

A Forager Adjustment Strategy Used by the Bees
Algorithm for Solving Optimization Problems in
Cloud Manufacturing
Xie, Yongquan; Zhou, Zude; Liu, Quan; Xu, Wenjun; Ji, Chunqian; Liu, Ping; Tian, Sisi;
Pham, Duc
DOI:
10.1115/MSEC2015-9255

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Xie, Y, Zhou, Z, Liu, Q, Xu, W, Ji, C, Liu, P, Tian, S & Pham, D 2015, A Forager Adjustment Strategy Used by
the Bees Algorithm for Solving Optimization Problems in Cloud Manufacturing. in Proceedings ASME 2015
International Manufacturing Science and Engineering Conference: Volume 2: Materials; Biomanufacturing;
Properties, Applications and Systems; Sustainable Manufacturing. vol. 2, ASME (American Society of
Mechanical Engineers), 10th ASME 2015 Manufacturing Science and Engineering Conference (MSEC2015),
Charlotte, NC, United States, 8/06/15. https://doi.org/10.1115/MSEC2015-9255

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Final Version of Record published in 2015 Proceedings of the ASME 2015 International Conference on Manufacturing Science and
Engineering (MSEC2015): Volume 1, ISBN 978-0-7918-5682-6

Checked 25/8/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Portal

https://core.ac.uk/display/185496198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1115/MSEC2015-9255
https://research.birmingham.ac.uk/portal/en/publications/a-forager-adjustment-strategy-used-by-the-bees-algorithm-for-solving-optimization-problems-in-cloud-manufacturing(aa089bc8-a5e4-4426-aa20-240e5751924b).html

Procee

A FORAGER ADJUSTMENT STRATEGY USED BY THE BEES ALGORITHM FOR SOLVING
OPTIMIZATION PROBLEMS IN CLOUD MANUFACTURING

Yongquan Xie1,2, Zude Zhou1,2, Duc Truong Pham3, Quan Liu1,2, Wenjun Xu1,2, Chunqian Ji3,

Ping Lou1,2, Sisi Tian1,2
1School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

2Key Lab. of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan
University of Technology, Wuhan 430070, China

3School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, U.K.
xyqwhut0728@126.com, zudezhou@whut.edu.cn, d.t.pham@bham.ac.uk, quanliu@whut.edu.cn,

xuwenjun@whut.edu.cn, c.ji@bham.ac.uk, louping@whut.edu.cn, tiansisi@whut.edu.cn

KEYWORDS
Swarm intelligence, Bees Algorithm, forager adjustment
strategy, intelligent optimization, cloud manufacturing

ABSTRACT

Intelligent technologies have become increasingly
important in manufacturing nowadays. Optimal service
management and allocation in current cloud manufacturing
model are impossible without applications of appropriate
intelligent tools. The Bees Algorithm (BA) is a swarm-based
intelligent optimizer that provides support for smart decision-
making process in manufacturing models. A novel forager
adjustment strategy (FAS) is proposed in this paper to manage
the forager division in the algorithm, so as to make the entire
colony perform with higher efficiency. The proposed FAS
based Bees Algorithm (FAS-BA) is able to realize flexible
allocation of its forager resources between different roles in
accordance with the solution fitness sampled by current scout
population. The proposed algorithm is presented in detail.
Experiments are conducted based on a set of well-known
benchmark functions and a case study. Comparisons between
FAS-BA and an improved Bees Algorithm are made to
highlight the effectiveness of FAS. The results demonstrate that
the proposed algorithm requires less function evaluation cost
than the improved version but is capable of obtaining at least
the same optimal solution to a problem.

INTRODUCTION
Cloud manufacturing is a new generation service-oriented

networked manufacturing model that provides users with
distributed manufacturing resources and capacities. In this
context, the notion of resource service optimal allocation
describes the linking of a physical order or product to resource
services and capacities, while combining information and rules
governing the way the order is likely to be fulfilled. Due to the
availability of internet and service virtualized techniques,
accessible services in cloud service pool proliferate. In

