Am5 equivalent) in a number of exploration wells drilled by 

Petroleum Development Oman (PDO) in the Ghaba Salt Basin (Forbes et al. 2010, 

p. 175). 

 

The age of the DX3A assemblage was discussed in Sansom et al. (2009) due to its 

importance in dating the occurrence of fragments of the early fish Sacabambaspis. 

The combined evidence from chitinozoa (F. Paris unpublished) and acritarchs (G.A. 

Booth pers. obs.) suggested a latest ?Dapingian to early Darriwilian age. Further 

study has resulted in the identification of additional acritarch taxa providing more 

certainty as to its stratigraphic position and age. The assemblage contains classic 



palynological components of the Saih Nihayda Formation, which include Arkonia 

tenuata, Cymatiosphaera sp. of Molyneux & Al-Hajri (2000), Ferromia filosa and 

several undescribed taxa known only from strata of Darriwilian age in Oman (Fig. 8). 

Through the presence of Arkonia tenuata, Dicrodiacrodium ancoriforme, 

Stelliferidium stelligerum and Striatotheca principalis gp. the assemblage compares 

with the VK2 assemblage of Quintavalle et al. (2000) from the Karakorum of 

Pakistan, which they associated with the hirundo graptolite zone of the early 

Darriwilian. 

 

While the Wadi Daiqa DX3A assemblage has palynological characteristics that link it 

with the Saih Nihayda depositional cycle, it remains unique amongst Saih Nihayda 

acritarch assemblages. None of the studied well sections in the Ghaba Salt Basin 

have yet yielded a similar assemblage. In the Ghaba Salt Basin the Saih Nihayda 

Formation, where present, overlies the Ghudun Formation. In many cases it does so 

with a clear unconformity, shown by the truncation of the characteristic gamma log 

trace of the Ghudun Formation, and in core, sometimes by the presence of 

conglomerate (Droste, 1997). The Wadi Daiqa DX3A assemblage differs from the 

Saih Nihayda assemblages of the Ghaba Salt Basin in possessing an acritarch sub-

set with older affinities. These include Picostella turgida, Petaliferidium bulliferum 

and Disparifusa sp. aff. D. hystricosa (Fig. 8).  

 

The conclusion that may be drawn is that in the area of the Ghaba Salt Basin, 

deposition of the Saih Nihayda Formation occurred unconformably over the 

differentially eroded surface of the Ghudun Formation. Sediments of early Darriwilian 

age are absent in this area. To the north-east in the Amdeh outcrop areas the story 



is different. The Wadi Daiqa DX3A assemblage is of early Darriwilian age and our 

fieldwork shows no evidence of a break in deposition between the Am4 (probable 

equivalent of the Ghudun Formation) and the Am5. Sedimentation was continuous, 

or near continuous, in this north-eastern area. 

 

The Wadi Daiqa 06P5 assemblage is dominated by leiospheres, cryptospore 

monads and other taxa with low surface ornament. Spinose taxa are present, but 

rare, and limited to Polygonium gracile, Veryhachium trispinosum, V. lairdi and 

Disparifusa sp. Relatively common is Cymatiosphaera sp. of Molyneux & Al-Hajri 

(2000), which is accompanied by Hilate sporomorph 1 of Le Hérissé et al. (2007), 

Incertae sedis 24 of PDO and Incertae sedis 27 of PDO (Fig. 9a-f, i, l). In Oman 

these last-named taxa are all diagnostic of the Saih Nihayda Formation. The 06P5 

assemblage is very different from the DX3A assemblage (Fig. 8), but very similar to 

assemblages obtained from near the base of the Saih Nihayda section in two PDO 

wells in the Ghaba area. It is tempting to consider these assemblages as 

representative of the same stratigraphic horizon, but it is perhaps more likely that 

their character is due to deposition in a similar shallow-water facies. It is interesting 

that this assemblage, from a Cruziana-rich shelfal shale, contains more apparently 

marginally marine elements than DX3A which is from a dark shale interbed within 

deposits interpreted to be shallower water shoreface (Fig. 5). 

 

Several samples were collected from the small inlier of Hayl al Quwasim, east of the 

Wadi Daiqa, and studied palynologically. Preservation and yield were relatively poor, 

but the sample 05P1 proved informative. The acritarch assemblage includes Arkonia 

tenuata, Cymatiosphaera sp. of Molyneux & Al-Hajri (2000), Stelliferidium striatulum, 



Striatotheca principalis gp., S. quieta, Baltisphaeridium spp. and Stellechinatum 

celestum (Fig. 9g-h, j-k, m-o). The occurrence of several specimens of the latter 

taxon is significant. In detailed quantitative studies of acritarch occurrences in two 

Ghaba Salt Basin wells (Booth & Al-Belushi, 2007 unpub. PDO lab. Note; Booth & 

Machado, 2013 unpub. PDO lab. note), the occurrence of Stellechinatum celestum 

(and the related form S. helosum) was a key indicator of the youngest Saih Nihayda 

Formation biozone (Booth & Machado 2014, unpub. PDO lab. note). Consequently, 

in the Hayl al Quwasim inlier the Am5 unit is at least partially equivalent to the 

uppermost part of the Saih Nihayda Formation.  

