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Abstract 

Thermal error compensation is considered as an effective and economic method to improve the 
machining accuracy for a machine tool. The performance of thermal error prediction mainly depends on 
the accuracy and robustness of predictive model and the input temperature variables. Selection of 
temperature-sensitive measuring points is the premise of thermal error compensation. In the thermal error 
compensation scheme for heavy-duty computer numerical control (CNC) machine tools, the identification 
of temperature-sensitive points still lacks an effective method due to its complex structure and heat 
generation mechanisms. In this paper, an optimal selection method of temperature-sensitive measuring 
points has been proposed. The optimal measuring points are acquired through three steps. Firstly, the 
degree of temperature sensitivity is defined and used to select the measuring points with high sensitivity to 
thermal error. Then the first selected points are classified with fuzzy clustering and grey correlation grade. 
Finally, the temperature-sensitive measuring points are selected with analysis of location of temperature 
sensors. In order to verify the method above, an experiment is carried out on the CR5116 of flexible 
machining center. A novel temperature sensor, Fibre Bragg Grating (FBG) sensor, is used to collect the 
surface temperature of the machine. A thermal error compensation model is developed to analyze the 
prediction accuracy based on four sequences of measuring points, which are generated by different 
selection approaches. The results show the number of the measuring points is reduced from 27 to 5 through 
the proposed selection method and the thermal error compensation model based on the optimum 
temperature-sensitive measuring points has the best performance of prediction effect robustness. 
 
Keywords Temperature-sensitive measuring points, FBG sensors, Heavy-duty machine tools, Thermal 
errors 
 

1. Introduction 

Thermally induced errors and geometric errors are the two main contributors to the inaccuracies on 
machined workpieces [1]. However, according to the statistics, the thermal errors, caused by internal and 
external heat sources accounts for as much as 70% of the total workpiece errors in machining [2]. 



Compared with the geometric error [3], the thermal errors caused by the thermal deformation of the 
machine structure are time dependent and dynamic. There are many strategies to reduce the thermal errors, 
such as designing a thermo-symmetric machine with cooling systems, using low expansion materials, 
controlling the humidity and temperature of the workshop and adopting thermal errors compensation [4]. 
Due to the complex heat generation mechanisms and various internal and external heat sources, the 
thermal errors can’t be eliminated completely in the design stage and the software compensation method is 
considered as the most economic and effective way to reduce the thermal error [5]. 

In general, the research on thermal error compensation includes two parts: the thermal errors 
compensation modeling [1, 2, 6] and the real-time compensation devices [7]. The compensation models are 
used to predict the thermal error through accurately mapping the empirical relationship between 
temperature values and thermal errors of the machine tools. However, the temperature measurement and 
the selection of temperature-sensitive measuring points are the premise of the thermal error compensation 
models. 

In recent years, many researches have been done on the selection methods of thermal key measuring 
points. These methods can be categorized into two types according to their characteristics: mechanism 
analysis and statistics analysis. Mechanism analysis methods concentrate on the generation mechanism of 
thermal error on machine tools, such temperature field calculation and displacement field analysis. Finite 
element method (FEM) [8] and finite difference method (FDM) [9] are two main mechanism analysis 
methods, which are used to analyze the temperature distribution and the deformation at particular points. In 
the field of statistics analysis, various models and algorithms, such as correlation theory [10, 11], grey 
correlation theory [12, 13], neural network [14–16], fuzzy clustering [17–20], partial correlation analysis 
[21] and stepwise multiple regression analysis [22] etc, have been proposed to identify the key temperature 
measuring points. Liang [23] presented a method using correlation coefficient and multiple linear 
regressions to identify the key measuring points of a horizontal machine center. Li [12] used the grey 
system theory to select the optimal measuring points and verify the performance of this method. Miao [24] 
combined the fuzzy clustering and grey correlation theory to identify the temperature-sensitive points, and 
then established the compensation models based on the temperature sequences of these points. Yang [25] 
proposed a grouping method of temperature variables. They were divided into groups based on the 
correlation coefficient, and then the key points were determined by permutation and combination of 
temperature variables of each group. Miao [26] used a comprehensive analysis method to identify the 
temperature-sensitive points, which was a combination of grey correlation, stepwise regression and fuzzy 
clustering. 