addition, internal and external changes in a cloud become
frequent and unpredictable, and the number of service requests
and users is becoming increasingly large, making the optimal
service allocation and flexible supply chain management
difficult problems. An intelligent process in cloud
manufacturing enables a system to optimize the management of
supply and production chain, the allocation of physical and
virtualized resource services, the expense of labor and raw
materials, etc. Artificial intelligence is a core enabling
technology for cloud manufacturing to solve the emerged
problems. Swarm-based intelligent optimization algorithm is a
powerful probabilistic heuristic procedure for the search of
optimal solution based on swarm intelligence, which defines
much of the natural world from a flock of birds to a colony of
ants. It is featured by a distributed intelligence and self-healing
infrastructure that will have a major impact on a highly mobile
cloud environment of distributed manufacturing resources.
Swarm-based optimization algorithms (SOAs) find optimal or
near-optimal solutions to complex problems such as resource
service composition, job scheduling, and assembly planning.
The optimizing behavior of individuals in the algorithm
translates particularly well into technological applications in
cloud computing or manufacturing. Members of SOAs include
Ant Colony Optimization (ACO) [1], Genetic Algorithm (GA)
[2], Particle Swarm Optimization (PSO) [3], Biogeography-
based Optimization (BBO) [4], Artificial Bee Colony (ABC)
[5], etc. Over the last two decades, these algorithms have been
used to transform different aspect of technology, igniting new
developments in areas from robotics in its first applications to
cloud manufacturing technology today. They have been shown
good quality in dealing with optimization problems especially
those have shown to be NP-hard and cannot be solved in
bounded polynomial computation time.

The Bees Algorithm was originally proposed by Pham et al
[6-7]. It is characterized by a combination of neighborhood
search and global search. To this day it has gone through
several variations. The Bees Algorithm optimize an objective

 1

problem in a single run through parallel computing, which
usually incurs a large number of solution samplings and fitness
evaluations. Therefore efforts have consistently been made to
enhance its search efficiency. The neighborhood shrinking and
site abandonment strategies were introduced for faster search
speed and higher accuracy [8]. The pheromone-based
recruitment was employed also to speed up the search [9]. The
fuzzy greedy selection of local search sites was put forward to
reduce the algorithm’s parameters while improving its
robustness and self-organizing ability [10].

The forager adjustment strategy proposed in this paper is
intended to promote the optimal solution search efficiency of
the algorithm. This strategy regulates the labor division in a
colony. Like the Bees Algorithm, this strategy also takes
inspiration from a biological phenomenon. In a honeybee
colony, the proportion of bees designated for different food
foraging tasks adapts to the changing habitat. Each forager in
the colony specializes in one task at a time. This is a ubiquitous
feature in the bee’s world. The colony’s external supply of food
can vary greatly from time to time with the flower clusters
flourishing and withering. To successfully survive in the
diverse and constantly changing natural environments, the
colony allows the transfer of foragers from one role to another
[11]. The colony pulls up its standard of food quality when
there are plenty of food sources available, and then only the
sources bearing superior nectar or pollen are favored. More
foragers (called recruiters or recruited followers in the
following text) are devoted to explore those high-quality
sources. In the colony, the number of bees for discovering new
sources (called scouts or scout bees in the following text)
consequently declines. However, when it becomes very difficult
in finding a source that provides favorable food, in later autumn
for example, the colony lower its food selecting standard.
Meanwhile, the bees that used to be recruiters are dispatched to
play the role of scouts in order to find more available sources,
resulting to the decrease in the number of recruited followers.
In this way the colony could adapt itself on the one hand to its
own time-dependent demands for nectar and water from the
habitat, and on the other hand to the dynamic natural conditions
like temperature and the amount of food obtainable.

The paper is organized as follows: Section 2 introduces the
bee’s behaviors in nature and reviews the basic Bees Algorithm.
Section 3 details the proposed strategy. The presentation of the
controlling parameters in new schema and the procedures of
FAS-BA are also included in this section. Section 4 contrasts
the proposed algorithm versus an improved version. Analyses
and discussions about the experiment are presented. A case
study that demonstrates how the algorithm can be effective in
resource service composition in cloud manufacturing
environment is involved in Section 5. Finally, Section 6
concludes the paper and gives suggestions for future work.

THE BEES ALGORITHM
This section briefs the bee’s foraging behaviors in nature

and the basic version of the Bees Algorithm. Without loss of
generality, it will be assumed in the rest of this paper that the

optimization problem requires the minimization of the objective
function.

