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ABSTRACT 

Intelligent technologies have become increasingly 
important in manufacturing nowadays. Optimal service 
management and allocation in current cloud manufacturing 
model are impossible without applications of appropriate 
intelligent tools. The Bees Algorithm (BA) is a swarm-based 
intelligent optimizer that provides support for smart decision-
making process in manufacturing models. A novel forager 
adjustment strategy (FAS) is proposed in this paper to manage 
the forager division in the algorithm, so as to make the entire 
colony perform with higher efficiency. The proposed FAS 
based Bees Algorithm (FAS-BA) is able to realize flexible 
allocation of its forager resources between different roles in 
accordance with the solution fitness sampled by current scout 
population. The proposed algorithm is presented in detail. 
Experiments are conducted based on a set of well-known 
benchmark functions and a case study. Comparisons between 
FAS-BA and an improved Bees Algorithm are made to 
highlight the effectiveness of FAS. The results demonstrate that 
the proposed algorithm requires less function evaluation cost 
than the improved version but is capable of obtaining at least 
the same optimal solution to a problem. 

INTRODUCTION 
Cloud manufacturing is a new generation service-oriented 

networked manufacturing model that provides users with 
distributed manufacturing resources and capacities. In this 
context, the notion of resource service optimal allocation 
describes the linking of a physical order or product to resource 
services and capacities, while combining information and rules 
governing the way the order is likely to be fulfilled. Due to the 
availability of internet and service virtualized techniques, 
accessible services in cloud service pool proliferate. In 

addition, internal and external changes in a cloud become 
frequent and unpredictable, and the number of service requests 
and users is becoming increasingly large, making the optimal 
service allocation and flexible supply chain management 
difficult problems. An intelligent process in cloud 
manufacturing enables a system to optimize the management of 
supply and production chain, the allocation of physical and 
virtualized resource services, the expense of labor and raw 
materials, etc. Artificial intelligence is a core enabling 
technology for cloud manufacturing to solve the emerged 
problems. Swarm-based intelligent optimization algorithm is a 
powerful probabilistic heuristic procedure for the search of 
optimal solution based on swarm intelligence, which defines 
much of the natural world from a flock of birds to a colony of 
ants. It is featured by a distributed intelligence and self-healing 
infrastructure that will have a major impact on a highly mobile 
cloud environment of distributed manufacturing resources. 
Swarm-based optimization algorithms (SOAs) find optimal or 
near-optimal solutions to complex problems such as resource 
service composition, job scheduling, and assembly planning. 
The optimizing behavior of individuals in the algorithm 
translates particularly well into technological applications in 
cloud computing or manufacturing. Members of SOAs include 
Ant Colony Optimization (ACO) [1], Genetic Algorithm (GA) 
[2], Particle Swarm Optimization (PSO) [3], Biogeography-
based Optimization (BBO) [4], Artificial Bee Colony (ABC) 
[5], etc. Over the last two decades, these algorithms have been 
used to transform different aspect of technology, igniting new 
developments in areas from robotics in its first applications to 
cloud manufacturing technology today. They have been shown 
good quality in dealing with optimization problems especially 
those have shown to be NP-hard and cannot be solved in 
bounded polynomial computation time. 

The Bees Algorithm was originally proposed by Pham et al 
[6-7]. It is characterized by a combination of neighborhood 
search and global search. To this day it has gone through 
several variations. The Bees Algorithm optimize an objective 
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problem in a single run through parallel computing, which 
usually incurs a large number of solution samplings and fitness 
evaluations. Therefore efforts have consistently been made to 
enhance its search efficiency. The neighborhood shrinking and 
site abandonment strategies were introduced for faster search 
speed and higher accuracy [8]. The pheromone-based 
recruitment was employed also to speed up the search [9]. The 
fuzzy greedy selection of local search sites was put forward to 
reduce the algorithm’s parameters while improving its 
robustness and self-organizing ability [10]. 