The methods discussed above both have advantages and disadvantages in temperature-sensitive points 
selection. Due to the complex process of heat transfer and difficulties in determining the boundary 
condition, the performance of mechanism analysis methods is not good. In statistics analysis areas, 
correlation coefficient and grey system theory only consider the correlation between the temperature 
variables and thermal errors, which ignore the coupling problems among temperature variables. Fuzzy 
clustering theory is used to classify the temperature variables. However, the random selection of threshold 
makes various results in classification. In order to reduce the coupling and grouping problem, this paper 
proposes a new method combining the mechanism analysis and statistics analysis to select the optimal 
temperature measuring points. 

Section 2 introduces temperature measurement method and chooses initial measurement points. 
Section 3 proposes a method for selecting temperature-sensitive measuring points. Section 4 describes the 
experimental set-up and evaluates the performance of thermal error compensation based on the selected 



points. 
 

2. Measurement of surface temperature and thermal error on heavy-duty CNC machine 
tool 

This study was carried out on a CR5116 flexible machining center (FMC). Due to the complex heat 
generation mechanisms of the machine tools, it’s difficult to determine the measuring positions of the 
machine tools and the numbers of the temperature sensors. The FMC heat sources, causing the thermal 
errors, are always come from two main aspects, internal and external sources. The internal sources main 
include the heat generated by spindle motor, spindle bearing, ball screw system and cool system etc. The 
external ones are from sunlight, heater and personal radiations. All these heat sources will effect the 
temperature field distribution and cause the heat deformation and relative displacement of components on 
the machine tool. In order to monitor the thermal behavior of the FMC, twenty-seven measuring points 
were selected according to the main heat sources, such as headstock, drive motor, ball screw and 
environmental temperature. In this paper, FBG sensors [27, 28] were used to collect the surface 
temperature data of FMC. Compared with PT100 platinum resistance sensors, FBG sensors have the 
advantages in temperature measurement on the heavy-duty machine tools, such as easy deployment, 
anti-electromagnetic and small size. In this experiment, FBG sensors were attached on the surface of the 
FMC. Fig.1 shows the details of the temperature measuring points and locations of FBG sensors. The FBG 
sensors can be divided into 5 groups according to their locations, as shown in table1.  

The other parameters to be collected are the thermal errors of the spindle in the X, Y, Z directions. 
Three CCD Laser Displacement Sensors were used to measure the thermal drifts of the spindle in the three 
directions.  
 

 
Fig.1 The deployment of FBG sensors 

 
Table1. Classification of FBG sensors 

Position FBG Sensors No. Total  

Bed T1,T2,T3,T4,T5,T6,T7,T8,T9,T10 10 

Column T13,T14,T15,T16,T17 5 

Headstock T19,T20,T21,T22,T23 5 



Tool rest T25,T26,T27 3 

Environment T11,T12,T18,T24 4 

3. Temperature-sensitive measuring points selection 

In this section, we introduce the method for temperature-sensitive measuring point selection, which is 
based on correlation analysis, correlation analysis, temperature sensitivity analysis and fuzzy clustering.  

As shown in Fig.2, the processes of optimal selection for temperature measuring points can be divided 
into three parts. In the first selection, the temperature variables will be sorted according to the degree of 
thermal error sensitivity and generated a new sequence. The measuring points in the first half of the 
sequence are chosen for further analysis. In the second selection, the grey relation grades between the first 
selected measuring points and thermal errors are calculated and then these measuring points will be 
classified into different groups using fuzzy clustering. The second selected sequence of measuring points 
will be got by choosing the point with maximum grey relation grade in each group. In the third selection, 
the second selected sequence will be analyzed by combining with the location of sensors. Through the 
three steps, the temperature-sensitive measuring points are identified. The definitions and algorithms used 
in the three selections are described as below. 

 
Fig2. The processes of temperature-sensitive measuring points selection 

 
3.1 Definition of thermal error sensitivity 

In order to facilitate the analysis and description, the thermal error and temperature data sets can be 

represented as { ( ) | 1, 2, , }y y k k m= = …  and { ( ) | 1, 2, , ; 1, 2, , }i ix x k k m i n= = =… …  separately, 

in which n means the number of temperature measuring points and k is the sample size.  
The thermal error sensitivity represents the impact degree of temperature changes on thermal errors. 