Bees Foraging Behaviors in Nature
A honeybee colony is able to perform foraging action over

an immense area around the nest of the colony during the
harvest season. It extends part of its population over long
distance to scout the fields [12]. Scout bees move randomly
looking for food sources. Once they discover potential sites
where nectar or pollen is abundant and in high quality, they
return to the hive and perform a “waggle dance” to advertise
the sites they discovered. Biologists believe the purposed of
this mysterious dance is to broadcast the information including
the direction, distance and quality of the sites. After observing
the dance, the bees waiting in the hive follow the scout bees to
the sites and begin to collect the nectar intensively, and this part
of population is known as the recruited followers. The number
of followers depends on the quality rating of the food source.
The sites that provide richer and more easily available nectar
attract a larger number of followers than other sites. While
some scout bees are broadcasting the information of food
sources and recruiting followers, those scout bees fail to find
valuable sites continue to fly randomly over the region as wide
as they can in the hope of discovering potential sources. This
intensive-and-extensive food discovering and collecting
mechanism allows the honeybee colony to optimize the
efficiency of food gathering. An intelligent optimization
process in engineering problems today is analogous to this
mechanism as the honeybees strive to collect the most
favorable food for sustainable existence.

The Basic Bees Algorithm
Every possible solution in the searching space is thought of

as a food source and represented by a site in the algorithm. The
Bees Algorithm starts by sending a number of scout bees to
randomly sample the space. The fitness of the sampled sites
denotes the quality of food and is evaluated by the objective
function. The sampled sites are ranked into a queue in
conformity to their fitness value. Among the scout bees, only
those landing at the top ranked sites have the qualification for
recruiting followers. The recruited followers search the fitness
landscape in the neighborhood of the top ranked sites. This
process is called the local search (or neighborhood search). The
scout bees arriving at the sites that are not qualified for
neighborhood search do not have followers. They continue to
perform random sampling in the entire solution space in the
next iteration. This process is called the global search. The Bees
Algorithm locates the promising sites and selectively exploits
their neighborhoods while still randomly explores the entire
solution space. By doing so it applies to the search for global
optimal solution to the objective function.

The algorithm requires a number of parameters to be set,
namely: number of scout bees (n), number of best sites selected
from the n visited sites for local search (m), number of elite
sites out of the m selected site for a more intensive local search
(e<m), number of recruited followers for local search around

 2

elite sites(nre), number of bees recruited for local search around
the rest m-e best sites (nrb<nre), initial size of neighborhood
(ngh), stagnant cycles for site abandonment (stlim) and the
stopping criterion for the algorithm to terminate. The literature
[6] details the pseudo code of the basic Bees Algorithm, and
more recent researches on the Bees Algorithm are provided in
[13-16].

THE PROPOSED FAS-BA

New Parameter Schema
The FAS is introduced to adaptively allocate forager

resources in the honeybee colony for various tasks. In FAS-BA,
foragers are also identified as scouts and recruited followers.
However, instead of specifying their quantities directly in the
initialization step, they are set as percentages representing their
respective proportions in colony. This will be more convenient
to realize forager reallocation in the algorithm. Table 1 explains
the parameters in new schema. As can be seen, the colony size
is preset as a decimal integer while the number of scout bees
and recruited followers in each generation need to be
determined by their individual proportions in the colony. The
ngh and stlim remain the same as they are in the basic Bees
Algorithm.

TABLE. 1 PARAMETERS OF FAS-BA
Name Description
nc colony size
sp proportion of scouts in the colony
bp proportion of best sites in all sampled sites
ep proportion of elite sites in best sites
erb ratio of recruiters for exploring elite site against

recruiters for the best sites
ngh initial neighborhood size
stlim limit of stagnation cycles for site abandonment

The Mechanism of FAS
The basic principle of FAS is: reduce the scout bees by

transferring some of them to play as recruited followers for a
more intensive local search if the current scout generation
discovers very profitable site, whereas increase the scout bees
by designating some followers to perform as scouts if current
generation fails to identify the sites bearing noticeable fitness
values. This puts forward a need to ascertain whether there
exists some sites whose finesses stand out the other sites
sampled by current scout generation. Two FAS procedures
named FAS1 and FAS2 are developed to make the judgment
and realize the decision-making loop. Their respective pseudo
codes are demonstrated in Algorithm 1 and 2.