The forager adjustment strategy proposed in this paper is 
intended to promote the optimal solution search efficiency of 
the algorithm. This strategy regulates the labor division in a 
colony. Like the Bees Algorithm, this strategy also takes 
inspiration from a biological phenomenon. In a honeybee 
colony, the proportion of bees designated for different food 
foraging tasks adapts to the changing habitat. Each forager in 
the colony specializes in one task at a time. This is a ubiquitous 
feature in the bee’s world. The colony’s external supply of food 
can vary greatly from time to time with the flower clusters 
flourishing and withering. To successfully survive in the 
diverse and constantly changing natural environments, the 
colony allows the transfer of foragers from one role to another 
[11]. The colony pulls up its standard of food quality when 
there are plenty of food sources available, and then only the 
sources bearing superior nectar or pollen are favored. More 
foragers (called recruiters or recruited followers in the 
following text) are devoted to explore those high-quality 
sources. In the colony, the number of bees for discovering new 
sources (called scouts or scout bees in the following text) 
consequently declines. However, when it becomes very difficult 
in finding a source that provides favorable food, in later autumn 
for example, the colony lower its food selecting standard. 
Meanwhile, the bees that used to be recruiters are dispatched to 
play the role of scouts in order to find more available sources, 
resulting to the decrease in the number of recruited followers. 
In this way the colony could adapt itself on the one hand to its 
own time-dependent demands for nectar and water from the 
habitat, and on the other hand to the dynamic natural conditions 
like temperature and the amount of food obtainable. 

The paper is organized as follows: Section 2 introduces the 
bee’s behaviors in nature and reviews the basic Bees Algorithm. 
Section 3 details the proposed strategy. The presentation of the 
controlling parameters in new schema and the procedures of 
FAS-BA are also included in this section. Section 4 contrasts 
the proposed algorithm versus an improved version. Analyses 
and discussions about the experiment are presented. A case 
study that demonstrates how the algorithm can be effective in 
resource service composition in cloud manufacturing 
environment is involved in Section 5. Finally, Section 6 
concludes the paper and gives suggestions for future work. 

THE BEES ALGORITHM 
This section briefs the bee’s foraging behaviors in nature 

and the basic version of the Bees Algorithm. Without loss of 
generality, it will be assumed in the rest of this paper that the 

optimization problem requires the minimization of the objective 
function. 

Bees Foraging Behaviors in Nature 
A honeybee colony is able to perform foraging action over 

an immense area around the nest of the colony during the 
harvest season. It extends part of its population over long 
distance to scout the fields [12]. Scout bees move randomly 
looking for food sources. Once they discover potential sites 
where nectar or pollen is abundant and in high quality, they 
return to the hive and perform a “waggle dance” to advertise 
the sites they discovered. Biologists believe the purposed of 
this mysterious dance is to broadcast the information including 
the direction, distance and quality of the sites. After observing 
the dance, the bees waiting in the hive follow the scout bees to 
the sites and begin to collect the nectar intensively, and this part 
of population is known as the recruited followers. The number 
of followers depends on the quality rating of the food source. 
The sites that provide richer and more easily available nectar 
attract a larger number of followers than other sites. While 
some scout bees are broadcasting the information of food 
sources and recruiting followers, those scout bees fail to find 
valuable sites continue to fly randomly over the region as wide 
as they can in the hope of discovering potential sources. This 
intensive-and-extensive food discovering and collecting 
mechanism allows the honeybee colony to optimize the 
efficiency of food gathering. An intelligent optimization 
process in engineering problems today is analogous to this 
mechanism as the honeybees strive to collect the most 
favorable food for sustainable existence. 

The Basic Bees Algorithm 
Every possible solution in the searching space is thought of 

as a food source and represented by a site in the algorithm. The 
Bees Algorithm starts by sending a number of scout bees to 
randomly sample the space. The fitness of the sampled sites 
denotes the quality of food and is evaluated by the objective 
function. The sampled sites are ranked into a queue in 
conformity to their fitness value. Among the scout bees, only 
those landing at the top ranked sites have the qualification for 
recruiting followers. The recruited followers search the fitness 
landscape in the neighborhood of the top ranked sites. This 
process is called the local search (or neighborhood search). The 
scout bees arriving at the sites that are not qualified for 
neighborhood search do not have followers. They continue to 
perform random sampling in the entire solution space in the 
next iteration. This process is called the global search. The Bees 
Algorithm locates the promising sites and selectively exploits 
their neighborhoods while still randomly explores the entire 
solution space. By doing so it applies to the search for global 
optimal solution to the objective function.  