The coefficient of thermal error sensitivity defined as  
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The value of iG  is bigger, the more sensitive the temperature measuring point is. 

3.2 Grey correlation analysis 
Grey system theory presented by Deng [29], aims to evaluate the relationship of a series of data 

through analyzing the geometric similarity of the data curves. The grey correlation grade indicates the 
close degree between two series, which is calculated by grey correlation coefficient. In this study, we 

assume the original sequence and the sequence for comparison as  { ( ) | 1, 2, , }y y k k m= = …  and 

{ ( ) | 1, 2, , ; 1, 2, , }i ix x k k m i n= = =… …  separately. In grey system theory, the grey correlation 

coefficient is defined as  
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ρ  is the distinguishing coefficient and it is taken as 0.5 in general. 0 ( )i k∆ is defined as 
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3.3 Fuzzy clustering analysis 
Fuzzy clustering is used to establish the fuzzy relationship among temperature variables. The 

temperature variables will be classified based on a specific threshold. As shown in Fig.3, there are 5 main 
steps in fuzzy clustering analysis, which are normalization, correlation coefficient calculation, 
establishment of fuzzy similarity matrix, threshold determining and variables classification.  



 
Fig3.fuzzy clustering processes 

1. Data normalization aims to increase the cohesion of entity types and reduce the data redundancy. We use 
variable C as a normalized value of X, which is calculated as: 
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2. Fuzzy similarity matrix is defined as ( )i j n nR r ×=  , constructed by the relation coefficient i jr . The i jr   

describes the linear relationship between ic  and jc  and is calculated as: 
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( )ic k  and ( )jc k  mean the average value of sequence ( )ic k  and ( )jc k . 

3. As the fuzzy similarity matrix ( )i j n nR r ×=  is not transitive, a fuzzy equivalence matrix should be 

created for variables classification. We assume ( )t R  as the fuzzy equivalence of R . If there exists an 

integer l , which satisfies 2 2 1l lR R += , then the fuzzy equivalence matrix can be defined 2( ) lt R R= . 

4. Threshold determining is the last step before classification. The value of the threshold λ  directly 
determines the result of variables classification. So the temperature variables will be classified into 
different groups with different thresholds. In this research, λ  is determined by the number of temperature 
variables. For example, if the amount of temperature variables is n, the threshold λ  will be chosen, when 
the number of classified groups is around n/2.   

4. Example verification 

4.1 Experiment setup 
An experiment was designed to identify the temperature-sensitive measuring points on a flexible 

manufacturing center CR5116. Based on the temperature data collected from the measuring points, thermal 
errors compensation model was developed to analyze the feasibility and performance of the method for 
key measuring points selection.  



Fig.4 shows the temperature and thermal errors collection based on FGB sensors and CCD laser 
displacement sensors. There were 27 FBG sensors deployed on the surface of FMC, as shown in Fig.1. 
Three CCD sensors were used to measure the thermal errors of X, Y and Z direction of spindle.  

The experiment lasted for three days with air cutting, which means the FMC run without 
implementing real cutting process and the measuring system collected data per minute, including 
temperature values and the spindle thermal errors. The collected data were divided into three groups 
according to the date: data01, data02, data03. The first group was used to select the temperature-sensitive 
measuring points. The second and the third ones were used to verify the effectiveness and robustness of the 
thermal error compensation model based on the selected points. Fig. 5 shows the thermal errors of X, Y, Z 
directions of spindle. It’s obvious that the biggest change of the thermal error happened in Y directions. So 
the thermal error in Y direction was only considered in the experiment. 

 

 

Fig.4 Temperature and thermal errors collection system 
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Fig. 5 Comparison of thermal errors in XYZ directions 

4.2 Temperature-sensitive measuring points selection 
As discussed in senction3, an integrated method can be used to select the temperature-sensitive points. 

In this paper, data01 was considered as the original data set for identification of the measuring points. 
Based on the processes in Fig.2, the simulation results of each step were obtained using Matlab, which 
were listed as below: 
1. According to the Eq. (2), the degrees of thermal error sensitivity for the 27 measuring points were 
calculated. Table 2 shows the results of each measuring point. 

