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Abstract 25 

The precise role of age-related muscle anabolic resistance in the progression of sarcopenia 26 

and functional decline in older individuals is unclear. The present aim was to assess whether 27 

the muscle protein synthesis (MPS) response to acute exercise (endurance or resistance) 28 

and/or amino acid-based nutrition is attenuated in older compared with young individuals. A 29 

systematic review was conducted on studies that directly examined the influence of age on the 30 

MPS response to exercise and/or amino acid-based nutrition. Each study arm was synthesised 31 

and reported as providing sufficient or insufficient ‘evidence of age-related muscle anabolic 32 

resistance’. Subsequently, three models were established to compare age-related differences 33 

in the MPS response to: i) exercise alone; ii) amino acid-based nutrition alone; or iii) the 34 

combination of exercise and amino acid-based nutrition. Following exercise alone, 8 of the 17 35 

study arms provided sufficient ‘evidence of age-related muscle anabolic resistance’ whilst in 36 

response to amino acid-based nutrition alone, 8 of the 21 study arms provided sufficient 37 

‘evidence of age-related muscle anabolic resistance’. When exercise and amino acid-based 38 

nutrition were combined, only 2 of the 10 study arms provided sufficient ‘evidence of age-39 

related muscle anabolic resistance’. Our results highlight that optimisation of exercise and 40 

amino acid-based nutrition is sufficient to induce a comparable MPS response between young 41 

and older individuals. However, the exercise volume completed and/or the amino acid/protein 42 

dose and leucine content must exceed a certain threshold to stimulate equivalent MPS rates in 43 

young and older adults, below which age-related muscle anabolic resistance may become 44 

apparent.  45 

 46 

Keywords: Skeletal muscle, anabolic resistance, sarcopenia, resistance exercise 47 

 48 
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Introduction 49 

It is well documented that we are in the midst of a global shift towards an expanding aging 50 

demographic. Recent estimates predict that the number of people aged 60 years and over is 51 

expected to more than double from 901 million in 2015 to over 2 billion in 2050, whilst the 52 

number of people aged 80 years and over (the ‘oldest old’) is expected to more than triple 53 

(100). Advancing age is closely associated with a number of debilitating health consequences, 54 

including the loss of skeletal muscle mass and strength (termed sarcopenia), which is strongly 55 

associated with an increased incidence of falls (63), loss of independence (9), increased risk 56 

of age-related co-morbidities (4, 32) and, in severe cases, premature mortality (16, 88). As 57 

such, sarcopenia and associated comorbidities place a considerable burden on healthcare 58 

resources (51). Therefore, clear understanding of the metabolic and molecular mechanisms 59 

that underpin sarcopenia is of paramount importance in order to develop targeted therapeutic 60 

strategies to prevent and/or treat this age-related phenomenon.  61 

 62 

The underlying pathology of sarcopenia is highly complex and remains to be fully elucidated. 63 

Sarcopenia may result from factors including inactivity/disuse, inadequate dietary protein 64 

intake, chronic low-grade inflammation and hormonal dysregulation, summarized succinctly 65 

by others (73). Regardless of the precise contribution of each of these factors, sarcopenia is 66 

due to muscle protein loss resulting from an imbalance between muscle protein synthesis 67 

(MPS) and breakdown (MPB), which manifests primarily as a reduction in type II muscle 68 

fibre size (34, 74, 79, 102). In young healthy individuals, mechanical loading (i.e. exercise 69 

contraction) in the fasted, post-absorptive state increases MPS and, to a lesser extent MPB, 70 

resulting in an improved, yet negative net protein balance (NBAL) (10, 80). In contrast, 71 

amino acid-based nutrition serves primarily to increase MPS, with the impact on MPB less 72 
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clear due to the methodological difficulties encountered when assessing MPB under non-73 

steady state conditions. In general, most studies appear to demonstrate a small suppression of 74 

MPB in response to amino acid-based nutrition, which in conjunction with the postprandial 75 

rise in MPS results in a positive NBAL in both young and older individuals (43, 71, 103, 76 

105). Combined, mechanical loading and amino acid-based nutrition act synergistically to 77 

enhance MPS and supress MPB and thus promote net muscle protein accretion (22, 42, 71, 78 

78). Most (27, 35, 64, 76, 105), but not all (7, 48, 117) studies to date have observed no 79 

evidence of age-related differences in postabsorptive, basal rates of MPS. Likewise, although 80 

methodologically challenging to measure, rates of MPB are comparable between healthy 81 

younger and older individuals in the postabsorptive, basal state and following resistance 82 

exercise (38, 110). Evidence of an age-related impairment in the suppression of MPB under 83 

hyperaminoacidemic and/or hyperinsulemic conditions has been limited and relatively 84 

inconsistent to date (81, 104, 110). The absence of age-related differences in postabsorptive, 85 

basal state rates of MPS and MPB, coupled with inconsistent findings on age-related 86 

differences in postprandial rates of MPB, has led to the hypothesis that dysregulation of the 87 

MPS response to normally robust anabolic stimuli (i.e. exercise and/or amino acid-based 88 

nutrition), termed ‘anabolic resistance’ (83), may underpin the progression of sarcopenia.  89 

 90 

Age-related muscle anabolic resistance may be related to diminished mRNA translational 91 

signalling (27, 37, 46, 62), impaired transport of amino acids into muscle (30, 31), lipid-92 

induced muscle insulin resistance (89), attenuated protein digestion and absorption (13) and 93 

dysregulation of  nutritive blood flow to skeletal muscle (39, 66, 81). However, these defects 94 

may be a consequence of declining habitual activity levels (15), protracted disuse events (41, 95 

107), obesity (72) and chronic inflammation (6, 97) superimposed on the natural biological 96 
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ageing process. Interestingly, whilst some studies support the development of age-related 97 

muscle anabolic resistance (27, 46, 53), other studies have failed to observe any difference in 98 

the MPS response to anabolic stimuli between young and older adults (59, 76, 90). This lack 99 

of agreement between studies on whether or not differences in MPS exist between young and 100 

older individuals may be due to differences in the experimental methodology used to assess 101 

MPS (18). For example, i) the time frame of MPS assessment, ii) analysis of specific muscle 102 

protein sub-fractions and iii) volume of exercise and dose/source of amino acid-based 103 

nutrition can profoundly influence the observed MPS response in young and older adults. 104 

Furthermore, participant habitual physical activity levels and metabolic health status may also 105 

explain the incongruous findings of previous studies (15, 17). With this in mind, it is 106 

imperative that we explore the possible cause of discrepancies between studies and delineate 107 

whether age-related differences in MPS between young and older individuals do exist. This 108 

approach will allow us to identify whether (or not) strategies to restore muscle anabolic 109 

sensitivity in older individuals have the capacity to prevent or slow sarcopenic progression.   110 

 111 

Accordingly, the primary aim of this qualitative systematic review was to explore whether the 112 

MPS response to exercise (endurance and/or resistance) and/or amino acid/protein 113 

administration is attenuated in older compared with young individuals. Given the suggestion 114 

that aspects of experimental design and methodology may influence the observed MPS 115 

response between young and older individuals (17, 18), a secondary aim of this analysis was 116 

to contrast experimental parameters between the included studies to delineate whether 117 

design/methodological variables may account for any incongruence observed.  118 

 119 

Methods 120 
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Search Strategy  121 

A systematic literature search of the Ovid MEDLINE (1946 to May 2016) and EMBASE 122 

(1974 to 23rd May 2016) databases was performed with the final literature search completed 123 

on 23rd May 2016. These databases were chosen due to the extensive cover of journal articles 124 

in the area of health and clinical sciences. Search terms used were: protein synth*, muscle 125 

protein synth*, MPS, fractional synth*, FSR, myofibrillar, muscle protein accru*, protein 126 

balance, phenylalanine, exercise*, contraction*, resistance exercise*, amino acid*, EAA*, 127 

essential amino*, dietary protein, protein-rich, beef, leucine, young*, old* and elder*. The 128 

medical subject headings (MeSH) “muscle proteins” and “humans" were also utilised. 129 