Algorithm 1: FAS1
Input: sampled sites
Step 1: sort the sites in fitness descending order;
Step 2: IF mean(fitness(1),fitness(2))>1.5×fitness(λ∙nc∙sp),

reduce the scout proportion;

Step 3: ELSE IF mean(fitness(1), fitness(2))<1.5×fitness((1-
λ)∙nc∙sp), increase the scout proportion;

Step 4: ELSE scout bees remain unchanged;
Step 5: END IF
Step 6: calculate the number of foragers and allocate them to

respective tasks.
Output: updated the number of scouts and recruited followers

Algorithm 2: FAS2
Input: sampled sites
Step 1: sort the sites in fitness descending order;
Step 2: IF mean(fitness of all sites)>fitness(λ∙nc∙sp), reduce

the scout proportion;
Step 3: ELSE IF mean(fitness of all sites)<fitness((1-

λ)∙nc∙sp), increase the scout proportion;
Step 4: ELSE scout bees remain unchanged;
Step 5: END IF
Step 6: calculate the number of foragers and allocate them to

respective tasks.
Output: updated the number of scouts and recruited followers

In the pseudo codes of FAS1 and FAS2, the function
fitness(i) returns the fitness value of the ith site. The fitness of a
site is calculated as)()(ififitness −= , meaning it equals to the
negative objective function value. A fitness factor λ is put
forward. It controls the sensitivity of the forager regulation to
the current fitness values of the sampled sites. In Step 1, all the
sites visited by the current scout generation are ranked in a
descending sequence according to their fitness. The first site in
the sequence has the highest fitness but the smallest sampled
function value and is therefore more favorable. Step 2 is an
important step that decides whether the sites with high fitness
in the sequence are distinctive enough to attract more recruited
followers. In Step 2 of FAS1, the average fitness of the top two
sites is calculated and compared with the one chosen by the
fitness factor λ. Normally λ falls into the interval of (0, 1/2),
hence the site being selected locates in the first half of the
ordered site sequence (because the value of λ∙nc∙sp is definitely
smaller than half of the scout number when λ<1/2). If the
average fitness is larger than the chosen fitness after scaling, it
is confident to believe that the sites with outstanding fitness
have been sampled and are legitimate for attracting more
recruited followers. In Step 2 of FAS2, the average fitness of all
sites is taken into account and compared with the site chosen by
λ. If the average fitness is greater than the fitness of the chosen
site, the distinctive sites is said to exist in the current site
sequence and thus deserve more intensive exploration by
designating some scout bees as recruited followers. Step 3 is of
equivalent importance to Step 2 for regulating the foragers. It
determines whether the current site sequence does not contain
significant fitness. If not, a more extensive search in the entire
solution space rather than focusing on a few sampled sites
would be fruitful. The forager regulation in Step 3 adopts a
reversed logic pattern to Step 2. The forager division remains
unchanged if neither condition in Step 2 or Step 3 is satisfied.
This step protects the forager division from being overly

 3

fluctuant. This is embodied in Step 4. In Step 6, the numbers of
bees playing different roles are calculated from their updated
proportions. Basically, the FAS1 and FAS2 rely on the
dispersion of the fitness values sampled by the current scout
population to fulfill the forager reallocation.

Based on the proposed strategy, the pseudo code FAS-BA
is given in Algorithm 3. The introduced FAS is implemented
after the algorithm finishes the global search and before the
start of a new iteration cycle.
Algorithm 3: FAS-BA
Input: objective function
Step 1: initialize the scout bees by sampling sites randomly

in the solution domain
Step 2: waggle dance (recruit followers)
Step 3: local search, implement neighborhood shrinking and

site abandonment strategy
Step 4: global random search
Step 5: implement FAS
Step 6: if stopping criteria are not met, go to Step 2,