 

Chitinozoans are present in some outcrop samples, but appear sensitive to facies 

control, and their absence can also be due to metamorphism and deformation, which 

renders them irrecoverable. They are rare and fragmentary in Wadi Daiqa and 

difficult to identify due to the degree of carbonisation (Lovelock et al. 1981). The 

forms Lagenochitina obeligis, Laufeldochitina baculiformis and Belonchitina gr. 

micracantha were reported by Paris (in Sansom et al. 2009) from samples from the 

same level as our DX3A. Richer assemblages of chitinozoans are known from shale 

samples from cores close to MFS O30 in the equivalent subsurface Saih Nihayda 

Formation (Al-Ghammari et al. 2010; Rickards et al. 2010). 

 

The palynomorph assemblages derived from Wadi Daiqa and Hayl al Qwasim 

outcrop samples are similar in composition to the assemblages obtained from the 

Saih Nihayda Formation, penetrated in wells of the Ghaba Salt Basin and clearly 

belong to the same depositional sequence. The palynomorph assemblages derived 



from the overlying Hasirah Formation (Katian) and underlying Ghudun Formation 

(Floian – Dapingian) in Oman are significantly different.  

 

The VK2 assemblage of Quintavalle et al. (2000) is a good correlative match to the 

Saih Nihayda Formation, Wadi Daiqa assemblage DX3A, but other studies within the 

region (Saudi Arabia, Iran, Iraq and Jordan) have only sufficient detail to enable a 

broad correlation with the Saih Nihayda Formation of Oman (see Supplementary 

Material). The assemblage described by Rickards et al. (2010) from the Lower 

Member of the Rann Formation of the UAE is from an equivalent of part of the 

Ghudun Formation. 

 

 	
5.b. Conodonts 

Two nodular carbonate horizons in Wadi Daiqa and Hayl al Quwasim yielded a rich, 

but low diversity assemblage of two new genera and long-ranging elements (Figs. 5, 

10). All samples, WD C2008-10, C2012 and HaQ C2011, contain a similar fauna 

though the latter is more fragmentary. The fauna is thus of limited biostratigraphical 

utility when compared to conodont faunas from other regions, but may prove useful 

when more material from the Arabian margin is described. Its phylogenetic 

significance is far greater, however, and may help resolve questions about the 

evolution of early prioniodontid conodont apparatuses. 

 

Two main conodont apparatuses with sets of three P elements are present and are 

partly reconstructed based on discrete specimens recovered from all of the Wadi 

Daiqa samples (Fig. 10). They are not consistent with any previously described 

Ordovician conodont apparatuses and certainly represent two new genera that are 



problematic to assign to a particular family. A detailed study reconstructing the whole 

apparatus of these new taxa will be published separately (Miller et al. in prep).  

 

The larger, more robust set of P elements is found less commonly in the assemblage 

than the slender and denticulate set, and we assign these robust elements to 

?Balognathidae gen et sp. nov. (Fig. 10a-c).  We have assigned Pa, Pb and Pc 

positions here rather than using the P1-P3 notation of Purnell et al. (2000) as we 

currently have no evidence for the relative positions of these elements in the 

apparatus. The Pb elements of this ?balognathid are icrion-bearing towards the ends 

of the processes (Fig. 10ci). Denticles on all P elements are variably developed on 

the processes (Fig. 10b) with some specimens being almost adenticulate (Fig. 10a). 

Until more material is recovered it is difficult to tell whether these differences in 

denticulation represent specific or even ontogenetic variations within a species as 

larger specimens would appear to be less denticulate. Robust S elements with 

crowded denticles have been found in the Amdeh assemblages, but as yet no M 

element associated with this apparatus has been recovered.  

 

The apparatus of Notiodella described from bedding-plane assemblages from the 

Soom Shale, Ordovician of South Africa by Aldridge et al. (2013), contains three 

discrete P elements. Notiodella was assigned to the family Balognathidae by 

Aldridge et al. (2013) on the basis of the cladistic analysis and subsequent 

phylogeny presented by Donoghue et al. (2008). Other apparatuses with icrion 

bearing P elements such as Icriodella have previously been assigned to the family 

Icriodontidae by Dzik (1991), hence our questioning of the balognathid assignment 

here. As Aldridge et al. (2013) noted, the Icriodontidae/Balognathidae family issue 



may only be resolved when/if further bedding-plane material is uncovered. In the 

meantime, descriptions of this new ?balognathid genus with 3P elements illustrated 

here and another newly described conodont with 3P elements, Arianagnathus from 

the Llandovery of Iran (Männik et al. 2015), have the potential to resolve some of the 

relationships between these basal prioniodontid conodonts. Aldridge et al. (2013) 

have suggested that there may well be a distinct clade representing the family 

Icriodontidae and it would be interesting to see if a rerun of the cladistical analysis of 

Donoghue et al. (2008), including the new material from Oman and Iran, would 

recognise this. 

 

The most common P elements recovered in the fauna (Fig. 10d-g) have been loosely 

placed within the Family Pterospathodontidae. A prounounced kink is present mid-

blade in Pa elements of ?Pterospathodontidae gen et sp. nov. (Fig. 10di), whereas 

the Pb elements look very similar in lateral view but have a straighter blade and less 

well developed lateral processes (Fig. 10fi). Almost all elements recovered have 

broken lateral processes so, at present, the most distinctive marker to tell these two 

elements apart is the relative straightness of the blade. The Pc element is distinctly 

pyramidal in shape (Fig. 10e). There are variations in denticulation, some of which 

may also be due to breakage. 