Boolean operators “and” and “or” were used to combine search terms. Additional studies 130 

were identified through the reference lists of articles (e.g. reviews) from relevant fields of 131 

study. 132 

 133 

Eligibility Criteria 134 

Types of Studies: Randomised controlled trials, non-randomised clinical trials or comparative 135 

studies that directly compared young and older participants within the same study were 136 

eligible for inclusion. Non-randomised studies were eligible as the majority of studies that 137 

explore age-related differences in MPS in response to an anabolic stimulus intentionally 138 

group subjects based on their age (i.e. young vs. older) and thus randomisation is not always 139 

possible. Studies were restricted to those written in the English language and no publication 140 

date restrictions were applied.  141 

Types of Participants: Healthy young and older humans, both male and female, were 142 

included. The mean age of the young group was required to be in the range of 18 and 35 yrs 143 

of age (inclusive). The mean age of the older group was required to be ≥55 yrs of age. These 144 
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criteria were chosen as age-related sarcopenia tends to manifest in the 4-5th decade in humans 145 

(23, 50), and thus we reasoned that an age range of 18-35 yrs would provide a fair reflection 146 

of younger individuals that had not yet reached the threshold for development of sarcopenia. 147 

Similarly, we posited that ≥55 yrs of age for older individuals would ensure that the threshold 148 

for development of age-related sarcopenia had been reached. Accordingly, any studies that 149 

utilised young or older groups with a mean age between 36 and 54 yrs (inclusive) were 150 

excluded. To ensure that we addressed the influence of age on the MPS response to anabolic 151 

stimuli per se, participants with any form of diabetes or chronic disease condition 152 

characterised by rapid inflammation-induced muscle atrophy (e.g. chronic obstructive 153 

pulmonary disease, cancer cachexia, arthritis or congestive heart failure), were excluded, as 154 

such conditions are known to dramatically alter postabsorptive and postprandial muscle 155 

protein turnover beyond that expected in healthy, non-diseased populations (25). 156 

Types of Interventions: This systematic review was limited to studies utilising a single, acute 157 

bout of resistance exercise (e.g. free-weight, guided range-of-motion machines, dynamometry 158 

or body weight exercises) and/or endurance exercise (e.g. walking, cycling or running) and/or 159 

amino acid/protein administration. Amino acids/protein could be provided either orally (e.g. 160 

supplemental protein beverages or protein-rich solid foods) or intravenously (e.g. 161 

hyperaminoacidemic clamp). Studies in which additional macronutrients (i.e. carbohydrates 162 

and fats) were provided in addition to amino acid/protein provision were deemed eligible for 163 

inclusion as co-ingestion of carbohydrate and/or fat does not appear to significantly modulate 164 

the postprandial MPS response to protein ingestion (44, 45, 60). Interventions that co-165 

administered pharmaceutical drugs that were not designed to incur hyper and/or hypo 166 

aminoacidemia, insulinemia, or glycemia were excluded, as these drugs could confound some 167 

of the age-related differences in the MPS response to anabolic stimuli between young and 168 
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older individuals. Interventions that assessed acute MPS rates following a chronic resistance 169 

training programme were also excluded as this could abrogate potential age-related 170 

differences in MPS (48).  171 

Types of Outcome Measures: The primary outcome measure from eligible studies was a 172 

qualitative appraisal of muscle anabolic resistance, i.e. sufficient evidence of age-related 173 

differences in MPS rates, or insufficient evidence of age-related differences in MPS rates in 174 

response to a given anabolic stimulus. Assessment of MPS was required to be completed 175 

within 24 h of the given stimulus, as it has previously been demonstrated that the increase in 176 

MPS rates is most pronounced in the immediate hours following an anabolic stimulus, 177 

gradually subsiding by 24 h post-stimulus in young individuals (19, 80). All studies included 178 

were required to assess MPS via calculation of the muscle fractional synthetic rate (FSR) 179 

using the precursor-product model. The precursor-product model measures the rate at which 180 

the tracer is incorporated into bound muscle protein between sequential muscle biopsies over 181 

a specified period of time, and is considered the gold-standard for assessing in vivo MPS in 182 

humans (14, 54, 114). Furthermore, this approach allows the assessment of MPS within 183 

specific protein sub-fractions (i.e. myofibrillar, mitochondrial and sarcoplasmic). Therefore, 184 

any studies that used the 2-pool or 3-pool arteriovenous balance method (indirect estimate of 185 

MPS) were excluded. Included studies were required to assess at least one of the following: 186 

mixed-muscle, myofibrillar or myosin heavy chain muscle protein synthesis, as these protein 187 

sub-fractions comprise the contractile apparatus of skeletal muscle. 188 

 189 

Data Collection and Analysis 190 

Selection of Studies: Eligibility appraisal of the titles and abstracts generated by the literature 191 

search was conducted independently by two reviewers (BJ Shad and JL Thompson). All titles 192 
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and abstracts deemed ineligible were excluded, whilst those determined to be potentially 193 

eligible for inclusion in the systematic review were reserved and the full-text articles 194 

obtained. Full-text articles were subsequently screened by the two independent reviewers (BJ 195 

Shad and L Breen) for relevance using the eligibility criteria described above. Any 196 

disagreements between the two reviewers were resolved by consensus.  All records generated 197 

by the literature search of Ovid MEDLINE and EMBASE databases were managed using the 198 

reference management software package EndNote (Thomson Reuters, version X7). Duplicate 199 

records were removed using the ‘find duplicates’ function in Endnote.     200 

Data Extraction and Management: Two reviewers (BJ Shad and L Breen) independently 201 

extracted all data (i.e. study characteristics and outcome data) from all included studies using 202 

a customised data extraction form. Any disagreements were resolved by consensus between 203 

the two reviewers. Data were extracted on a study arm level. This ensured that all relevant 204 

data were extracted in circumstances where multiple interventions were utilised within the 205 

same study (e.g. provision of different essential amino acid (EAA) doses). Categories of data 206 

extracted included: a) participant characteristics (e.g. age, number, gender and body mass), b) 207 

type of intervention (e.g. exercise mode, exercise intensity and amino acid dose), c) details of 208 

the method of MPS assessment (e.g. measurement period, muscle sub-fraction used and 209 

precursor pool used) and d) data outcome details (i.e. qualitative appraisal of age-related 210 

differences in the MPS response and whether the data provided sufficient ‘evidence of age-211 

related muscle anabolic resistance’ or not (see ‘Method of Data Synthesis’ section below).  212 

Method of Data Synthesis: We chose to qualitatively synthesise the data from the included 213 

studies as the heterogeneous experimental methodology employed when assessing MPS (e.g. 214 

amino acid stable isotope tracer, muscle protein sub-fraction, duration of tracer incorporation, 215 

and precursor pool) can result in varying rates of MPS between studies (86), meaning 216 



 
10 

quantitative analysis across studies was not feasible. As part of the data extraction process, 217 

both reviewers were required to qualitatively synthesise the data of each study by 218 

independently determining whether there was sufficient ‘evidence of age-related muscle 219 

anabolic resistance’ or not. If it was deemed that the results of a study provided sufficient 220 

‘evidence of age-related muscle anabolic resistance’, the study was given a ‘Yes’ whereas if it 221 

was deemed that the results of a study did not provide sufficient ‘evidence of age-related 222 

muscle anabolic resistance’, the study was given a ‘No’. Examples of sufficient ‘evidence of 223 

age-related muscle anabolic resistance’ included data demonstrating; i) a significantly (P < 224 