The algorithm requires a number of parameters to be set, 
namely: number of scout bees (n), number of best sites selected 
from the n visited sites for local search (m), number of elite 
sites out of the m selected site for a more intensive local search 
(e<m), number of recruited followers for local search around 
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elite sites(nre), number of bees recruited for local search around 
the rest m-e best sites (nrb<nre), initial size of neighborhood 
(ngh), stagnant cycles for site abandonment (stlim) and the 
stopping criterion for the algorithm to terminate. The literature 
[6] details the pseudo code of the basic Bees Algorithm, and 
more recent researches on the Bees Algorithm are provided in 
[13-16]. 

THE PROPOSED FAS-BA 

New Parameter Schema 
The FAS is introduced to adaptively allocate forager 

resources in the honeybee colony for various tasks. In FAS-BA, 
foragers are also identified as scouts and recruited followers. 
However, instead of specifying their quantities directly in the 
initialization step, they are set as percentages representing their 
respective proportions in colony. This will be more convenient 
to realize forager reallocation in the algorithm. Table 1 explains 
the parameters in new schema. As can be seen, the colony size 
is preset as a decimal integer while the number of scout bees 
and recruited followers in each generation need to be 
determined by their individual proportions in the colony. The 
ngh and stlim remain the same as they are in the basic Bees 
Algorithm. 

TABLE. 1 PARAMETERS OF FAS-BA 
Name Description 
nc colony size 
sp proportion of scouts in the colony 
bp proportion of best sites in all sampled sites 
ep proportion of elite sites in best sites 
erb ratio of recruiters for exploring elite site against 

recruiters for the best sites 
ngh initial neighborhood size 
stlim limit of stagnation cycles for site abandonment 

The Mechanism of FAS 
The basic principle of FAS is: reduce the scout bees by 

transferring some of them to play as recruited followers for a 
more intensive local search if the current scout generation 
discovers very profitable site, whereas increase the scout bees 
by designating some followers to perform as scouts if current 
generation fails to identify the sites bearing noticeable fitness 
values. This puts forward a need to ascertain whether there 
exists some sites whose finesses stand out the other sites 
sampled by current scout generation. Two FAS procedures 
named FAS1 and FAS2 are developed to make the judgment 
and realize the decision-making loop. Their respective pseudo 
codes are demonstrated in Algorithm 1 and 2. 

 
 
 

Algorithm 1: FAS1 
Input: sampled sites 
Step 1: sort the sites in fitness descending order; 
Step 2: IF mean(fitness(1),fitness(2))>1.5×fitness(λ∙nc∙sp), 

reduce the scout proportion; 

Step 3: ELSE IF mean(fitness(1), fitness(2))<1.5×fitness((1-
λ)∙nc∙sp), increase the scout proportion; 

Step 4: ELSE scout bees remain unchanged; 
Step 5: END IF 
Step 6: calculate the number of foragers and allocate them to 

respective tasks. 
Output: updated the number of scouts and recruited followers 
 
Algorithm 2: FAS2 
Input:  sampled sites 
Step 1:  sort the sites in fitness descending order; 
Step 2: IF mean(fitness of all sites )>fitness(λ∙nc∙sp), reduce 

the scout proportion; 
Step 3: ELSE IF mean(fitness of all sites)<fitness((1-

λ)∙nc∙sp), increase the scout proportion; 
Step 4: ELSE scout bees remain unchanged; 
Step 5: END IF 
Step 6: calculate the number of foragers and allocate them to 