 

Pa and Pb elements of ?Pterospathodontidae gen et sp. nov. show similarities with P 

elements of Pranognathus (Männik & Aldridge, 1989), but do not have as well 

developed denticles on the supplementary processes and the main denticle row of 

the Pa element shows a mid-blade kink at the position of the cusp. In oral view they 

are similar to Complexodus P elements, but they do not possess the distinctive high 



blade. Small S elements recovered in the fauna are similar to those of the 

Pranognathus apparatus, but have not been illustrated here. The most common M 

element recovered, and therefore the element suggested to belong with this 

apparatus, is a typical Ordovician geniculate element (Fig. 10h). This is unlike the M 

element assigned to Pranognathus by Männik & Aldridge (1989) or the Notiodella M 

element.  One of the S elements recovered here possesses four processes, again 

unlike any element in the Notiodella or Pranognathus apparatuses. Another 

difference from the Notiodella apparatus is the apparent similarity between two of the 

P elements (assigned Pa and Pb here), whereas in Notiodella all three P elements 

are different. This is not unusual amongst Ordovician apparatuses and is seen in the 

bedding plane assemblage of the Balognathid Promissum from the Soom Shale of 

South Africa where the elements in the P1 and P2 positions are almost identical 

(Aldridge et al. 1995; Gabbott et al. 1995). We tentatively place this new material 

with the Family Pterospathognathidae because of the similarity of the P element to 

Complexodus and Pranognathus, but again a more complete analysis of the whole 

apparatus is required in order properly ascertain its affinities. This apparatus could 

also have balognathid affinities as suggested by the M element. Dzik (1991, fig. 17) 

suggested that the Family Pterospathodontidae was derived from the Balognathidae 

so this form may represent a basal representative of the former. 

 

Other elements present in this low diversity conodont assemblage include coniforms 

of the stratigraphically long ranging and geographically widespread Drepanoistodus 

sp. (Fig. 10i-k) and elements of Drepanodus sp.. Some small elements of 

Microzarkodina sp. have also been recovered including a Pa element and an Sb 

element (see notation of Löfgren & Tolmacheva, 2008).  



 

Shallow-water conodont faunas in the Ordovician are ephemeral and it is not 

unusual to find taxa that are ‘similar to’ but only identifiable at generic level. 

Bergström et al. (2009, p. 101) referred to an "almost total absence of conodonts in 

the Lower and Middle Ordovician" of the Middle East and subsequent "serious 

difficulties to correlate the successions in this area with the new global 

chronostratigraphy". During the Ordovician the Arabian Peninsula probably belonged 

to the Shallow Sea Realm of Zhen & Percival (2003) and this may account for the 

endemic nature of its conodont faunas. It is interesting to note that apparently 

coeval, but probably seaward, faunas from the Ayim Member of the Rann Formation 

in the UAE are dominated by Eoplacognathus with small numbers of Complexodus 

and are very different to the fauna described here (Fortey et al. 2011). Conodonts 

have also been recovered from the Hanadir Shale of Saudi Arabia (list of Vaslet, 

1990, and illustration in Purnell, 1995), but the assemblage from this formation has 

yet to be described in detail. Material being worked up from the Zagros of Iran may 

also be comparable (Ghavidel-Syooki et al. 2014, p. 684), although these are slightly 

older (early Darriwilian) than those described here. 

 

5.c. Trilobites (and Cruziana) 

Trilobite body fossils are uncommon in the Am5 outcrops of Wadi Daiqa and Hayl al 

Quwasim, despite the abundance of Cruziana.  This is commonly the case 

in contemporary clastic inshore sites of Gondwana. A specimen of the asaphid 

Ogyginus was found in a rotten carbonate in unit 3 on the southern flank of the Wadi 

Daiqa inlier, and a decalcified tail of Neseuretus tristani and the thorax of a larger 

non-asaphid trilobite were recorded from shales of unit 5 from Hayl al Quwasim. 



Phosphatised fragments of small trilobites are also found in the residues of conodont 

preparations from near the base of unit 3 in Wadi Daiqa (Fig. 4). The majority of 

these small specimens are of the rare trinucelid Yinpanolithus cf. yinpanensis (Fig. 

11a-k; for systematic description see supplementary data). This trilobite was 

previously only known from Floian-Dapingian strata in southern China and its 

occurrence in the Darriwilian of Oman may be an intermediate link to Cryptolithinae 

that appear suddenly in the Sandbian of Avalonia. 

 

Cruziana are common in the Am5 outcrops studied, in particular C. furcifera, C. 

rugosa and C. goldfussi, and less commonly C. imbricata and C. rouaulti. The most 

common forms are 60-120 mm wide (Fig. 6c), whereas C. imbricata is larger, up to 

190 mm wide. The bulk of the Cruziana are thought to be the traces of particle 

feeding trilobites as they worked over the surface of an organic-rich sediment. Fortey 

& Owens (1999) reviewed earlier work and considered that the likely trace maker 

was Neseuretus, which is often found in beds above or below the trace fossils, 

though never directly associated with them. However, the 60-120 mm width of the 

Cruziana measured here when compared with the typical sizes of trilobite remains 

known from elsewhere in the Amdeh, might imply that the asaphid trilobite Ogyginus 

is the more likely trace maker, as it grows to comparable widths to the traces, which 

Neseuretus does not. This differs from the opinion of Fortey & Owens (1999) 

of asaphid life-habits, which were thought to be predatory/scavenging. It remains the 

case that the vaulted morphology of Neseuretus seems more appropriate to 

a ploughing habit than the flattened exoskeleton of Ogyginus. It is conceivable that 

Neseuretus grew larger than the body fossils yet recovered. It also remains puzzling 

that ploughing traces smaller than 60 mm wide have not been seen in the field. 