0.05) greater MPS response in young compared with older participants in response to an 225 

anabolic stimulus, or ii) that only young participants experienced a significant (P < 0.05) 226 

increase in MPS in response to anabolic stimuli. In the event that a study assessed MPS at 227 

multiple time points, but only reported age-related differences in MPS at some, but not all of 228 

these time points, data were extracted from the reported time points only. Similarly, in the 229 

event that a study assessed the MPS response to multiple exercise stimuli (e.g. a range of 230 

exercise intensities) and/or nutritional interventions (e.g. varying amino acid doses) but only 231 

reported age-related differences in MPS for some of these interventions, data were extracted 232 

from the reported interventions only. Upon completion of data extraction, using a similar 233 

analysis approach to Trommelen and colleagues (99), several different models were 234 

constructed to compare age-related differences in MPS in response to different anabolic 235 

stimuli. In Model 1, study arms that utilised exercise as the only form of anabolic stimulus 236 

were included to examine age-related differences in the MPS response to an isolated 237 

contractile bout. In Model 2, study arms that utilised amino acid/protein 238 

administration/feeding as the only form of anabolic stimuli were included to examine age-239 

related differences in the MPS response to a nutrient stimulus. Finally, Model 3 included 240 
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study arms that utilised exercise alongside amino acid/protein administration/feeding to 241 

examine age-related differences in the MPS response to the combined anabolic stimulus of 242 

contraction and amino acid-based nutrition.  243 

 244 

Results 245 

Literature Search  246 

The literature search produced 154 records potentially eligible for inclusion. A further 5 247 

records were identified through a hand search of reference lists of reviews in the field of 248 

study, resulting in a total of 159 records. Following the removal of duplicate records, 103 249 

records remained. From the remaining records, titles and abstracts were independently 250 

screened by two reviewers (BJ Shad and JL Thompson) to assess eligibility. The screening 251 

process resulted in 71 studies being excluded, leaving 32 full-text articles to be assessed for 252 

eligibility by two reviewers (BJ Shad and L Breen) independently. Of these 32 full-text 253 

articles, 8 were excluded for reasons including; use of the 3-pool arteriovenous balance 254 

method to estimate age-related differences in MPS (52), assessment of MPS in the 255 

postabsorptive state only (109) and mean age of the young participants falling outside the 256 

inclusion range (87). Accordingly, a total of 24 studies met the eligibility criteria and thus 257 

were included in the systematic review for qualitative analysis. Figure 1 depicts a flow 258 

diagram of the study identification process. 259 

 260 

Included Studies 261 

Across the 24 studies included, there was a large amount of heterogeneity pertaining to the 262 

participant characteristics, the anabolic stimuli utilised (e.g. different exercise regimens and/or 263 

route, source and dose of amino acid/protein provision) and the experimental methodology 264 
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used to determine MPS. A brief overview of between study differences is provided in the 265 

results text below, and more comprehensively in Tables 1, 2 and 3.    266 

 267 

Participants 268 

All of the included studies reported participants as ‘healthy,’ and included a comparison 269 

between young and older groups. A total of 23 of the included studies specifically assessed 270 

participant health status, whilst 1 study failed to declare any such assessment (5). A total of 15 271 

of the included studies recruited males only, 1 study included females only, 7 studies included 272 

both males and females, and 1 study did not report the gender of participants (46). The age 273 

range of the young participant groups was between 20 and 35 yrs, whereas the age range of 274 

the older participant groups was between 64 and 76 yrs. Body mass of the young participant 275 

groups ranged from 62 kg to 88.9 kg, whilst body mass in the older participant group ranged 276 

from 60.8 kg to 88 kg. 277 

 278 

Anabolic stimulus 279 

Of the 24 studies, 12 included some form of acute exercise stimulus. Resistance exercise was 280 

utilised in 10 of the 12 studies, and endurance exercise in 2 studies. Eighteen of the included 281 

studies involved a form of amino acid/protein administration/feeding. Oral ingestion of amino 282 

acids/protein was evident in 15 of the 18 studies, whilst 3 studies administered amino acids 283 

through intravenous (IV) infusion. A total of 6 of the 24 studies combined exercise with oral 284 

or IV administration of amino acids/protein.  285 

 286 

Experimental methodology 287 
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Experimental methodology between studies was highly variable. The time point over which 288 

the post-stimulus MPS measurement was assessed ranged from 2 h to ~24 h. MPS in a mixed 289 

muscle fraction was assessed in 19 studies, whilst 5 studies assessed MPS in the myofibrillar 290 

fraction. Sixteen studies used the intracellular free-pool isotopic tracer enrichment as the 291 

precursor in the calculation of FSR, whilst 8 studies used the plasma isotopic tracer 292 

enrichment as the precursor. All of the included studies measured MPS from muscle biopsy 293 

tissue collected from the quadriceps vastus lateralis muscle. 294 

Data Synthesis 295 

Details of the 24 studies identified for inclusion are included in Tables 1 (Model 1), 2 (Model 296 

2), and 3 (Model 3). Several of the included studies utilised experimental designs (e.g. EAA 297 

and/or exercise dose-response interventions) that allowed the assessment of multiple anabolic 298 

stimuli over several post-intervention time points within the same study. The divergence in 299 

experimental designs made it difficult to draw firm conclusions as to whether there was 300 

sufficient evidence of age-related muscle anabolic resistance on a study level. Thus, we 301 

decided to perform data synthesis on a study arm level. 302 

 303 

A total of 48 study arms were identified from the 24 included studies (Figure 2). Of these 48 304 

study arms, 18 were considered to provide sufficient evidence of age-related muscle anabolic 305 

resistance (5, 27, 35, 37, 44, 46, 53, 58, 61, 62, 65, 84, 85, 104), whereas 30 were considered 306 

to provide insufficient evidence of age-related muscle anabolic resistance (2, 24, 27, 35, 36, 307 

44, 53, 57, 59, 61, 62, 76, 78, 84, 85, 90, 91, 105) (Figure 2). In order to further examine age-308 

related differences in MPS in response to various anabolic stimuli, we constructed three 309 

models that included study arms based on the anabolic stimulus provided (outlined above in 310 

‘methods’).  311 
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 312 

In Model 1, study arms were included if they utilised exercise as the only form of anabolic 313 

stimulus. As a result, 17 study arms were included in Model 1, with 8 providing sufficient 314 

evidence (37, 61, 62, 65, 84, 85) and 9 providing insufficient evidence of age-related muscle 315 

anabolic resistance (61, 62, 84, 85). Fourteen of the 17 study arms assessed age-related 316 

differences in MPS following resistance exercise, with 7 providing sufficient and 7 providing 317 

insufficient evidence of age-related muscle anabolic resistance (Table 1). Two of the three 318 

study arms that applied endurance exercise as the contractile stimulus provided insufficient 319 

evidence of age-related muscle anabolic resistance.  320 

 321 

In Model 2, study arms were included if they utilised amino acid/protein 322 

administration/feeding as the only anabolic stimulus. As a result, 21 study arms were included 323 

in Model 2, with 8 providing sufficient evidence (5, 27, 44, 46, 53, 104) and 13 providing 324 

insufficient evidence of age-related muscle anabolic resistance (24, 27, 44, 53, 57, 59, 76, 78, 325 

91, 105). Ten of the 21 study arms provided oral free amino acids, with 5 providing sufficient 326 

and 5 providing insufficient evidence of age-related muscle anabolic resistance. Casein 327 

protein was orally administered in 7 of the 21 study arms, with 2 providing sufficient and 5 328 

providing insufficient evidence of age-related muscle anabolic resistance. The 2 study arms, 329 

which administered lean ground beef as the protein source, provided insufficient evidence of 330 

age-related muscle anabolic resistance. Two of the 21 study arms administered amino acids 331 

intravenously, with 1 providing sufficient and 1 providing insufficient evidence of age-related 332 

muscle anabolic resistance (Table 2).  333 

 334 
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Finally, in Model 3, study arms that utilised a combination of both exercise and amino 335 

acid/protein administration/feeding were included. As a result, 10 study arms were included in 336 

Model 3, with 2 study arms providing sufficient evidence (35, 58) and 8 study arms providing 337 

insufficient evidence of age-related muscle anabolic resistance (2, 35, 36, 78, 90). Nine of the 338 

10 study arms utilised resistance exercise as the contractile stimulus, with 2 providing 339 

sufficient evidence and 7 providing insufficient evidence of age-related muscle anabolic 340 

resistance (Table 3). The single study arm that applied endurance exercise as the contractile 341 

stimulus provided insufficient evidence of age-related muscle anabolic resistance. 342 

 343 

Discussion 344 

The aim of this systematic review was to examine the literature on age-related differences in 345 

the muscle protein synthetic response to anabolic stimuli (resistance exercise, endurance 346 

exercise and/or amino acid/protein administration) between young and older individuals. 347 