respective tasks. 
Output: updated the number of scouts and recruited followers 

In the pseudo codes of FAS1 and FAS2, the function 
fitness(i) returns the fitness value of the ith site. The fitness of a 
site is calculated as )()( ififitness −= , meaning it equals to the 
negative objective function value. A fitness factor λ is put 
forward. It controls the sensitivity of the forager regulation to 
the current fitness values of the sampled sites. In Step 1, all the 
sites visited by the current scout generation are ranked in a 
descending sequence according to their fitness. The first site in 
the sequence has the highest fitness but the smallest sampled 
function value and is therefore more favorable. Step 2 is an 
important step that decides whether the sites with high fitness 
in the sequence are distinctive enough to attract more recruited 
followers. In Step 2 of FAS1, the average fitness of the top two 
sites is calculated and compared with the one chosen by the 
fitness factor λ. Normally λ falls into the interval of (0, 1/2), 
hence the site being selected locates in the first half of the 
ordered site sequence (because the value of λ∙nc∙sp is definitely 
smaller than half of the scout number when λ<1/2). If the 
average fitness is larger than the chosen fitness after scaling, it 
is confident to believe that the sites with outstanding fitness 
have been sampled and are legitimate for attracting more 
recruited followers. In Step 2 of FAS2, the average fitness of all 
sites is taken into account and compared with the site chosen by 
λ. If the average fitness is greater than the fitness of the chosen 
site, the distinctive sites is said to exist in the current site 
sequence and thus deserve more intensive exploration by 
designating some scout bees as recruited followers. Step 3 is of 
equivalent importance to Step 2 for regulating the foragers. It 
determines whether the current site sequence does not contain 
significant fitness. If not, a more extensive search in the entire 
solution space rather than focusing on a few sampled sites 
would be fruitful. The forager regulation in Step 3 adopts a 
reversed logic pattern to Step 2. The forager division remains 
unchanged if neither condition in Step 2 or Step 3 is satisfied. 
This step protects the forager division from being overly 
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fluctuant. This is embodied in Step 4. In Step 6, the numbers of 
bees playing different roles are calculated from their updated 
proportions. Basically, the FAS1 and FAS2 rely on the 
dispersion of the fitness values sampled by the current scout 
population to fulfill the forager reallocation. 

Based on the proposed strategy, the pseudo code FAS-BA 
is given in Algorithm 3. The introduced FAS is implemented 
after the algorithm finishes the global search and before the 
start of a new iteration cycle. 
Algorithm 3: FAS-BA 
Input:  objective function 
Step 1:  initialize the scout bees by sampling sites randomly 

in the solution domain 
Step 2: waggle dance (recruit followers) 
Step 3: local search, implement neighborhood shrinking and 

site abandonment strategy 
Step 4: global random search 
Step 5: implement FAS 
Step 6: if stopping criteria are not met, go to Step 2, 

otherwise terminate the algorithm 
Output: optimal solution 

EXPERIMENT AND DISCUSSION 

Experiment Setup 
A set of 16 well-known benchmark functions is employed 

to evaluate the performance of the proposed algorithm. These 
functions are listed in Table 2, where D represents the function 
dimensionality, the search range specifies the lower and upper 
boundaries of variables that compose a solution, and the 
optimum column gives the actual optimal solutions that have 
already been identified by other mathematic methods. The 
proposed FAS-BA is compared with the Bees Algorithm 
enhanced by neighborhood shrinking and site abandonment 
strategies [8], which is called EBA in the rest of this paper. All 
the algorithms are run 100 times for each function. The optimal 
solution is said to be found successfully when the difference 
between the function values of the best-fit solution found by the 
algorithm and the real optimum is less than 0.0001. Function f6 
has more than one global minimum and locating any one of 
them is considered a successful trial. For each function, the 
algorithms run with the same colony size to make sure they 
require equivalent function evaluations in every iteration cycle. 
Therefore, the algorithm demanding the least iteration cycles to 
locate the optimal solution outperforms the others. The initial 
parameter settings are given in Table 3. The fitness factor λ for 
forager adjustment is set to 1/3, 1/4, 1/5 and 1/6 to test the 
performance respectively. 