Table2. The degree of thermal error sensitivity 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

0.0123 0.0125 0.0105 0.0049 0.0114 0.0133 0.0170 0.0130 0.0142 0.0073 

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 

0.0115 0.0124 0.0069 0.0130 0.0128 0.0086 0.0136 0.0089 0.0105 0.0072 

T21 T22 T23 T24 T25 T26 T27    

0.0116 0.0132 0.0103 0.0157 0.0082 0.0108 0.0110 
   

The first selection of temperature-sensitive measuring points was made based on the degrees of 
thermal error sensitivity. Firstly, the temperature measuring points were sorted by the values shown in 
table2. Then, the top 14 points were selected for further analysis. So T1, T2, T6, T7, T8, T9, T11, T12, T14, 
T15, T18, T22, T23 and T25, were selected and others were abandoned. 
2.  The 14 primary points were classified into different groups with fuzzy clustering algorithms. The first 
step was the calculation of fuzzy equivalence matrix t(R). According to the Eq. (6), t(R) was calculated and 
shown as Fig. 6. The second one was threshold (λ ) selection, which was determined by the number of 
primary points and the classification of measuring points. The goal of this step was to reduce by around 



half the amount of primary variables. As the number of primary points was 14, the temperature variables 
could be divided into 6, 7 and 8 groups with different thresholds. The third step was calculation of grey 
correlation grades between temperature variables and thermal errors. The results were sorted and shown as 
table 3. The final step was selecting temperature variables in each classification. The point with max value 
of grey correlation grade was selected in each group. Three temperature variables sequences were got, 
which were r1=[ T2 T6 T12 T14 T23 T25], r2=[ T2 T6 T7 T12 T14 T23 T25 ], and r3=[ T2 T6 T7 T12 T14 
T23 T25 ], as shown in Table 4. 
 

Table3. The grey correlation grades between temperature variables and thermal errors 
T12 T8 T10 T11 T18 T9 T23 T15 T17 
0.8372 0.8314 0.8273 0.8144 0.8143 0.8098 0.8041 0.7976 0.7926 
T24 T7 T14 T13 T19 T1 T21 T22 T3 
0.7676 0.7674 0.7514 0.7421 0.7394 0.7394 0.7194 0.7152 0.7129 
T16 T25 T20 T26 T27 T6 T2 T4 T5 
0.7111 0.7073 0.6978 0.6959 0.6849 0.6825 0.6771 0.6556 0.6552 

 
Table 4 Classifications of measuring points with different thresholds 

Threshold  Classification Second Selection of 
temperature variables i.  ii.  iii.  iv.  v.  vi.  vii.  viii.  

λ=0.8996 T1 T7 T8 T9 
T11 T12 T15 

T18, T22 

T2  
 

T6 
 

T14 
 
 

T23 
 
 

T25 
 

  T2 T6 T12 T14 
T23 T25 

λ=0.9017 T1 T8 T9 T11 
T12 T15 T18 

T22 

T2  
 

T6 
 

T7 
 
 

T14 
 
 

T23 
 
 

T25 
 

 
 
 

T2 T6 T7  
T12 T14 T23 T25 

λ=0.9095 T1 T8 T9 T11 
T12 T15 T18 

T2  
 

T6 
 

T7 
 
 

T14 
 
 

T22 
 
 

T23 
 
 

T25 
 

T2 T6 T7 T12 
T14 T22 T23 T25 

 
 

 

Fig. 6 The fuzzy equivalence matrix 
 

3. The third selection was based on the positions of FBG sensors. As shown in table1, the temperature 
measuring points was divided into 5 groups. Only one measuring point was choosed in each group. In 



order to eliminate coupling among temperature variables, the one with maximum value of grey correlation 
grade was selected. Based on r1, r2, r3, the new sequences of measuring points were got, which were 
e1=[T6 T12 T14 T23 T25] and e2=e3=[T7 T12 T14 T23 T25]. According to table3, the grey correlation 
grade of T7 was larger than T6, so we choosed e2 or e3 as the optimal measuring points.  
 