There has been much debate as to whether muscle anabolic resistance is indeed an inevitable 348 

characteristic of the aging process (17, 18), an artefact of lifestyle modifications (15, 107), or 349 

a combination of these two factors. Whilst 18 study arms provided findings to support the 350 

presence of muscle anabolic resistance in older individuals, 30 study arms provided 351 

insufficient evidence of the development of age-related muscle anabolic resistance (Figure 2). 352 

As will be discussed in this section, the primary factors that appear to contribute to the 353 

discrepancies between study arms include: 1) differences in exercise volume and intensity; 2) 354 

the dose, source, and leucine content of amino acids/protein provided; 3) using exercise or 355 

amino acid/protein administration/feeding alone or in combination; and 4) differences in 356 

experimental methodology and design. 357 

 358 



 
16 

Exercise Volume and Intensity 359 

It has been documented that both endurance and resistance exercise robustly stimulate 360 

mitochondrial and myofibrillar MPS, respectively, in young and older individuals (29, 33, 61, 361 

111). However, it is not yet fully known how the MPS response to exercise differs between 362 

young and older individuals. To this end, we constructed a model which included only those 363 

study arms that assessed the MPS response to exercise alone in the postabsorptive state 364 

(Figure 2, Model 1 and Table 1). Interestingly, whilst 8 study arms provided sufficient 365 

evidence of age-related muscle anabolic resistance (37, 61, 62, 65, 84, 85), 9 study arms did 366 

not (61, 62, 84, 85). One potential explanation for the lack of congruency may be the 367 

difference in exercise volume between studies. For example, in a well-controlled study from 368 

Kumar and colleagues (61), MPS post-exercise was significantly lower in the older group 369 

compared with the young when a relatively low volume of work was completed (3 sets of 370 

knee extension exercise at 40% one repetition maximal strength (1RM)). However, the 371 

authors noted that when the volume of work completed was doubled, the MPS response was 372 

comparable between young and older groups (61). These data infer the possibility of an age-373 

related exercise volume ‘threshold’, whereby older individuals are required to complete 374 

greater exercise volumes to elicit a comparable MPS response to the young. Alternatively, the 375 

relative loading intensity of resistance exercise may also explain differences in the MPS 376 

response to exercise observed between studies. Specifically, whilst 3 sets of knee extensions 377 

at 40% of 1RM induced greater rates of MPS in the young compared with the older group, 3 378 

sets at 75% of 1RM, with volume-matched to that completed at 40% 1RM (i.e. fewer 379 

repetitions), overcame the age-related blunting of MPS (61). The position that a greater 380 

volume and/or heavier load exercise can overcome age-related differences in MPS may 381 

explain why Sheffield-Moore et al. failed to detect any age-related deficit in MPS following 6 382 
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sets of knee extensions at 80% 1RM (84). However, this fails to explain the occurrence of 383 

age-related muscle anabolic resistance following 8 sets of knee extensions at 70% of 1RM by 384 

Fry and colleagues over numerous post-exercise time points and using a larger sample size 385 

(37). Exactly why the findings of Kumar et al. (61) and Fry and colleagues (37) differ is 386 

difficult to reconcile but may relate to the habitual physical activity levels of the young and 387 

older participants, which were not objectively measured in either study (discussed in further 388 

detail below). The lack of a within-subject comparison group in the study by Fry et al. (37) 389 

precludes interrogation of the dose-response of MPS to differing volume and intensity of 390 

resistance exercise in this group of participants. Taken together, it is clear that future acute 391 

dose-response exercise studies utilising larger sample sizes, multiple post-exercise time 392 

points, with control/monitoring of habitual physical activity levels are needed to improve our 393 

understanding of the importance of exercise volume and intensity in overcoming potential 394 

age-related muscle anabolic resistance. In addition, chronic resistance training studies are 395 

required to delineate the appropriate exercise training volume and/or intensity to maintain or 396 

augment skeletal muscle mass in older individuals. Nonetheless, the findings presented 397 

suggest that age-related muscle anabolic resistance may be apparent following low 398 

volume/intensity resistance exercise, and that the prescription of higher volume and/or 399 

intensity resistance exercise may be a feasible strategy to overcome this impairment and thus 400 

maintain skeletal muscle mass.   401 

 402 

Dose of Amino Acids/Protein 403 

The provision of amino acid-based nutrition is a potent stimulus for MPS in young and older 404 

individuals (27, 82, 116), primarily through the action of constituent essential amino acids 405 

(EAA’s) (96, 103). Accordingly, we constructed a second model in an attempt to examine 406 
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whether age-related differences in MPS exist following the provision of amino acids/protein 407 

alone (Figure 2, Model 2 and Table 2). Of the 21 study arms included in this model, 8 408 

provided sufficient evidence of age-related muscle anabolic resistance (5, 27, 44, 46, 53, 104) 409 

whilst 13 did not (24, 27, 44, 53, 57, 59, 76, 78, 91, 105). However, although the MPS 410 

response between young and older adults was only significantly different in 8 of 21 study 411 

arms in Model 2, when study arms were pooled together we observed that the general pattern 412 

of the magnitude of the MPS response appeared to be lower in older individuals compared 413 

with the young (Figure 3). Further, we believe there are a number of factors that may explain 414 

the lack of agreement as to the presence or absence of muscle anabolic resistance in older 415 

adults in response to orally ingested amino acid-based nutrition. Firstly, the dose of amino 416 

acids/protein ingested varied considerably between studies. For example, whilst one of the 417 

study arms provided just 2.5g of crystalline EAA’s (27), equivalent to that contained in ~5g of 418 

high-quality supplemental protein, a number of other study arms provided as much as 35-40g 419 

of amino acids/protein (27, 59, 104, 105) and one study provided 90g of protein in the form of 420 

340g of lean ground beef (91). The amount of protein provided is important to consider, as it 421 

has been documented that there is a dose-dependent MPS response to protein provision that 422 

ultimately plateaus at a given dose, beyond which additional protein is oxidized rather than 423 

incorporated into muscle (70, 113). Recently, Moore and colleagues provided strong evidence 424 

that the relative amount of protein required to maximally stimulate MPS is considerably 425 

greater in older adults (~0.4g/kg) compared with the young (~0.24g/kg) (69). Put into context, 426 

for an average 75-80kg older individual, this equates to ≥30g of high-quality protein to 427 

maximally stimulate MPS. In support of these data, others have demonstrated that the MPS 428 

response to 20g of casein protein ingestion is ~16% lower in older vs. young individuals 429 

(106). Based on these data, it could be expected that the study arms in this systematic review 430 
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that provided ≥0.4g/kg of high quality protein would fail to provide evidence of age-related 431 

muscle anabolic resistance. To this end, we analysed study arms that provided either, i) 432 

≥0.4g/kg of amino acids/protein or ii) an amount of EAA’s equivalent to that contained in a 433 

dose of high-quality protein corresponding to ≥0.4g/kg (49), finding that 4 of 5 study arms 434 

demonstrated insufficient evidence of age-related muscle anabolic resistance (59, 76, 91, 435 

105). Taken together, these findings suggest the absence of an age-related deficit in the MPS 436 

response when a sufficient (i.e. high) dose of high quality amino acids/protein is provided.  437 

 438 

Source of Amino Acids/Protein 439 

In addition to the amino acid/protein dose, inconsistent findings between studies in Model 2 440 

might also be explained by the source of amino acids/protein administered. Specifically, the 441 

digestion/absorption properties and leucine content of ingested protein are thought to play a 442 

key role in the acute MPS response (77). Of the 17 study arms that provided amino 443 

acids/protein orally and in liquid form, 10 study arms provided crystalline amino acids whilst 444 

7 provided casein (Table 2). Crystalline free-form amino acids are more rapidly digested and 445 

absorbed than amino acid constituents of protein-rich supplemental and whole-food sources 446 

(27, 53). On the other hand, casein protein is predominantly acid insoluble and thus 447 

coagulates within the acidic environment of the stomach, which increases gastric transit time, 448 

resulting in a ‘slow’ digestion/absorption profile (12). The ‘slow’ digestion/absorption 449 

kinetics of casein protein, coupled with the relatively low leucine content, results in inferior 450 

acute postprandial MPS stimulation compared to an equivalent amount of rapidly digested, 451 

leucine-rich whey protein in both young and older men at rest (11, 77, 92, 108). With this in 452 

mind, it may be expected that the study arms utilising casein, particularly in low doses 453 