 
 

TABLE. 2 BENCHMARK FUNCTIONS USED IN THE 
EXPERIMENT 

No. Name D Search range Optimum 
f1 Easom 2 [-100, 100] f(x*)=-1, x*=(π, π) 
f2 Goldstein&Price 2 [-2, 2] f(x*)=3, x*=(0, -1) 
f3 Griewank 2 [-512, 512] f(x*)=0, x*=(0, 0) 
f4 Schwefel 2 [-500, 500] f(x*)=0,  

x*=(420.9687, 
420.9687) 

f5 Martin&Gaddy 2 [0, 10] f(x*)=0, x*=(5, 5) 

f6 Branin 2 [-5, 15] 

f(x*)=0.397887, 
x*=(- π, 12.275), 
x*=( π, 2.275), 
x*=(3 π, 2.475) 

f7 Rastrigin 2 [-5.12, 5.12] f(x*)=0, x*=(0, 0) 

f8 Ackley 2 [-32.768, 
32.768] f(x*)=0, x*=(0, 0) 

f9 Rosenbrock 2 [-1.2, 1.2] f(x*)=0, x*=(1, 1) 
f10 Schaffer 2 [-100, 100] f(x*)=0, x*=(0, 0) 
f11 DeJong 1st 3 [-5.12, 5.12] f(x*)=0, x*=(0, 0, 0) 
f12 Rastrigin 3 [-5.12, 5.12] f(x*)=0, x*=(0, 0, 0) 
f13 Rosenbrock 3 [-2.048, 2.048] f(x*)=0, x*=(1, 1, 1) 

f14 Schwefel 4 [-500, 500] 
f(x*)=0, 
x*=(420.9687, 
420.9687) 

f15 Ackley 6 [-32.768, 
32.768] f(x*)=0, x*=(0, …, 0) 

f16 Hypersphere 10 [-5.12, 5.12] f(x*)=0, x*=(0, …, 0) 
 

TABLE. 3 PARAMETERS FOR THE ALGORITHMS 
EBA FAS-BA 
n 18 nc  117 
m 10 sp  15.4% 
e 3 bp  55.6% 
nre 19 ep 33.3% 
nrb 6 erb 3:1 
ngh serch rang/2 ngh search rang/2 
stlim 10 stlim 10 

Results and discussions 
Table 4 contrasts the results obtained by the proposed FAS-

BA with EBA (The basic Bees Algorithm is not included in the 
experiment because EBA has shown superiority to the basic 
version in many literatures). The average performance of the 
algorithms on each benchmark function is reported. 

The results reported in boldface stand for the best 
performance (the least iteration cycles) obtained by the 
algorithms. To make the comparison more convincing, 
statistical significance of the difference in iteration cycles 
between FAS-BA and EBA is evaluated through student’s t-test. 
The t-tests are run with a confidence level of 95% (α=0.05). In 
Table 4, a “+” symbolizes that the difference of the average 
iteration cycles between the two versions is statistically 
significant, whereas a “-” means the difference is not 
statistically significant. It is observable that FAS-BA 
outperforms EBA on 14 cases out of 16 in terms of iteration 
cycles consumed. EBA produces better results only on the 
functions f2 and f9. However, the statistical test shows that 
even through EBA requires less iteration cycles to find the 
optima for the function f2, its performance is not significantly 
different from FAS-BA. 

The functions f4, f5, f6 and f11 are relatively simple 
problems. It can be observed that FAS2-BA spends the least 
computation cost on finding the optima. Only on the function f4 
it obtains the result that statistically differs from EBA. As to f5, 
f6 and f11, all the algorithms do not demand too much iteration 
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cycles to locate the minimum, and hence they exhibit similar 
performances. 