otherwise terminate the algorithm
Output: optimal solution

EXPERIMENT AND DISCUSSION

Experiment Setup
A set of 16 well-known benchmark functions is employed

to evaluate the performance of the proposed algorithm. These
functions are listed in Table 2, where D represents the function
dimensionality, the search range specifies the lower and upper
boundaries of variables that compose a solution, and the
optimum column gives the actual optimal solutions that have
already been identified by other mathematic methods. The
proposed FAS-BA is compared with the Bees Algorithm
enhanced by neighborhood shrinking and site abandonment
strategies [8], which is called EBA in the rest of this paper. All
the algorithms are run 100 times for each function. The optimal
solution is said to be found successfully when the difference
between the function values of the best-fit solution found by the
algorithm and the real optimum is less than 0.0001. Function f6
has more than one global minimum and locating any one of
them is considered a successful trial. For each function, the
algorithms run with the same colony size to make sure they
require equivalent function evaluations in every iteration cycle.
Therefore, the algorithm demanding the least iteration cycles to
locate the optimal solution outperforms the others. The initial
parameter settings are given in Table 3. The fitness factor λ for
forager adjustment is set to 1/3, 1/4, 1/5 and 1/6 to test the
performance respectively.

TABLE. 2 BENCHMARK FUNCTIONS USED IN THE
EXPERIMENT

No. Name D Search range Optimum
f1 Easom 2 [-100, 100] f(x*)=-1, x*=(π, π)
f2 Goldstein&Price 2 [-2, 2] f(x*)=3, x*=(0, -1)
f3 Griewank 2 [-512, 512] f(x*)=0, x*=(0, 0)
f4 Schwefel 2 [-500, 500] f(x*)=0,

x*=(420.9687,
420.9687)

f5 Martin&Gaddy 2 [0, 10] f(x*)=0, x*=(5, 5)

f6 Branin 2 [-5, 15]

f(x*)=0.397887,
x*=(- π, 12.275),
x*=(π, 2.275),
x*=(3 π, 2.475)

f7 Rastrigin 2 [-5.12, 5.12] f(x*)=0, x*=(0, 0)

f8 Ackley 2 [-32.768,
32.768] f(x*)=0, x*=(0, 0)

f9 Rosenbrock 2 [-1.2, 1.2] f(x*)=0, x*=(1, 1)
f10 Schaffer 2 [-100, 100] f(x*)=0, x*=(0, 0)
f11 DeJong 1st 3 [-5.12, 5.12] f(x*)=0, x*=(0, 0, 0)
f12 Rastrigin 3 [-5.12, 5.12] f(x*)=0, x*=(0, 0, 0)
f13 Rosenbrock 3 [-2.048, 2.048] f(x*)=0, x*=(1, 1, 1)

f14 Schwefel 4 [-500, 500]
f(x*)=0,
x*=(420.9687,
420.9687)

f15 Ackley 6 [-32.768,
32.768] f(x*)=0, x*=(0, …, 0)

f16 Hypersphere 10 [-5.12, 5.12] f(x*)=0, x*=(0, …, 0)

TABLE. 3 PARAMETERS FOR THE ALGORITHMS
EBA FAS-BA
n 18 nc 117
m 10 sp 15.4%
e 3 bp 55.6%
nre 19 ep 33.3%
nrb 6 erb 3:1
ngh serch rang/2 ngh search rang/2
stlim 10 stlim 10

Results and discussions
Table 4 contrasts the results obtained by the proposed FAS-

BA with EBA (The basic Bees Algorithm is not included in the
experiment because EBA has shown superiority to the basic
version in many literatures). The average performance of the
algorithms on each benchmark function is reported.

The results reported in boldface stand for the best
performance (the least iteration cycles) obtained by the
algorithms. To make the comparison more convincing,
statistical significance of the difference in iteration cycles
between FAS-BA and EBA is evaluated through student’s t-test.
The t-tests are run with a confidence level of 95% (α=0.05). In
Table 4, a “+” symbolizes that the difference of the average
iteration cycles between the two versions is statistically
significant, whereas a “-” means the difference is not
statistically significant. It is observable that FAS-BA
outperforms EBA on 14 cases out of 16 in terms of iteration
cycles consumed. EBA produces better results only on the
functions f2 and f9. However, the statistical test shows that
even through EBA requires less iteration cycles to find the
optima for the function f2, its performance is not significantly
different from FAS-BA.

The functions f4, f5, f6 and f11 are relatively simple
problems. It can be observed that FAS2-BA spends the least
computation cost on finding the optima. Only on the function f4
it obtains the result that statistically differs from EBA. As to f5,
f6 and f11, all the algorithms do not demand too much iteration

 4

cycles to locate the minimum, and hence they exhibit similar
performances.