(containing very little leucine) would be more likely to observe evidence of age-related 454 
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muscle anabolic resistance than those administering free amino acids or whey protein. 455 

However, 5 of the 7 study arms (44, 57, 59, 78) in which casein protein was provided 456 

observed no age-related differences in postprandial MPS (Table 2). This observation is 457 

perhaps surprising given that the postprandial MPS response to 20g of casein in a relatively 458 

large cohort is significantly lower (~16%) in older vs. young individuals (106), but may be 459 

explained by the relatively long time-frame over which MPS was assessed (discussed in 460 

further detail below).  461 

 462 

An important question that must also be posed is which of the amino acid/protein sources 463 

provided in the study arms included in Model 2 most accurately reflect the habitual food 464 

choices of free-living young and older individuals? As previously mentioned, 10 of the 21 465 

study arms provided oral free amino acids, with 7 providing protein in the form of casein, 2 466 

providing protein in the form of lean ground beef, and 2 providing free amino acids 467 

intravenously. It is clear that intravenous and oral provision of free amino acids do not 468 

accurately reflect the typical route or form in which amino acids/protein are consumed. Thus, 469 

findings from these studies could be suggested to hold less significance than those which 470 

provided protein in the form of casein (the main protein constituent of milk) and lean ground 471 

beef, which are likely to be more reflective of the typical food sources consumed on a day-to-472 

day basis in free-living scenarios. However, the importance of utilising free amino acids 473 

orally or intravenously to investigate age-related differences in skeletal muscle protein 474 

metabolism should not be discounted. For example, intravenous provision of free amino acids 475 

can be a valuable experimental approach to utilise when the research question is focused on 476 

controlling for other potential confounding factors (e.g. differences in protein/amino acid 477 
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digestion and absorption between individuals), and thus this highlights the importance of 478 

tailoring the study design towards the experimental hypothesis being investigated.  479 

 480 

Leucine Content of Amino Acids/Protein 481 

Although the source of amino acids/protein appears to be of secondary importance to the 482 

amount of protein, when explaining the apparent presence or absence of age-related 483 

differences in postprandial MPS between studies, the leucine content of the administered 484 

amino acid/protein source may offer further insight. The branched-chain amino acid leucine 485 

appears to play a key role in the stimulation of MPS (3, 56). Leucine is unique in that it serves 486 

not only as a substrate for the synthesis of new muscle proteins, but also as a potent molecular 487 

anabolic signal which robustly stimulates MPS (26, 56). Interestingly, two of the included 488 

study arms in this review provide strong evidence that the leucine content of a protein source 489 

is an important determinant of postprandial MPS, particularly in older individuals. Katsanos 490 

et al. (53) demonstrated that postprandial MPS was stimulated in young, but not older 491 

individuals following the provision of 6.7g EAA’s containing ~1.8g leucine (26% of the total 492 

content, equivalent to that contained in ~15g whey protein). However, when the leucine 493 

content was enriched to ~3g (41% of the total content, equivalent to that contained in ~25g of 494 

whey protein), an equivalent stimulation of MPS was observed between young and older 495 

individuals. Furthermore, others demonstrate a strong positive association between peak 496 

plasma leucine concentrations and postprandial MPS in older individuals (77). In support of 497 

these findings, of the 9 study arms included in Model 2 that reported the leucine content of the 498 

amino acid/protein source administered, 6 provided no evidence of age-related muscle 499 

anabolic resistance (44, 53, 76, 91). Interestingly, 4 of these study arms provided a leucine 500 

dose of ~2g or more. In contrast, the 3 study arms that failed to provide evidence of age-501 
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related muscle anabolic resistance all provided amino acid/protein sources containing a ‘sub-502 

optimal’ 1.4-1.7g dose of leucine (44, 53). Taken together, it appears that sources of amino 503 

acids/protein that achieve a rapid, high amplitude peak aminoacidemia and leucinemia, 504 

maximally stimulate postprandial MPS and thus should be recommended for older individuals 505 

to alleviate muscle anabolic resistance. 506 

  507 

Exercise and Amino Acid/Protein Provision 508 

The final model constructed (Figure 2, Model 3 and Table 3) included 10 study arms (2, 35, 509 

36, 58, 78, 90) that measured the MPS response to the combined stimulus of exercise with 510 

amino acid/protein provision. Acutely, combined resistance exercise and protein provision act 511 

to synergistically enhance and maximize the stimulation of MPS above rates observed in 512 

response to protein provision alone in young and older individuals (20, 78, 115). Chronically, 513 

protein supplementation enhances resistance training-induced muscle hypertrophy and 514 

strength increases in young and older individuals (22, 94, 112). With this in mind, it could be 515 

expected that age-related differences in MPS would be less apparent in studies utilising the 516 

combined anabolic stimulus of resistance exercise and amino acid/protein provision. In 517 

accordance with this assumption, 7 of the 9 study arms that combined resistance exercise with 518 

amino acid/protein provision found no evidence of age-related muscle anabolic resistance. 519 

Although Drummond et al. (35) did observe age-related muscle anabolic resistance at 1-3 h 520 

following resistance exercise and EAA ingestion, the aggregate MPS response over 1-6 h was 521 

not different, suggesting that the MPS response to exercise and amino acid/protein provision 522 

may be delayed (rather than attenuated) with advancing age. Precisely why Koopman et al. 523 

observed age-related differences in MPS is unclear, but could relate to the exercise intensity 524 

chosen, which may have been insufficient to overcome the blunted MPS response in the older 525 
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group, even in the presence of adequate protein provision (58). Specifically, the authors chose 526 

to simulate activities of daily living in older individuals through implementation of resistance 527 

exercise at low-to-moderate intensities (40-75% of 1RM). However, given that Durham et al. 528 

(36) observed no age-related impairment in MPS following 45 minutes of treadmill walking 529 

(at a relatively low exercise intensity) combined with amino acid infusion, the notion that 530 

exercise intensity may explain the findings of Koopman et al. (58) requires further 531 

clarification. Nonetheless, that 8 of the 10 study arms in Model 3 found no age-related 532 

differences in MPS strongly suggests that the combination of exercise and amino acid/protein 533 

provision is an effective strategy to restore ‘youthful’ muscle protein synthetic responsiveness 534 

in older individuals.  535 

 536 

Differences in Experimental Methodology 537 

Differences in experimental methodology used to assess MPS between studies may explain 538 

the inconsistent findings reported herein. For example, the tracer incorporation period over 539 

which MPS was investigated (i.e. timing between sequential muscle biopsy samples) varied 540 

widely from 0-2 h (24) to 0-6 h (58, 59, 78). The timing of muscle biopsy sampling is an 541 

important consideration when capturing the peak MPS response to a given exercise and/or 542 

nutritional stimulus (71). For example, it has been demonstrated that the MPS response to 543 

bolus protein ingestion is relatively transient, peaking over ~3h post-ingestion in young and 544 

older adults (1, 67), whereas the maximal MPS response to resistance exercise in the absence 545 

of post-exercise amino acid/protein provision is thought to occur ~1-2 h after exercise 546 

cessation in both young and older individuals (62). Interestingly, the suggestion that the MPS 547 

response to combined resistance exercise and amino acid/protein provision may simply be 548 

delayed (rather than attenuated) with advancing age (35), underlines the importance of 549 
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selecting appropriate muscle biopsy sampling time-points to enable sufficient temporal 550 

resolution. This point is well highlighted by Gorissen et al. (44), who demonstrated that whilst 551 

the MPS response to casein ingestion was greater over 0-2 h postprandial period in the young 552 

compared with older individuals, the response over 0-5 h postprandial period showed no age-553 

related difference. Thus, it is perhaps not surprising that the 6 study arms (44, 57, 59, 78) that 554 

assessed MPS in response to casein alone (Model 2) or coupled with exercise (Model 3) over 555 

a 5-6 h incorporation period, reported no evidence of age-related muscle anabolic resistance. 556 

Indeed, when we analysed study arms from Model 2 that assessed MPS over a postprandial 557 

period of ≤3 h, 6 out of 10 study arms reported evidence of age-related muscle anabolic 558 

resistance, whereas when MPS was assessed over a postprandial period of >3 h, only 2 out of 559 