Comparable size classes of trilobites seem to have worked given patches of 

sediment together. Possibly, smaller trilobites congregated in different habitats, even 

on sediment surfaces where the grain sizes did not favour the preservation of 

ichnofossils. 

 

More abundant trilobite fossils are known from shell beds, near Dim, north of Wadi 

Sarin (Neseuretus tristani, Ogyginus sp. aff corndensis and ?Nobiliasaphus sp.) in a 

sequence that contains few Cruziana. These shell beds were mapped as Am5 by 

BRGM geologists, but our re-examination of the section reveals several features 

more typical of the Am4. The identification of Neseuretus tristani from the Am5 in 

Wadi Daiqa, Hayl al Quwasim and from (Am4 or 5?) shell beds near Dim, suggests 

correlation with at least part of the Hanadir Shale of Saudi Arabia and to Darriwilian 

sections in Iberia and elsewhere in southern Europe (Fortey & Morris, 1982; El-

Khayal & Romano, 1985). The Neseuretus fauna of Gondwana is low in diversity and 

usually associated with nearshore deposits at high palaeo-latitudes (North Africa, 

Armorica, South America, northern India and southern China; Fortey & Morris, 

1982).  

 

5.d. Fish 

Only fragments of dermal armour, rather than articulated specimens, are known, as 

yet, from a ca. 280 m interval of the Am5 in Wadi Daiqa and Hayl al Quwasim (Figs. 

5, 12). All of the conodont samples also yielded fish material. The material includes 

scales and fragments of head shield and flank scales derived from the dermal 

armour of arandaspid fish genus Sacabambaspis (Sansom et al. 2009), though, due 

to its fragmentary nature, it cannot be identified to species level. Ordovician 



arandaspids (including Sacabambaspis) have been recovered from sedimentary 

rocks of similar palaeo-environment on the margins of Gondwana in Bolivia, 

Argentina and Australia and it would appear that these fish occupied a similar 

shallow-water niche in peri-Gondwanan localities during their Ordovician Floian to 

Sandbian range. Mass-mortality events, which led to articulated specimens being 

preserved in Bolivia, have been attributed to major influxes of freshwater and 

sediment into shallow marine waters (Davies & Sansom, 2009). Their absence in the 

Am5 may suggest that the sequences studied were distant from the mouths of rivers. 

 

5.e. Crinoids 

Crinoid ossicles are often present as moulds on bedding surfaces in the Am5 

outcrops at Wadi Daiqa and Hayl al Quwasim. At one location, capping the 

regressive shoreface sand #2, they also occur as articulated Iocrinus material 

(Donovan et al. 2011). The pentastellate columnals typical of this genus occur 

through hundreds of metres of section around the horizon where more complete 

specimens and coiled stem fragments occur (Fig. 5). They have also been recovered 

from the 75 μm to 2 mm fraction of conodont preparations. These and obvious 

round, oval and pentagonal moulds in outcrops, indicate that further taxa of crinoid 

are present (Fig. S2). Ghobadi Pour et al. (2011) reported probable columnals of 

Iocrinus from Dapingian strata in the Alborz Mountains in northern Iran, from a 

terrane thought marginal to Gondwana. Early and early Middle Ordovician crinoids 

are comparatively rare in occurrence, and the Iran and Oman material may be some 

of the oldest evidence of this genus. Iocrinus was previously considered a Laurentian 

genus that migrated to Gondwana in the Middle Ordovician, but the probable 



stratigraphic primacy of the Iran and Oman occurrences brings this into doubt, and 

suggest this may have happened in reverse (Donovan et al. 2011). 

  

6. Regional evaluation 

6.a. Oman 
 

The Darriwilian Saih Nihayda Formation occurs in the subsurface of northern Oman 

in a trend following the axis of the Ghaba Salt Basin (Droste, 1997; Konert et al. 

2001; Molyneux et al. 2006; Forbes et al. 2010, pp. 193-6). At its thickest, ca. 650 m, 

it is similar to the Am5/Upper Siltstone Member of the Amdeh outcrops. The 

formation is predominantly shaly; it varies in thickness and proportion of sand due to 

onlap onto an unconformity below, and differing amounts of erosion beneath younger 

formations above (Fig. 7). High global sea levels and halokinesis in the salt basin 

provided the accommodation space to preserve the formation in northern Oman 

(Partington et al. 1998), and it is tempting to assume the same controls applied in the 

area of the Amdeh outcrops (Fig. 1). 

 

The subsurface Saih Nihayda Formation has been characterised as a major 

transgressive–regressive sequence separated by graptolitic shales (Droste, 1997; 

Forbes et al. 2010). The shales in the subsurface are described as dark grey, though 

locally they can be orange or reddish brown. Sandstones are fine to medium-grained 

and have been interpreted as braid-delta or possibly fluvial, overlain by open-marine 

shales with thin storm or turbidite sandstones and capped by prograding shallow-

marine sandstones (Droste, 1997; Forbes et al. 2010). No shell beds have been 

described from the subsurface, but a very dense spike on the well logs of SN-24 is a 

candidate for one (Forbes et al. 2010, p. 190, 2928 m). Cruziana rugosa and parts of 



an asaphid trilobite are present in samples from core 22 of the GB-1 well (in the Iraq 

Petroleum Company archive), in keeping with their Amdeh outcrop equivalents. 