The functions f1, f7 and f8 have shown a little more 
complexity as the algorithms require approximately 50 iteration 
cycles to locate a desired solution. The results show that FAS-
BA needs less computation cost on f1 and f7, and this 
improvement is statistically validated by the t-test. Individually, 
12.23 and 4.55 iteration cycles on average are saved by FAS2-
BA, which yields the best performance, while 6.9 and 4.37 less 
iteration cycles are demanded by FAS1-BA. The algorithms 
perform similarly on f8 as indicated by the t-test. 
TABLE. 4 ITERATION CYCLES NEEDED TO OPTIMIZE EACH 

FUNCTION AND T-TEST RESULTS 
No. EBA FAS1-BA FAS2 -BA 

mean of  
itr. cycles 

mean of  
itr. cycles λ t-test mean of  

itr. cycles λ t-test 

f1 51.35 44.45 1/4 + 39.12 1/4 + 
f2 27.13 27.43 1/6 - 27.51 1/5 - 
f3 298.32 240.70 1/4 + 244.08 1/4 + 
f4 40.76 39.76 1/4 - 39.15 1/4 + 
f5 14.03 14.34 1/4 - 14.00 1/3 - 
f6 19.82 19.98 1/3 - 19.28 1/3 - 
f7 44.75 40.38 1/5 + 40.20 1/3 + 
f8 54.75 54.64 1/3 - 55.2 1/3 - 
f9 16.70 18.65 1/6 + 18.36 1/6 + 
f10 244.02 177.04 1/3 + 184.96 1/6 + 
f11 24.51 24.40 1/3 - 24.24 1/3 - 
f12 272.88 193.74 1/5 + 205.66 1/5 + 
f13 595.82 372.06 1/3 + 378.80 1/4 + 
f14 365.52 217.50 1/3 + 244.90 1/3 + 
f15 264.32 211.22 1/4 + 237.82 1/3 + 
f16 156.00 107.24 1/6 + 96.78 1/5 + 

The functions f3, f10, f12 to f16 are complex functions 
whose optima cannot be easily located. Nevertheless, the 
proposed FAS1-BA and FAS2-BA have particularly shown 
their remarkable advantages on these functions over EBA, as 
demonstrated in Figure 1. The bar graph looks at the search 
speeding of the algorithms on the seven complex functions 
from the benchmark function set. Normally the algorithms 
require hundreds of iteration cycles to find the individual 
minimum if they are run with the colony size specified in Table 
3 (using a different colony size would lead to a variation in the 
iteration cycles for finding an optimum). It is observable that 
the algorithm without FAS needs more iteration cycles (higher 
bar) to obtain the optimum, and the algorithms based on two 
FAS procedures do not vary too much. To be more specific in 
the comparison, the data in Table 4 show that 19.3% and 27.4% 
computation costs are saved on f3 and f10 respectively by 
FAS1-BA, while 18.2% and 24.2% are saved by FAS2-BA. The 
FAS1-BA requires the least iteration cycles on f12 to f15, 
reducing 29.0%, 37.6%, 40.5% and 20.1% iterations 
respectively. Correspondingly, the FAS2-BA requires 24.6%, 
36.4%, 33.3% and 10.0% less iteration cycles on them. In 
addition, the FAS2-BA expends the least iterations on finding 
the optima for the function f16, saving 37.9% computations 
compared with EBA, and the FAS1-BA needs 31.3% less than 

this improved version. The improvement brought by both FAS1 
and FAS2 on f3, f10, f12 to f16 has been demonstrated as 
statistically significant. 
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FIGURE.1 COMPARISON OF ITERATION CYCLES 
REQUIRED TO OPTIMIZE COMPLEX FUNCTIONS 

From Table 3 it can be calculated that the colony size of 
EBA is kept constant as 117, and the function evaluation costs 
required in every iteration cycle is 99 (e·nre+(m-e)·nrb). 
The initial colony of FAS-BA is set to the same size with EBA. 
However, the function evaluation costs required in every 
iteration cycle is variable due to the forager regulation of FAS. 
The evaluation cost for each function is recorded in the 
experiment and compared with EBA, as demonstrated in Figure 
2. 
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FIGURE.2 COMPARISON OF FUNCTION EVALUATION 
COSTS REQUIRED TO OPTIMIZE EACH FUNCTIONS 

It can be observed in Figure 2 that FAS-BA demands less 
function evaluation cost for the functions, particularly for the 
function 3, 10, 12, 13, 14, 15 and 16. FAS1 and FAS2 perform 
generally the same in saving function evaluation costs. 
Therefore, the above analyses reveal that the FAS can be 
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considered as a prominent strategy to enhance the performance 
of the Bees Algorithm. It can help reduce the expense on 
computation effectively for solving complex problems, 
meanwhile, the algorithm using it performs generally no worse 
than EBA on simple problems. 