11 study arms demonstrated evidence of age-related muscle anabolic resistance (Table 2). 560 

This would suggest that age-related muscle anabolic resistance predominates in the early 561 

postprandial period as opposed to the later postprandial period where a more sustained and 562 

comparable MPS response is observed in young and older individuals (44). Given that the 563 

MPS response to bolus protein ingestion returns to baseline by ~3h post-ingestion (1, 67), we 564 

postulate that the occurrence of age-related muscle anabolic resistance may have been masked 565 

in studies assessing postprandial MPS over a prolonged measurement period (e.g. 6 hours), 566 

over which the peak stimulation may be somewhat diluted by the lower MPS response in the 567 

later postprandial phase (e.g. 3-6 hours). Although MPS rates are comparable over a relatively 568 

longer postprandial period between young and older individuals, the physiological relevance 569 

of muscle anabolic resistance over the early postprandial period requires further investigation. 570 

 571 

The choice of muscle sub-fraction used in the calculation of MPS differed between studies 572 

and could explain some of the conflicting findings. Whilst 34 of the study arms calculated 573 
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mixed MPS (i.e. an aggregate of all muscle protein sub-fractions), 14 study arms chose to 574 

calculate MPS in isolated myofibrillar proteins (Tables 1, 2 and 3). Myofibrillar proteins 575 

comprise the contractile apparatus within skeletal muscle (i.e. myosin, actin, titin), the 576 

synthesis of which can increase by 2-to-3-fold above basal, postabsorptive values following a 577 

single bout of high intensity/volume resistance exercise in young and older individuals (62, 578 

71, 111). On the other hand, proteins that comprise a mixed fraction include sarcoplasmic and 579 

mitochondrial proteins, and may display lower acute responsiveness than myofibrillar 580 

proteins to resistance exercise alone or combined with amino acid-based nutrition (71, 111). 581 

For example, in well-trained individuals an acute bout of resistance exercise stimulates rates 582 

of myofibrillar, but not mixed MPS (55). Herein, we were unable to detect any age-related 583 

differences in the MPS response in myofibrillar vs. mixed fractions due to the highly variable 584 

experimental methods between studies (i.e. specifics of the anabolic stimulus, tracer 585 

incorporation time, etc.). Thus, we cannot rule out the possibility that, under certain 586 

experimental conditions, the choice of muscle protein sub-fraction used for the calculation of 587 

MPS may be important in detecting difference in MPS between young and older individuals. 588 

 589 

Finally, and perhaps most importantly, whilst a number of studies provided instructions to 590 

participants regarding physical activity in the days leading up to the trials, only one study 591 

objectively measured habitual physical activity (via accelerometry) in the days immediately 592 

prior to the experimental trials (24). The importance of controlling for prior physical activity 593 

when assessing MPS cannot be overstated, as recent work demonstrated that just 2 weeks of 594 

reduced ambulation (~75% daily step reduction) resulted in muscle atrophy and anabolic 595 

resistance in older individuals (15). Given emerging evidence that the proposed post-exercise 596 

anabolic ‘window of opportunity’ for the synergistic enhancement of MPS through protein 597 
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ingestion extends beyond the immediate hours of recovery in young individuals (19), 598 

excessive physical activity or inactivity in the days prior to experimental trials may confound 599 

the assessment of MPS. This is further supported by evidence in older individuals 600 

demonstrating that the MPS response to EAA intake can be enhanced by prior low-intensity 601 

aerobic exercise in the form of brisk walking (95). As such, it has been hypothesized that 602 

physical inactivity may be at the root of muscle anabolic resistance and exacerbate the 603 

progression of sarcopenia in the older population (17, 18, 68). With this in mind, it could be 604 

speculated that muscle anabolic resistance would be more easily detected in studies involving 605 

sedentary older, but not highly functioning, physically active older individuals. Although the 606 

evidence to support this position is sparse, the single study arm in which habitual physical 607 

activity was reported to be similar between the young and older groups demonstrated an 608 

equivalent MPS response to amino acid administration (24). Accordingly, it is imperative that 609 

future studies investigating MPS in young and older populations objectively assess habitual 610 

physical activity levels.  611 

 612 

Conclusions and Future Implications 613 

In this systematic review, 18 study arms provided sufficient evidence of age-related muscle 614 

anabolic resistance, whereas 30 study arms did not. Whilst a quantitative appraisal of the 615 

presence of age-related differences in the MPS response to anabolic stimuli (i.e. directly 616 

contrasting absolute FSR values between young and older individuals) would have been 617 

preferable, the variability in experimental methodology used to assess MPS (e.g. amino acid 618 

stable isotope tracer, muscle protein sub-fraction, precursor pool and FSR incorporation 619 

period) made this approach largely unviable. However, we believe that the variability in 620 

experimental methodology is an important factor underlying the inconsistent findings as to the 621 
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presence or absence of an impaired muscle anabolic response in older age. Although beyond 622 

the scope of this systematic review, it is important to acknowledge that MPS (on which we 623 

have focussed) is an acute, dynamic assessment that represents only one side of the overall net 624 

protein balance (NBAL) equation. Ultimately, overall NBAL dictates long-term skeletal 625 

muscle remodelling which is the end-point in the diagnosis of sarcopenia and, as such, the 626 

findings of this systematic review should be considered within this broader context. Although 627 

our findings suggest that age-related muscle anabolic resistance is infrequently observed in 628 

response to a robust muscle anabolic stimuli (i.e. a high-dose of protein and/or a high 629 

volume/intensity of exercise), this phenomenon appears to be more frequently observed in 630 

response to anabolic stimuli that could be considered as insufficient to maximally stimulate 631 

MPS in older muscles, for example, in studies utilising relatively low intensity/volume 632 

protocols or low dose protein/amino acid provision (sub-optimal leucine). However, we 633 

cannot dismiss the fact that some study arms failed to observe age-related muscle anabolic 634 

resistance in response to sub-optimal anabolic stimuli and that others observed age-related 635 

muscle anabolic resistance following robust anabolic stimuli. We postulate that this 636 

inconsistency between studies can largely be attributed to differences in study population (e.g. 637 

habitual physical activity) and experimental methodology (e.g. tracer incorporation period) as 638 

outlined in this discussion.  639 

 640 

It has become increasingly evident that older individuals, especially those who are frail or 641 

institutionalized, consume less protein than younger individuals (40), particularly at breakfast, 642 

where the average protein intake is ~12g and comes largely from low-leucine, non-animal 643 

based sources, such as bread and cereals (75, 93, 101). It is also clear that sedentary time 644 

increases with advancing age (21, 47, 98) and non-sedentary behaviour is often of a relatively 645 
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low-intensity (e.g. gentle walking). Thus, the experimental conditions under which age-646 

related muscle anabolic resistance has often been reported (i.e. low-volume exercise and/or 647 

low dose protein/amino acid provision) are highly representative of the lifestyle and dietary 648 

habits of the average older individual. Accordingly, it is imperative that the mechanisms 649 

underpinning age-related muscle anabolic resistance are elucidated, to aid the development of 650 

targeted therapeutic strategies to slow the progression of sarcopenia.  651 

 652 

Clinical recommendations for the prevention of sarcopenia are currently lacking. However, in 653 

line with the current findings, recent position stands recommend that an average daily protein 654 

intake of at least 1-1.2 g/kg body weight in conjunction with regular resistance and/or 655 

endurance exercise is the most effective means of maintaining muscle mass/strength for older 656 

individuals (8, 28). In agreement with the conclusions of this systematic review (i.e. that age-657 

related muscle anabolic resistance is most frequently observed in response to sub-optimal 658 

amino acid/protein feeding), and other recent analyses (69, 106), these recommendations 659 

specifically advise that older adults ingest rapidly digested, leucine-rich proteins in doses of 660 

~0.4g/kg body weight per meal, distributed evenly across the day (8, 28). Based on the current 661 

findings, we recommend that future position stands should focus on defining optimal training 662 

volume/intensity requirements to deliver the greatest benefit for musculoskeletal health in 663 

older age.  664 
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Figure Captions 1081 