 

Rickards et al. (2010) described the graptolites and palynomorph assemblages from 

cores close to the MFS O30 interval in the GB-1 and BQ-1 wells of the Ghaba Salt 

Basin (Figs. 1, 7). Didymograptus (D.) cf. murchisoni is present in the former well 

and Didymograptus (D.) artus in the latter. The mutual exclusivity of these forms is 

quite normal and may be facies controlled rather than being temporal. The acritarchs 

also show differences, with those from GB being less diverse, better preserved and 

interpreted as being more proximal. Those from BQ are more diverse, carbonised 

and pyritic, and interpreted as representing a more distal reducing environment 

below normal wave base (Rickards et al. 2010). Molyneux et al. (2006) also 

documented an increase in acritarch diversity, graptolite fragments and chitinozoa 

along the salt basin from south-west to north-east, consistent with a change from 

more onshore to offshore conditions. Highly carbonised fragments of graptolites are 

often encountered in palynology preparations of outcrop samples, and the absence 

graptolite macrofossils in the outcrops is probably a consequence of metamorphism 

and cleavage development.  

 

The Ordovician saw the highest sea levels of the Palaeozoic and this, combined with 

the low relief of the continents, led to wide, low-gradient (<0.1°), shallow-marine 

shelves (Fig. 13). Sea levels that had risen through the Early Ordovician, stabilized in 

the Middle Ordovician, before rising again during the Late Ordovician (Haq & 

Schutter, 2008). Sea levels are estimated to have been 50-200 m above present 

during the Darriwilian and it is unlikely that regional highs in relatively seaward 



locations remained islands during periods of maximum transgression (e.g., the area 

of the present Jabal Akhdar, in Oman; Figs. 1, 13b). Small changes in sea level 

could lead to migration of shorelines over long distances. During sea-level falls, 

coarser-grained, sharp-based shoreface units could be deposited in detached 

locations way out on the shelf (Posamentier & Morris, 2000). 

 

The synthesis is of the Saih Nihayda Formation becoming more offshore along the 

Ghaba Salt Basin towards the Amdeh outcrops and the Proto-Tethys ocean (Figs. 1, 

7, 13). Given this reconstruction, the sharp-based regressive shoreface sands in the 

lower half of the sequence in Daiqa outcrops probably represent falls of relative sea 

level of a few tens of metres and the shale minor flooding events similar rises (Fig. 

5). There is also no evidence of an embayment along the Ghaba Salt Basin which, if 

it were present, would have amplified any tidal effects. 

 

6.b. Arabian Plate 
 
The Darriwillian spans a period of 8.9 Ma (from 458.4 to 467.3 Ma; Gradstein et al. 

2012). Typical outcrop thicknesses of deposits of this age on the Arabian plate vary 

from <20-150 m. (Fig. 13b). The Am5 of Oman and the Khabour Quartzite-Shale 

Formation of northern Iraq (Al-Hadidy, 2007) are exceptions, though what thickness 

of the latter formation is Darriwilian is unclear. The Am5, at 690-805 m thick, implies 

active subsidence and a steady supply of clastic sediment. If 50 to 200 m of the 

accommodation space is attributable to rising sea level, then more than four times 

that is probably due to subsidence or halokinesis. The sedimentation rate for the 

Am5 is a comparatively high at around 0.1 m /1000 years. But dm-thick storm event 

beds would have formed in days and where the pauses or gaps in this sequence are 



remains a puzzle. The O30 maximum flooding event is interpreted to occur near the 

base of outcrops of the Hanadir Shale in Saudi Arabia, at about 18 m in the outcrops 

of the Hiswah Formation in southern Jordan and at around 70 m above the base in 

an un-named exploration well in central Saudi Arabia (Senalp & Al-Duaiji, 2001; 

Simmons et al. 2007; Turner et al. 2012). It is interpreted to occur at a level of 

around 150-200+ m in the sections of the Saih Nihayda Formation of northern Oman 

illustrated in Figure 7 and at 450 m in the Am5 outcrops at Wadi Daiqa (Fig. 5). 

 

Regionally across Arabia, the base of the Darriwilian is often marked by beds of 

conglomerate or phosphatic sand implying an unconformity or at least a significant 

break in sedimentation (Droste, 1997; Vaslet, 1990; El-Khayal & Romano, 1988; 

Fortey et al. 2011; Turner et al. 2012; Ghavidel-Syooki et al. 2014). It would appear 

that the earliest Darriwilian was not deposited in many areas. There are no such 

beds in the Am5 outcrops supporting the palynological evidence of more continuous 

sedimentation. Similar wave- and storm-dominated, shallow-marine clastic 

sedimentary rocks and trace fossils are described across Arabia, with little evidence 

of tides, despite the wide shelf (El-Khayal & Romano, 1988; Senalp & Duaiji, 2001; 

Turner et al. 2012; Ghavidel-Syooki et al. 2014). At the present day, shallow water 

seas remain micro-tidal where there is not a free connection to the open ocean (e.g., 

the Mediterranean Sea with the Straits of Gibraltar), where there is interference 

between incoming and outgoing tidal waves or where the local coastal geometry 

does not compress the incoming tidal wave (Dalrymple & Padman, 2015). It may be 

that external Iranian and Afghan terranes along this margin of Gondwana prevented 

a free connection with the Proto-Tethys ocean (Torsvik & Cocks, 2009; Fig. 13). 