The functions f1, f7 and f8 have shown a little more
complexity as the algorithms require approximately 50 iteration
cycles to locate a desired solution. The results show that FAS-
BA needs less computation cost on f1 and f7, and this
improvement is statistically validated by the t-test. Individually,
12.23 and 4.55 iteration cycles on average are saved by FAS2-
BA, which yields the best performance, while 6.9 and 4.37 less
iteration cycles are demanded by FAS1-BA. The algorithms
perform similarly on f8 as indicated by the t-test.
TABLE. 4 ITERATION CYCLES NEEDED TO OPTIMIZE EACH

FUNCTION AND T-TEST RESULTS
No. EBA FAS1-BA FAS2 -BA

mean of
itr. cycles

mean of
itr. cycles λ t-test mean of

itr. cycles λ t-test

f1 51.35 44.45 1/4 + 39.12 1/4 +
f2 27.13 27.43 1/6 - 27.51 1/5 -
f3 298.32 240.70 1/4 + 244.08 1/4 +
f4 40.76 39.76 1/4 - 39.15 1/4 +
f5 14.03 14.34 1/4 - 14.00 1/3 -
f6 19.82 19.98 1/3 - 19.28 1/3 -
f7 44.75 40.38 1/5 + 40.20 1/3 +
f8 54.75 54.64 1/3 - 55.2 1/3 -
f9 16.70 18.65 1/6 + 18.36 1/6 +
f10 244.02 177.04 1/3 + 184.96 1/6 +
f11 24.51 24.40 1/3 - 24.24 1/3 -
f12 272.88 193.74 1/5 + 205.66 1/5 +
f13 595.82 372.06 1/3 + 378.80 1/4 +
f14 365.52 217.50 1/3 + 244.90 1/3 +
f15 264.32 211.22 1/4 + 237.82 1/3 +
f16 156.00 107.24 1/6 + 96.78 1/5 +

The functions f3, f10, f12 to f16 are complex functions
whose optima cannot be easily located. Nevertheless, the
proposed FAS1-BA and FAS2-BA have particularly shown
their remarkable advantages on these functions over EBA, as
demonstrated in Figure 1. The bar graph looks at the search
speeding of the algorithms on the seven complex functions
from the benchmark function set. Normally the algorithms
require hundreds of iteration cycles to find the individual
minimum if they are run with the colony size specified in Table
3 (using a different colony size would lead to a variation in the
iteration cycles for finding an optimum). It is observable that
the algorithm without FAS needs more iteration cycles (higher
bar) to obtain the optimum, and the algorithms based on two
FAS procedures do not vary too much. To be more specific in
the comparison, the data in Table 4 show that 19.3% and 27.4%
computation costs are saved on f3 and f10 respectively by
FAS1-BA, while 18.2% and 24.2% are saved by FAS2-BA. The
FAS1-BA requires the least iteration cycles on f12 to f15,
reducing 29.0%, 37.6%, 40.5% and 20.1% iterations
respectively. Correspondingly, the FAS2-BA requires 24.6%,
36.4%, 33.3% and 10.0% less iteration cycles on them. In
addition, the FAS2-BA expends the least iterations on finding
the optima for the function f16, saving 37.9% computations
compared with EBA, and the FAS1-BA needs 31.3% less than

this improved version. The improvement brought by both FAS1
and FAS2 on f3, f10, f12 to f16 has been demonstrated as
statistically significant.

90

190

290

390

490

590

f3 f10 f12 f13 f14 f15 f16

Benchmark function

I
t
e
r
a
t
i
o
n

c
y
c
l
e
s

EBA FAS1-BA FAS2-BA

FIGURE.1 COMPARISON OF ITERATION CYCLES
REQUIRED TO OPTIMIZE COMPLEX FUNCTIONS

From Table 3 it can be calculated that the colony size of
EBA is kept constant as 117, and the function evaluation costs
required in every iteration cycle is 99 (e·nre+(m-e)·nrb).
The initial colony of FAS-BA is set to the same size with EBA.
However, the function evaluation costs required in every
iteration cycle is variable due to the forager regulation of FAS.
The evaluation cost for each function is recorded in the
experiment and compared with EBA, as demonstrated in Figure
2.