4.3 Models of thermal error compensation   

In order to evaluate the performance of the method for measuring points selection, a thermal error 
prediction model was designed based on the Multi linear regression (MLR). In the experiment, MLR, as a 
statistical technique, was used to predict thermal error through several temperature variables. Data01 was 
used to establish the thermal error prediction model. T7, T12, T14, T23 and T25 were selected to establish 

regress equation. We assumed 7x , 12x , 14x , 23x  and 25x as the temperature variables of the selected 

points. The prediction model was calculated as below：  

7 12 14 23 25y=6.5263 +5.1961 +0.1227 +4.5709 -4.9635 +14.1779x x x x x                       (9) 

Data02 and Data03 were used to analyze the prediction accuracy. The fitting accuracy for data0201 
was shown as Fig.7 and the predictive effects of the two batches were shown as Fig. 8.  

In order to compare the performance of the compensation model with different temperature variables, 
four measuring points sequences (G1, G2, G3 and G4) were chosen based on different selection methods.  
As shown in table1, the measuring points were divided into 5 groups according to their location. G2 
consisted of the measuring points with maximum degree of temperature sensitivity in each group. G3 
selected the measuring points with maximum grey correlation grade with thermal errors in each group. G4 
concluded the measuring points, selected randomly in each group. The details of the sequences were 
shown in table 5 and the predictive performance based on each sequences of measuring points was shown 
in table 6.  
 

Table 5. Measuring points sequences based on different selection models 
Group No. Selected measuring points Selection method 
G1 T7 T12 T14 T23 T25 Shown in section 4 
G2 T7 T14 T18 T23 T25 Selecting measuring points with maximum 

thermal sensitive grad in each location area 
G3 T8 T12 T15 T19 T23 Selecting measuring points with maximum 

Grey correlation grade in each location area 
G4 T6 T15 T18 T22 T26 Selecting measuring points randomly in each 

location area 
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Fig.7 The fitting accuracy of Data0201 

 
Fig.8 Analysis of predictive effects 

From the table6, we can see that the mean error of G1, G2 and G3 was much smaller than that of G4. 
The max error of G4 is bigger than the original max error, which means G4 can’t be used to predictive the 
thermal error. Through comparison of the four groups in terms of mean error, standard error and max error, 
G1 had the best performance of thermal error prediction and the predictive thermal error was reduced by 
79.42%.  

Table 6 Predictive effect comparison among four measuring points sequences 
  Data0202 
Group No.  Mean error Std. error Max error 
 Original value 11.1940 2.4323 16.1076 
G1 Residual error 1.6003 1.9288 5.2796 
G2 Residual error 1.4309 1.7552 5.0765 
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G3 Residual error 2.0735 2.0018 6.3235 
G4 Residual error 4.4308 2.4857 11.4625 

 
  Data0203 
Group No.  Mean error Std. error Max error 
 Original value 5.8659 6.1626 10.0394 
G1 Residual error 1.2073 1.9288 4.2989 
G2 Residual error 1.9640 1.5568 5.3708 
G3 Residual error 1.3859 1.3793 4.7506 
G4 Residual error 8.8911 3.5468 15.0949 

 

5. Conclusion 

In this paper, FBG sensors have been used to collect the surface temperature of a heavy-duty machine 
tool. A new method of temperature-sensitive measuring points selection consists of three steps. The first 
step defines the degree of temperature sensitivity and the primary measuring points are got according to 
the degree of temperature sensitivity. The second step combines gray theory with fuzzy clustering. In this 
step, the first selected measuring points are classified with fuzzy clustering. The second-selected 
measuring points are chosen with comparison of grey grade for each temperature variable. Finally, the last 
step aims to select the optimal temperature measuring points by considering the locations of FBG sensors. 

An experiment was carried out on a flexible machining center CR5116 to verify the method. By using 
the three selections, the temperature-sensitive points were identified. The number of measuring points was 
reduced from 27 to 5. Based on these measuring points, a thermal error prediction model was built to 
analyze the performance of the method for temperature-sensitive points selection. The experiment result 
based on data0202 shows that the average predictive residual error was reduced to 1.6um and the 
maximum predictive residual thermal error was less than 5.3um. In order to further demonstrate the 
effectiveness of the point selection method, three other methods were used to create three different 
measuring points sequences. Then a comparison was made among four thermal prediction models using 
data02 and data03, which were based on four measuring points sequences. The result shown that the 
prediction model with the temperature-sensitive points, selected by the method proposed in this paper, had 
the best performance of predictive accuracy. 
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