Such terranes may also have affected the dispersal and endemism of faunas. 



 

The orange-red, shaly, bioclastic carbonates of the Ayim Member of the UAE are a 

sediment-starved contrast to most of the Darriwilian in the region. This, 25 m thick, 

griotte-like facies, was probably a low-energy shelfal deposit remote from any sand 

supply. The presence of stromatolites, networks of Thalassinoides burrows and 

oriented orthocone shells implies deposition in the photic zone above storm wave 

base. Cruziana are absent, and there are different trilobite and condont faunas 

compared to those of to the Am5 (Fortey et al. 2011). The Ayim Member occurs as 

rafts in a mélange and so its original depositional context is uncertain, but it may be 

typical of deposits that accumulated over intrabasinal highs (Figs. 7, 13). 

 

In the Baltic region and the USA, the Middle Darriwillian is marked by an Isotope 

Carbon Excursion (MDICE) that probably coincides with a climate-induced cooling of 

the oceans to near present-day temperatures and the presence of ice sheets at the 

poles (Bergström et al. 2009; Ainsaar et al. 2010; Turner et al. 2012; Al-Husseini 

pers. comm. to APH, 2016). If the 3rd order cycles of bathymetry for the Middle 

Ordovician are eustatic changes due to the growth and decay of ice sheets, as 

interpreted by several authors, there is surprisingly little commonality in the number 

and character of cycles between the regions (Munnecke et al. 2010; Turner et al. 

2012; Videt et al. 2010). In the Am5 outcrops, there are two 3rd order cycles of 

coarsening and fining upward centred around the interpreted location of MFS O30 

(Figs. 5, 7). In northern Oman, only parts of these cycles are preserved due to onlap 

at the base and truncation by unconformites at the top, perhaps helping explain 

some of the lack of commonality in other regions. Oman and the Arabian shelf were 

located at mid-latitudes, ca. 30-50°S (Fig. 13a). Such latitudes, under present-day 



‘Icehouse’ conditions, are characterised by strong winds. Large waves driven by 

westerly winds possibly affected the 1500 km-wide shallow sea covering Arabia. 

Palaeocurrents from the cross-beds in the Am5 and from Jordan (Middle Member of 

Dubaydib Formation, Turner et al. 2012) are oriented towards the north north-east 

and north and perhaps were caused by the relaxing flows of storm surges. 

 

There are similarities in the regional provenance of Ordovician sandstones in Sinai 

and Jordan, and the glimpses of provenance obtained from the Amdeh Formation of 

Oman. The presence of detrital zircons >0.95 Ga could imply multiple episodes of 

sand recycling and northward transport by rivers and ice sheets from ancient source 

cratons on the African and Indian plates (Kolodner et al. 2006).		

	
 
7. Conclusions 

A 690 m sequence of Darriwilian siltstone-dominated Amdeh 5 Member crops out in 

the Wadi Daiqa and Hayl al Quwasim inliers. It comprises quartzitic sandstones, 

shales and thin shell beds.  Several of the shales yield assemblages of acritarchs 

and chitinozoa. Without this biostratigraphic control, and a framework established 

from hydrocarbon exploration in interior Oman, our understanding of the sequence 

would be significantly reduced. A potentially important conodont fauna has been 

recovered, but this appears to be endemic in a region that has limited coverage for 

conodonts, thus hampering biostratigraphic correlation. 

 

The Am5 is the equivalent to, spans a wider age range and is probably the seaward 

continuation of the Saih Nihayda Formation of the Ghaba Salt Basin of northern 

Oman. The deposits are interpreted to represent storm-dominated shelf, shoreface 



and delta environments. There are two 3rd order coarsening and fining upward cycles 

centred around the interpreted location of the MFS O30 (ca. 462-3 Ma). Small 

changes in sea level led to substantial landward or seaward shifts of facies belts due 

to the low gradient of the shelf. There is little evidence of tidal influence, despite the 

extensive shallow sea that covered much of Arabia, perhaps due to the presence of 

external terranes at the edge of Gondwana that restricted free circulation with Proto-

Tethys. Palaeocurrents in the Am5 are towards the north north-east and may reflect 

the oceanward-flowing currents of relaxing storm surges. 

 

The Am5 outcrops in the Saih Hatat area are thicker than most others of Darriwilian 

age in the region, implying active subsidence and a steady supply of sediment. 

There is evidence of earliest Darriwilian palynomorphs and a transition with the 

underlying Am4 that is not present in the subsurface of the Ghaba Salt Basin or in 

other outcrops in the region. It seems likely that the Jabal Akhdar area, that lacks 

Amdeh-equivalent strata, was submerged at the highest sea levels of the Ordovician 

and that any deposits that accumulated were eroded prior to the Permian. Sand-

starved, griotte-like carbonates, like those of the Ayim Member of the Rann 

Formation of the UAE, may have accumulated over such intrabasinal highs. 

 

The Amdeh Formation is a challenging rock unit to work on and does not yield up its 

secrets readily. This study, however, resulted in a number of unexpected discoveries 

which provide evidence of the development and dispersal of faunas 

(Sacabambaspis, Iocrinus, Yinpanolithus, a new conodont fauna). There is scope for 

further discoveries in the Am5 (e.g., younger phosphate-rich horizons at Hayl al 

Quwasim; further taxa of crinoid; undescribed new genera and species of bivalves; 



unattributed saddle-like and scale-like features in conodont residues, Fig. S2) and in 

the other members of the Amdeh Formation. 
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Figure Captions 

Figure 1. Outcrops of the Amdeh Formation on the southern rim of the Saih Hatat 

window of the Al Hajar Mountains. Outcrop outlines and metamorphic zones are 

from BRGM mapping, the extension of the Ghaba Salt Basin from Mount et al. 