0

10

20

30

40

50

60

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

Benchmark function

E
v
a
l
u
a
t
i
o
n

c
o
s
t
/
×

1
0
0
0

EBA FAS1-BA FAS2-BA

FIGURE.2 COMPARISON OF FUNCTION EVALUATION
COSTS REQUIRED TO OPTIMIZE EACH FUNCTIONS

It can be observed in Figure 2 that FAS-BA demands less
function evaluation cost for the functions, particularly for the
function 3, 10, 12, 13, 14, 15 and 16. FAS1 and FAS2 perform
generally the same in saving function evaluation costs.
Therefore, the above analyses reveal that the FAS can be

 5

considered as a prominent strategy to enhance the performance
of the Bees Algorithm. It can help reduce the expense on
computation effectively for solving complex problems,
meanwhile, the algorithm using it performs generally no worse
than EBA on simple problems.

A CASE STUDY
The realization of multi-user resource service composition

using the proposed intelligent algorithm in cloud manufacturing
environment is briefly demonstrated in this section. It is
presumed that in a situation three customers post their task
requests at a time. The cloud platform is demanded to allocate
component services optimally to work out a solution which is
up to requirements of as more users as possible. Multi-user
RSC appears to be simply repetitive implementation of single
user RSC strategies. However, the composite schema should
actually take into account much more impact factors. The
schema does not necessarily provide each user with the best
service chain but strive to satisfy all users.

Other preconditions of this case study encompass: every
task requested can be decomposed into 7 subtasks, and there are
15 candidate services available for completing each subtask. It
can then be calculated that the size of solution space is

24777 1013.1131415 ×≈×× . Provided a CPU is able to calculate
at the speed of 500 million times per second, it will take more
than 7 million years for traditional method to work out the best
solution to this NP-hard problem.

For the algorithm, a matrix solution schema is employed,
and parameters are empirically set as nc=35, sp=28%, bp=40%,
ep=25%, erb=2, ngh=0.6, stlim=7, and the fitness factor λ is
kept to be 1/4 throughout this study. For simplicity, and to save
space, only success rate is reported as shown in Figure 3. The
success rate refers to the ratio of users whose requirements
have been successfully satisfied against users in total. All
statistics are obtained on a repetitive run of the algorithm for 75
times.

Figure 3 shows the advantage of FAS-BA over EBA in
terms of success rate when users have different requirements.
Although the success rate declines with users’ task
requirements becoming tougher, the two algorithms using FAS
outperform EBA in that they promote the success rate by 11.4%
on average. And in terms of time consumed to find an optimal
or near optimal solution, FAS-BA costs statistically 45.2
seconds to obtain a solution up to the task in a run, that is 15.8
seconds less than EBA. The two implementations of FAS do
not demonstrate distinct difference from each other in this case
study, similar to how they perform in numerical experiments.

20%

30%

40%

50%

60%

70%

80%

90%

100%

low mediate high very high

Users' requirement

s
u
c
c
e
s
s

r
a
t
e

EBA FAS1-BA FAS2-BA

FIGURE.3 COMPARISON OF SUCCESS RATE IN SOLVING

RSC PROBLEM

CONCLUSIONS
The enhancement of intelligent optimization algorithm’s

performance underpins the promotion of efficiency in solving
many problems confronted in cloud manufacturing. The paper
has presented a novel strategy called FAS, which takes the
inspiration from the natural behaviors of adaptive labor division
in honeybee colony, to improve the performance of the Bees
Algorithm. Based on the proposed strategy, a new variation of
the Bees Algorithm named FAS-BA is developed. The
performance of the proposed algorithm is demonstrated on a set
of well-known optimization benchmark functions and a case
study. The improvement brought by the proposed FAS is
highlighted by comparing the experiment results with the Bees
Algorithm improved by strategies of neighborhood shrinking
and site abandonment. The FAS is shown to be particularly
helpful for the algorithm to solve complex problems. To locate
the optima of those problems, the FAS-BA requires less
computational cost, indicating a promotion of optimal solution
search efficiency. The results of t-test have proved the
promotion is obtained with statistical significance. However,
the design of the fitness factor λ may not be the most
appropriate way to achieve adaptive forager division in the
algorithm. How it affects the performance of the algorithm
warrants further investigation. Furthermore, the algorithm
demands parameters to be set empirically, how to make the
algorithm less reliant on prior knowledge is of great help in
current developing wave of science and technology.