Figure 1: Study identification process flowchart.   1082 

 1083 

Figure 2: Diagrammatic illustration of the different models constructed for reporting 1084 

evidence or no evidence of age-related muscle anabolic resistance. 1085 

 1086 

Figure 3: Study arms in Model 2 comparing the magnitude of the MPS response to provision 1087 

of a source of amino acids (AA)/protein in young vs. older adults (expressed as the % change 1088 

from basal postabsorptive values). NB: the dose, protein source, leucine content, FSR 1089 

incorporation period and route of administration differ between, but not within studies (see 1090 

Table 2). FSR values for study arms were obtained directly from published manuscripts or, 1091 

when not available, through requesting the information directly from the authors. In 5 of the 1092 

21 study arms, precise FSR values were unavailable and therefore estimated visually from the 1093 

manuscript figure. Three of the 21 study arms were excluded from the comparison as they 1094 

failed to assess MPS in the basal, postabsorptive state. 1095 
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Table 1. Summary of studies included in Model 1 
Reference Group, 

age 
(years) 

Sex  
(n) 

Body 
mass  
(kg) 

Exercise 
protocol 

Incorporation 
period 

Muscle 
sub-

fraction 

Precursor 
pool 

Evidence of age-
related muscle 

anabolic 
resistance 

Main 
findings 

Fry et al. 
(2011)  
(37) 

Young 
27 ± 2 

 
Older 
70 ± 2  

M/F 
n = 16 
 

M/F 
n = 16 

 

70.2 ± 3.1 
 
 

66.9 ± 3.0 

8x10 sets of 
KE at 70% 

1RM 

0-3h 
 

3-6h 
 

22-24h 

Mixed IC Yes 
 

Yes 
 

Yes 
 
 

MPS was increased in 
both Y and O and was 
greater in Y at all time 

points. 

Kumar et 
al. (2009) 
(62) 

Young 
24 ± 6 

 
Older 
70 ± 5 

M 
n = 25 
  

M 
n = 25 

-  
 
 
- 

Unilateral 
KE at 

intensities 
from 20-

90% 1RM 
(volume 
matched) 

 

0-1h 
 

1-2h 
 

2-4h 

Myo IC No 
 

Yes 
 

No 
 
 

The overall MPS response 
(AUC) across all 

intensities was 30% 
higher in Y compared 

with O at 1-2h. MPS was 
not different between Y 
and O at 0-1h or 2-4h. 

 

Kumar et 
al. (2012) 
(61) 

Young 
24 ± 6 

 
Older 
70 ± 5 

M 
n = 12 
  

M 
n = 12 

72 ± 11 
 
 

72 ± 16 
 
  

1. 3 sets of 
KE at 40% 

1RM 
 

2. 6 sets of 
KE at 40% 

1RM 
 

3. 3 sets of 
KE at 75% 

1RM 
 

0-4h Myo  IC  Yes 
 
 
 

No 
 
 
 

No 
 
 
 

At 40% 1RM (3 sets), 
AUC for MPS over entire 

0-4h post-exercise was 
higher in Y than O. At 

40% (6 sets) and 75% (3 
and 6 sets) 1RM, AUC for 

MPS was not different 
between Y and O. 
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4. 6 sets of 
KE at 75% 

1RM 
 

No 

Mayhew et 
al. (2009)  
(65) 

Young 
27 ± 1 

 
Older 
64 ± 1 

M 
n = 8 

 
M 

n = 6 

75.4 ± 3.0 
 
 

76.8 ± 3.9 
 
    

3x8-12 RM 
of squat, LP 

and KE  

21-24h Mixed IC Yes MPS was increased above 
baseline at 21-24h post-

exercise in Y only. 
 

Sheffield-
Moore et 
al. (2004) 
(85) 

Young 
29 ± 2 

 
Older 
69 ± 1 

M 
n = 6 

 
M 

n = 6 
 

80 ± 4 
 
 

88 ± 7 

Treadmill 
exercise 

(walking) 
for 45 min at 
~ 40% Vo2 

peak 
 

0-10min 
 

0-1h 
 

0-3h  

Mixed IC No 
 

Yes 
 

No 
 
 

MPS at 0-10min and 0-3h 
was not different between 

Y and O but MPS was 
increased only in Y at 0-

1h. 
 

Sheffield-
Moore et 
al. (2005) 
(84) 
 

Young 
29 ± 2 

 
Older 
69 ± 1 

M 
n = 6 

 
M 

n = 6 

78 ± 3 
 
 

86 ± 2 
   

6x8 sets of 
KE at 80% 

1RM 

0-10min 
 

0-1h 
 

0-3h 

Mixed IC No 
 

No 
 

Yes 

MPS was increased at 0-
10min in O only. MPS 

was not elevated in Y or 
O at 0-1h. MPS was 

increased at 0-3h in Y 
only. 

Y = young; O = older; M = male; F = female; KE = knee extension; LP = leg press; 1RM = One repetition maximum; RM = 1135 
repetition maximum; MPS = muscle protein synthesis; AUC = area under curve; Myo = myofibrillar; IC = intracellular.1136 
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Table 2. Summary of studies included in Model 2 
Reference Group, 

age 
(years) 

Sex  
(n) 

Body 
mass (kg) 

Amino acid/protein 
protocol 

Incorporation 
period 

Muscle 
sub-

fraction 

Precursor 
pool 

Evidence of age-
related muscle 

anabolic 
resistance 

Main 
findings 

Babraj et al. 
(2005)  
(5) 

Young 
28 ± 6 

 
Older 
70 ± 6 

M 
n = 4 

 
M 

n = 4  

- 
 
 
- 
 
 

20g of EAA orally 
consumed 

0-3h Myo Plasma Yes Y and O increased 
MPS, but increase 
was lower in O. 

 

Chevalier et 
al. (2011) 
(24) 

Young 
24 ± 1 

 
Older 
73 ± 3 

F 
n = 8 

 
F 

n = 8 

62.0 ± 3.6 
 
 

60.8 ± 3.5 
 
 

Hyperinsulinemic, 
hyperglycemic, and 
hyperaminoacidemic 

clamp (IV) 
 

0-2h Mixed IC No Both Y and O 
increased MPS 

with no difference 
between groups. 

 

Cuthbertson 
et al. (2005) 
(27) 

Young 
28 ± 6 

 
Older 
70 ± 6 

M 
n = 16 

 
M 

n = 16 

75 ± 10 
 
 

79 ± 13 
 

1. 2.5g EAA orally 
 

2. 5g EAA orally 
 

3. 10g EAA orally 
 

4. 20g EAA orally 
 

0-3h  Myo IC No 
 

No 
 

Yes 
 

Yes 
 

No difference in 
MPS between Y 

and O at 2.5g and 
5g EAA. MPS in Y 
was greater than O 

at 10g and 20g 
EAA. 

 

Gorissen et 
al. (2014) 
(44) 

1.Young 
20 ± 1 

 
1.Older 
76 ± 1 

 

M 
n = 12 

 
M 

n = 13 
 

76.1 ± 2.8 
 
 

79.6 ± 2.7 
 
 

1. 20g of casein 
orally consumed with 

60g carbohydrate  
 
 
 

0-2h 
 
 

0-5h 
 
 

Mixed Plasma Yes 
 
 

No 
 
 

MPS was increased 
only in Y at 0-2h, 

but MPS over 
entire 0-5h was not 
different between Y 

and O for either 
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2.Young 
21 ± 1 

 
2.Older 
74 ± 1 

 

M 
n = 12 

 
M 

n = 12 

70.9 ± 3.2 
 
 

75.0 ± 4.2 
 

2. 20g of casein 
orally consumed 

without 60g 
carbohydrate  

 

0-2h 
 
 

0-5h 

Yes 
 
 

No 

intervention. 
 

Guillet et al. 
(2004)  
(46) 

Young 
25 ± 1 

 
Older 
72 ± 2 

- 
n = 6 

 
- 

n = 8 

78.7 ± 3.3 
 
 

75.4 ± 3.3 
 

Hyperinsulinemic, 
hyperaminoacidemic 

clamp (IV) 
 
 
 

0-4h Mixed IC Yes MPS was increased 
in both Y and O 

and was greater in 
Y.  