(1998), and e.g., GB-1 are petroleum exploration wells referred to in this paper. 

 

Figure 2. Wadi Daiqa (a) locations of measured sections A-D and of palynology 

samples e.g., DX3A, also C08-10 (C2008-C2010), C12 (C2012) = conodont 

samples, Ioc = Iocrinus and Saca = Sacabambaspis locations.	Quickbird image 1-5-

2013 ©Digital Globe. (b) Main measured section C, note the continuity of beds and 

the two thicker shoreface sandstones labelled #1 and #2. 

 

Figure 3. Hayl al Quwasim (a) location of measured sections 0 and A and palynology 

samples e.g., 05P1, also C11 (C2011) = conodont sample, HaQ = village.	Quickbird 

image 1-5-2013 ©Digital Globe. (b) Overview of main section A extending along the 

main ridge to the right. The 60 m high cliff in the core of the anticline comprises the 

coarsening-upward deltaic sequence of unit 4.1. 

 

Figure 4. Measured sections of the Amdeh 5 in the Wadi Daiqa and Hayl al Quwasim 

inliers. See figures 2 and 3 for locations, and 5 for summary composite log. 

 

Figure 5. Composite log of the Amdeh outcrops in the inliers of Wadi Daiqa and Hayl 

al Quwasim. Unit 0 corresponds to section 0 marked on figure 3a. Legend as in 

figure 4, mfe = minor flooding event, fr = forced regression. 



 

Figure 6. Wadi Daiqa outcrop photographs, scales: hammer handles 400 or 280 mm 

long, head 175 mm long, coin 24 mm across. (a) Skolithos linearis, unit 1, endorelief. 

(b) Dewatering structures, unit 1. (c) Cruziana furcifera and C. rugosa, unit 2.2 

convex hyporelief on base of overturned slab. (d) Teichichnus rectus, unit 2.2, 

endorelief. (e) Swaley- and (f) trough-cross stratification, both unit 2.2. (g) Bivalve 

shell bed, unit 2.2. (h) Nodular carbonate bed packed with large orthoconic 

nautiloids, unit 3. 

 

Figure 7. (Colour online) Oman-UAE regional correlation of the subsurface Saih 

Nihayda Formation and outcrops sections in the Amdeh 5/Upper Siltstone Member 

and the Ayim Member of the Rann Formation. MFS O30 used as a datum. Legend 

and abbreviations as on Figure 4. 

 

Figure 8. Acritarchs from sample Wadi Daiqa DX3A. Scale bars are 10 μm. All Slide 

1, PDO palynological collection. England Finder references bracketed. (a) 

Striatotheca principalis gp. (M74/1). Abundant in the assemblage. Variable in size, 

degree of ornamentation and outline. (b) Stelliferidium striatulum. (R70/1). The 

characteristic radiating striae are poorly developed on this specimen. (c) 

Dicrodiacrodium ancoriforme. (F68/2). The taxon is relatively common in the 

assemblage, but complete specimens are rare. (d) Pterospermella? sp. (O57/3). The 

specimens recovered are primarily two-dimensional and exhibit marginal processes 

with a variable degree of branching. The central area is darker in colour due to 

apparent thickening. (e) Picostella turgida. (V66/4).  The number of broad based 

processes varies from 6 to 12. Other specimens have a less quadrate appearance. 



The process surfaces are granulate, grading to smooth proximally. (f) Ferromia 

filosa. (L70/4). The specimens are very similar to those originally described by 

Vavrdova (1977) from the early Llanvirn, Sarka Shale. The author (GAB) does not 

accept the synonymisation of this taxon with Micrhystridium diornamentum proposed 

by Martin (1996). (g) Diparifusa sp. aff, D. hystrichosa. (V55/4). The asymmetric 

outline is typical of the genus. (h) Arkonia tenuata. (M53/2). The taxon is a common 

component of the assemblage. The striation on these triangulate acritarchs is 

variable. (i) Incertae sedis 24 of PDO. (W65/1).  The taxon, which apparently 

originally had an umbrella-like form, is a rare component of assemblages from the 

lower part of the Saih Nihayda Formation. (j) Multiplicisphaeridium sp. 3 of PDO. 

(F71/4). Similar specimens have been recorded from a late Floian – early Dapingian 

interval in Oman. (k) Cymatiosphaera? sp. of Molyneux & Al-Hajri (2000). (R69/2). 

The taxon is relatively rare in the assemblage and always poorly preserved. 

Triangular, rounded and quadrate forms are present. (l) Petaliferidium bulliferum. 

(Q66/3). The processes are rather short on these specimens, but have the 

characteristic distal rounded profile. 

 

Figure 9. Acritarchs from samples Wadi Daiqa 06P5 (a-f, i, l) and Hayl al Quwasim 

05P1 (g-h, j-k, m-o). Scale bars are 10 μm. Slide 1, except where indicated, PDO 

palynological collection. England Finder references bracketed. (a) Dictyotidium sp. 

(N31/2). (b) Hilate sporomorph 1 of Le Hérissé et al. (2007). Slide 3. (O44/4). (c) 

Cymatiosphaera sp. 3 of PDO. (V28/3).  (d) Cryptospore monad. (N30/1).  Simple 

disk-like form, without folds or with only minor folds. (e) Leiospharidia sp. (M53/3).  