A CASE STUDY 
The realization of multi-user resource service composition 

using the proposed intelligent algorithm in cloud manufacturing 
environment is briefly demonstrated in this section. It is 
presumed that in a situation three customers post their task 
requests at a time. The cloud platform is demanded to allocate 
component services optimally to work out a solution which is 
up to requirements of as more users as possible. Multi-user 
RSC appears to be simply repetitive implementation of single 
user RSC strategies. However, the composite schema should 
actually take into account much more impact factors. The 
schema does not necessarily provide each user with the best 
service chain but strive to satisfy all users. 

Other preconditions of this case study encompass: every 
task requested can be decomposed into 7 subtasks, and there are 
15 candidate services available for completing each subtask. It 
can then be calculated that the size of solution space is 

24777 1013.1131415 ×≈×× . Provided a CPU is able to calculate 
at the speed of 500 million times per second, it will take more 
than 7 million years for traditional method to work out the best 
solution to this NP-hard problem. 

For the algorithm, a matrix solution schema is employed, 
and parameters are empirically set as nc=35, sp=28%, bp=40%, 
ep=25%, erb=2, ngh=0.6, stlim=7, and the fitness factor λ is 
kept to be 1/4 throughout this study. For simplicity, and to save 
space, only success rate is reported as shown in Figure 3. The 
success rate refers to the ratio of users whose requirements 
have been successfully satisfied against users in total. All 
statistics are obtained on a repetitive run of the algorithm for 75 
times. 

Figure 3 shows the advantage of FAS-BA over EBA in 
terms of success rate when users have different requirements. 
Although the success rate declines with users’ task 
requirements becoming tougher, the two algorithms using FAS 
outperform EBA in that they promote the success rate by 11.4% 
on average. And in terms of time consumed to find an optimal 
or near optimal solution, FAS-BA costs statistically 45.2 
seconds to obtain a solution up to the task in a run, that is 15.8 
seconds less than EBA. The two implementations of FAS do 
not demonstrate distinct difference from each other in this case 
study, similar to how they perform in numerical experiments. 
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FIGURE.3 COMPARISON OF SUCCESS RATE IN SOLVING 

RSC PROBLEM 

CONCLUSIONS 
The enhancement of intelligent optimization algorithm’s 

performance underpins the promotion of efficiency in solving 
many problems confronted in cloud manufacturing. The paper 
has presented a novel strategy called FAS, which takes the 
inspiration from the natural behaviors of adaptive labor division 
in honeybee colony, to improve the performance of the Bees 
Algorithm. Based on the proposed strategy, a new variation of 
the Bees Algorithm named FAS-BA is developed. The 
performance of the proposed algorithm is demonstrated on a set 
of well-known optimization benchmark functions and a case 
study. The improvement brought by the proposed FAS is 
highlighted by comparing the experiment results with the Bees 
Algorithm improved by strategies of neighborhood shrinking 
and site abandonment. The FAS is shown to be particularly 
helpful for the algorithm to solve complex problems. To locate 
the optima of those problems, the FAS-BA requires less 
computational cost, indicating a promotion of optimal solution 
search efficiency. The results of t-test have proved the 
promotion is obtained with statistical significance. However, 
the design of the fitness factor λ may not be the most 
appropriate way to achieve adaptive forager division in the 
algorithm. How it affects the performance of the algorithm 
warrants further investigation. Furthermore, the algorithm 
demands parameters to be set empirically, how to make the 
algorithm less reliant on prior knowledge is of great help in 
current developing wave of science and technology. 
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