Katsanos et 
al. (2006) 
(53) 

 
 
 
 
 

1.Young 
31 ± 2 

 
1.Older 
67 ± 2 

 
2.Young 
29 ± 3 

 
2.Older 
67 ± 2 

M/F 
n = 8 

 
M/F 

n = 10 
 

M/F 
n = 8 

 
M/F 

n = 10 

70.1 ± 4.7 
 
 

81.7 ± 3.6 
 
 

76.6 ± 7.7 
 
 

74.5 ± 4.7 

1. 6.7g of EAA 
orally consumed with 

26% leucine 
 
 
 

2. 6.7g of EAA 
orally consumed with 

41% leucine 
 
 

0-3.5h 
 
 
 
 
 
 
 

Mixed 
 
 
 
 
 
 

Plasma 
 
 
 
 
 
 
 

Yes 
 
 
 
 
 

No 
 
 

MPS was increased 
equally after EAA 
with 41% leucine 
but MPS was only 
increased in Y after 

EAA with 26% 
leucine. 

 
Kiskini et al. 
(2013)  
(57) 

 
Young 
21 ± 1 

 
Older 
75 ± 1 

 

 
M 

n = 12 
 

M 
n = 12 
 

 
74.4 ± 2.2 

 
 

78.4 ± 2.1 
       

 
20g of casein orally 
consumed with 40g 

carbohydrate  

 
0-6h 

 
Mixed 

 
Plasma 

 
No 

 
MPS over entire 0-

6h did not differ 
between Y and O. 

Koopman et 
al. (2009) 
(59) 

Young 
23 ± 1 

 

M 
n = 10 

 

76.8 ± 2.0 
 
 

35g of casein orally 
consumed  

0-6h Mixed Plasma No MPS over entire 0-
6h did not differ 

between Y and O. 
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Older 
64 ± 1 

 

M 
n = 10 

 

78.8 ± 3.1   

Paddon-
Jones et al. 
(2004)  
(76) 

Young 
34 ± 4 

 
Older 
67 ± 2 

 

M/F 
n = 6 

 
M/F 
n = 7 

63 ± 3 
 
 

71 ± 5      

15g of EAA orally 
consumed  

0-3.5/4h Mixed IC No MPS was increased 
similarly in both Y 

and O. 
 

Pennings et 
al. (2011) 
(78) 

Young 
21 ± 1 

 
Older 
75 ± 1 

M 
n = 12 

 
M 

n = 12 
 

76.2 ± 3.6 
 
 

74.4 ± 2.3   

20g of casein orally 
consumed 

 

0-6h Mixed Plasma No 
 
 

 

MPS over entire 0-
6h did not differ 

between Y and O. 
 

Symons et 
al. (2009) 
(91) 

Young 
35 ± 3 

 
Older 
68 ± 2 

M/F 
n = 17 

 
M/F 

n = 17 

79.2 ± 7.0 
 
 

77.5 ± 8.0   

1. 113g (30g protein) 
of lean ground beef 

 
2. 340g (90g protein) 
of lean ground beef 

 

0-5h Mixed IC No 
 
 

No 

MPS was increased 
similarly in both Y 
and O with 113g 

and 340g lean 
ground beef. 

 
Volpi et al. 
(1999)  
(105) 

Young 
30 ± 2 

 
Older 
71 ± 2 

M/F 
n = 7 

 
M/F 
n = 8 

72 ± 3 
 
 

74 ± 4     

40g of amino acids 
orally consumed in 

boluses every 10mins 
 

0-3h Mixed IC No MPS was increased 
similarly in both Y 

and O. 

Volpi et al. 
(2000)  
(104) 

Young 
30 ± 3 

 
Older 
72 ± 1 

M/F 
n = 5 

 
M/F 
n = 5 

- 
 
 
-        

40g amino acids with 
40g carbohydrate 

orally consumed in 
boluses every 10mins 

 

0-3h Mixed IC Yes MPS was increased 
only in Y. 

Y = young; O = older; M = male; F = female; IV = intravenous; EAA = essential amino acids; MPS = muscle protein synthesis; AUC = area 1137 
under curve; Myo = myofibrillar; IC = intracellular.1138 
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Table 3. Summary of studies included in Model 3 
Reference Group, 

age 
(years) 

Sex  
(n) 

Body 
mass (kg) 

Exercise and  
Amino acid/protein 

protocol 

Incorporation 
period 

Muscle 
sub-

fraction 

Precursor 
pool 

Evidence of age-
related muscle 

anabolic 
resistance 

Main 
findings 

Atherton et 
al. (2016)  
(2) 

Young 
24 ± 6 

 
Older 
70 ± 5 

M 
n = 18 

 
M 

n = 18 

75 ± 10 
 
 

76 ± 10 
 

1. 6x8 sets of KE at 
75% 1RM followed 

by 10g of protein (8g 
casein, 2g whey), 

24g carbohydrate and 
4.2g leucine 

 
2. 6x8 sets of KE at 
75% 1RM followed 

by 10g of protein (8g 
casein, 2g whey), 

24g carbohydrate and 
4.2g alanine 

 

0-4h Myo Plasma No 
 
 
 
 
 
 

No 

AUC for MPS was 
greater with added 
leucine compared 

to alanine in both Y 
and O. AUC for 

MPS not different 
between Y and O in 

either condition. 

Drummond 
et al. (2008) 
(35) 

Young 
30 ± 2 

 
Older 
70 ± 2 

M 
n = 7 

 
M 

n = 6  

88.9 ± 5.4 
 
 

81.3 ± 5.2 
 
 

8x10 sets of KE at 
70% 1RM followed 
by 20g oral EAA 1h 

post-exercise 
 

0-1h 
 

1-3h 
 

3-6h 
 

1-6h 

Mixed IC No 
 

Yes 
 

No 
 

No 
 

MPS was higher in 
Y than O at 1-3h, 

but MPS over 0-1h, 
3-6h and entire 1-

6h was not 
different. 

 

Durham et 
al. (2010) 
(36) 

Young 
30 ± 2 

 
Older 
67 ± 2 

M 
n = 9 

 
M 

n = 8 

78 ± 2 
 
 

84 ± 4 
 

Treadmill exercise 
(walking) for 45 min 
at ~ 40% Vo2 peak 
with amino acids 

infused throughout 
recovery 

 

10min-3h Mixed 
 
 
 

 

IC No MPS was increased 
in both Y and O 

with no differences 
between groups. 
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Koopman et 
al. (2006) 
(58) 

Young 
20 ± 1 

 
Older 
75 ± 1 

M 
n = 8 

 
M 

n = 8 

73.7 ± 3.2 
 
 

75.5 ± 2.1 
 

6x10 sets of LP and 
6x10 sets of KE at 

40-75% 1RM 
followed by small 
repeated boluses of 

~60g whey with 
~184g carbohydrate 

  

0-6h  Mixed Plasma Yes 
 

MPS over entire 0-
6h was lower in the 
O compared to the 

Y. 

Pennings et 
al. (2011) 
(78) 

Young 
21 ± 1 

 
Older 
73 ± 1 

 

M 
n = 12 

 
M 

n = 12 
 
 

76.1 ± 2.8 
 
 

79.6 ± 2.7 
 
 
 

6x10 sets of LP and 
6x10 sets of KE at 

40-75% 1RM 
followed by 20g of 

casein orally 
consumed 

 
 

0-6h Mixed Plasma No 
 
 
 
 
 

MPS over entire 0-
6h did not differ 

between Y and O. 
 

Symons et 
al. (2011) 
(90) 

Young 
29 ± 3 

 
Older 
67 ± 2 

M/F 
n = 7 

 
M/F 
n = 7 

79 ± 10 
 
 

76 ± 5 
 

340g (90g protein) of 
lean ground beef 
followed 60mins 

later by 6x8 sets of 
KE at 80% 1RM  

0-5h Mixed IC No  MPS was increased 
similarly in both Y 

and O. 

Y = young; O = older; M = male; F = female; EAA = essential amino acids; KE = knee extension; LP = leg press; 1RM = One repetition maximum; 1139 
MPS = muscle protein synthesis; AUC = area under curve; IC = intracellular. 1140 








	Article File
	Figure 1
	Figure 2
	Figure 3