(f) Cymatiosphaera? sp. of Molyneux & Al-Hajri (2000). (U38/4). (g) Stelliferidium 

striatulum. (W35/2). This taxon is common in the Hayl al Quwasim samples, but 



preservation is generally poor and the radial ornament at the process bases cannot 

always be seen. (h) Striatotheca quieta. (N54/4). (i) Incertae sedis 40 of PDO. 

(M40/2).  The taxon is characterised by a fine reticulum on the surface of the body. 

(j) Stellechinatum celestum. (E48/3). This taxon and the related S. helosum are 

indicative of the upper part of the Saih Nihayda Formation. (k) Arkonia virgata. 

(Q39/3). Shows coarser striation than Fig. 8h and is attributed to the species virgata. 

Intermediate forms are present in the Wadi Daiqa assemblages, where the genus is 

relatively common. Servais (1997) commented on the existence of similar 

intermediate forms in his comprehensive review of the Arkonia – Striatotheca 

acritarch plexus. (l) Polygonium gracile. (R48/4). All specimens bearing medium 

length or long processes in this sample have suffered significant damage. (m) 

Incertae sedis 27 of PDO. (H31/2). (n) Cymatiosphaera? sp. of Molyneux & Al-Hajri 

(2000). (J50/3). All specimens are poorly preserved, but are neverthless 

recogniseable. The presence of this species is an almost certain indication of the 

Saih Nihayda Formation. (o) Stelliferidium striatulum. (U27/4). See (g) above. 

 

 
 
Figure 10. Conodonts from sample Wadi Daiqa C2009 unless stated, scale bars are 

200 μm. (a-c) ?Balognathidae gen et sp. nov.   Pa element, NHMUK PM X 3671, (a) 

lateral view, (ai) oral view. (b) Pc element, NHMUK PM X 3672, lateral view, (bi) oral 

view. (c) Pb element, NHMUK PM X 3673, lateral view, (ci) oral view. (d-h) 

?Pterospathodontidae gen et sp. nov. (d) Pa element, C2010, NHMUK PM X 3674, 

lateral view, (di) oral view. (e) Pc element, NHMUK PM X 3675, lateral view, (ei) oral 

view. (f) Pb element, C2010, NHMUK PM X 3676, lateral view, (fi) oral view. (g) Pa 

element, C2012, NHMUK PM X 3677, lateral view, (gi) oral view. (h) M element, 



NHMUK PM X 3678. (i-k) Depanoistodus sp., (i) NHMUK PM X 3679, (j) NHMUK PM 

X 3680, (k) C2010, NHMUK PM X 3681. (l) Drepanodus sp., NHMUK PM X 3682. 

 
Figure 11. Phosphatised fragments of trilobite picked from from Wadi Daiqa 

conodont residues. Scale bars are 100 μm. (a-k). Yinpanolithus cf. yinpanensis Lu. 

(a) Part of lower lamella, ventral view, NHMUK PI It 29179. (b) Part of left hand side 

of fringe of larger specimen, NHMUK PI It 29180. (c) Incomplete cranidium, NHMUK 

PI It 29181. (d) Lower lamella showing termination of probably pseudogirder, 

NHMUK PI It 29182. (e) Fragment of larger fringe, NHMUK PI It 29184. (f) Small 

incomplete cranidium, NHMUK PI It 29183. (g) Smallest incomplete cranidium, 

NHMUK PI It 29187. (h) Anterior view of incomplete cranidium, NHMUK PI It 29185.  

(i) Anterior view of small cranidium showing lack of pits medially, NHMUK PI It 

29186. (j) Fragment of fringe showing excrescence possibly due to parasite, NHMUK 

PI It 29188. (k) Pygidium of trinucleid possibly associated, NHMUK PI It 29189. (l) 

Pygidium of Neseuretus tristani, NHMUK PI It 29190. 

 

Figure 12. Fragments of the dermal armour of the arandaspid fish Sacabambaspis. 

Scale bars for (a) is 2 mm, (b-g) are 500 μm. (a) Abundant fragments (arrowed) in 

weathered sandstone from Unit 2.2, loc. Saca 1, Wadi Daiqa, NHMUK PV P 73830. 

En echelon ornament clearly visible. (b-g) Fragments picked from residues of 

conodont preparations from Wadi Daiqa. (b-e) presumed from the headshield region, 

(b) C2010, NHMUK PV P 73831, (c) C2008, NHMUK PV P 73832, (d) C2010, 

NHMUK PV P 73833, (e) C2010, NHMUK PV P 73834. (f-g) rhombic specimens with 

en echelon ornament presumed from the flank scales, C2008, NHMUK PV P 73835. 

 



Figure 13 (a) Reconstruction of the northern margin of Gondwana during the Middle 

Ordovician (Torsvik pers. comm. to APH, 2015). The connection to Proto-Tethys 

may have been restricted by external terranes along this part of the margin of 

Gondwana. (b) Palaegeographical map of the Arabian Plate during the Darriwilian 

(MFS O30, based on Konert et al. 2001). Note the wide shallow shelf and the 

exceptional thickness of sediment preserved in the Amdeh outcrops and the Ghaba 

Salt Basin. Thicknesses and palaeocurrents from sources in text. It is unlikely that 

intrabasinal highs like Jabal Akhdar were not transgressed during periods of the 

highest sea levels. 
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