ACKNOWLEDGMENTS
This research is supported by the Keygrant Project of

Chinese Ministry of Education (Grant No. 313042), the Key
Project of Natural Science Foundation of Hubei Province of
China (Grant No. 2013CFA044), the Fundamental Research
Funds for the Central Universities (Grant Nos. 2014-VII-015
and 2014-zy-107), and Research Exchange with China and

 6

India, The Royal Academy of Engineering, UK (Grant No.
1415-1)

REFERENCES
[1] Dorigo, M., Stutzle, T., 2004. “Ant colony optimization”,

MIT press, Cambridge, MA.

[2] Tang, K. S., Man, K. F., Kwong, S., He, Q., 1996. “Genetic
algorithms and their applications”, IEEE Signal Processing
Magazine, 13(6), 22-37.

[3] Kennedy, J., Eberhart, R., 1995. “Particle swarm
optimization”, IEEE International Conference on Neural
Networks, 4(1995), 1942-1948, IEEE press, Perth, WA.

[4] Simon, D., 2008. “Biogeography-based optimization”,
IEEE Trans. on Evol. Comput., 16(6), pp.702-713.

[5] Karaboga, D., 2005. “An idea based on honey bee swarm
for numerical optimization”, Technical report No. TR06,
Erciyes University, Engineering Faculty, Computer
Engineering Department.

[6] Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim,
S., Zaidi, M., 2006. “The bees algorithm – a novel tool for
complex optimization problems”, Proc. 2nd International
Virtual Conference on Intelligent Production Machines and
Systems, Oxford: Elsevier, pp.454-459.

[7] Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim,
S., Zaidi, M., 2005. „The bees algorithm”, Technical note,
Manufacturing Engineering Center, Cardiff University,
UK.

[8] Pham, D. T., Castellani, M., 2009. “The bees algorithm:
modeling foraging behaviour to solve continuous
optimization problems”, Proc, ImechE. Part C, 223(12),
pp.2919-2938.

[9] Packianather, M. S., Landy, M., Pham, D. T., 2009.
“Enhancing the speed of the bees algorithm using
pheromone-based recruitment”, 7th IEEE International
Conference on Industrial Informatics, pp.789-794, IEEE,
Cardiff, Wales.

[10] Pham, D. T., Darwish, A. H., “Fuzzy selection of local
search sites in the bees algorithm”, 4th International
Conference on Innovative Production Machines and
Systems [online], http://conference.iproms.org.

[11] Seely, D. T., 1996. “The wisdom of the hive: the social
physiology of honey bee colonies”. Harvard University
Press, Cambridge, Massachusetts.

[12] Tereshko, V., Loengarov, A., 2005. “Collective decision-
making in honey bee foraging dynamics”, J. Comput. Inf.
Syst. 9(3), pp.1-7.

[13] Yuce, B., Packomamther, M. S., Mastrocinque, E., Pham,
D. T., Lambiase, A., 2013. “Honey bees inspired

optimization method: the bees algorithm,” Insects, 2013,
4(4), pp.646-662.

[14] Castellani, M., Pham, Q. T., Pham, D. T., 2012. “Dynamic
optimization by a modified bees algorithm,” Proc. IMechE.
Part I: J. Syst. Control Eng., 226(7), pp.956-971.

[15] Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M.
S., Pham, D. T., 2014. “A multi-objective supply chain
optimization using enhanced Bees Algorithm with adaptive
neighbourhood search and site abandonment strategy,”
Swarm and Evolution Computation, 18(2014), pp.71-82.

[16] Ang, M. C., Ng, K. W., Pham, D. T., 2013. „“Combining
the Bees Algorithm and shape grammar to generate
branded product concepts”, Proceedings of Institution of
Mechanical Engineers, Part B, 2013, 227(2013), pp.1860-
1873, ISSN 0954-4054.

 7

	INTRODUCTION
	the bees algorithm
	Bees Foraging Behaviors in Nature
	The Basic Bees Algorithm

	the proposed fas-ba
	New Parameter Schema
	The Mechanism of FAS

	Experiment and discussion
	Experiment Setup
	Results and discussions

	A CASE STUDY
	CONCLUSIONS
	Acknowledgments

