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Abstract—Given the elasticity, on-demand nature, and run-
time dynamics of the cloud, a stable self-adaptive architecture
should keep the fulfilment of Quality of Service objectives
stable, while performing stable adaptations that converge towards
these objectives. The dynamic management and selection of
architectural tactics, as adaptation mechanisms, shall be in the
heart of the adaptation process, as being essential for effective
and stable adaptations. This calls for measuring the impact
of tactics on the stability of inter-related quality attributes
during run-time. In this paper, we introduce a Markovian-based
analytical model for dynamically assessing the impact of tactics
on the stability behaviour of self-adaptive cloud architectures.
The model also employs self-awareness capabilities for better-
informing the selection of optimal tactics configurations leading to
stability. Experimental evaluations have shown the accuracy and
efficiency of the model in measuring and predicting the impact
of tactics on stabilising the Quality of Service provision and the
adaptation process.

I. INTRODUCTION

Given the elastic, dynamic and on-demand nature of the
cloud, a cloud architecture is responsible for coping and
responding to run-time workload in an elastic, scalable and
dynamic manner. Self-adaptivity in cloud architectures is en-
gineered to achieve that level of dynamicity and scalability, as
well as to comply with the changes in components, fluctuations
in workloads, and environmental conditions during run-time.
Examples of adaptation strategies include architectural tactics,
as mechanisms for better tuning, responding and achieving
Quality of Service (QoS) attributes; such as response time,
throughput, energy efficiency. Architectural tactics are inher-
ently architectural decisions, with measurable response when
supporting a quality attribute subject of interest.

With the cloud run-time dynamics, stability would be a
desirable property for self-adaptive cloud architectures. In
this context, stability could be seen in two-folds: (i) keep-
ing the QoS provision stable, and (ii) performing stable
adaptations. The former form of stability corresponds to the
quality attributes desired to be fulfiled and how constantly
they are fulfiled without SLA violations. The latter form is
the degree in which the adaptation process converges towards
QoS objectives [1]. Both aspects, mapped to each other, are
used to evaluate the quality of adaptation [1], and hence
the architecture efficiency in provisioning QoS objectives. An
unstable architecture would result in not fulfilling required

QoS and consequent SLA violations, as well as inefficient
behaviour when performing unnecessary adaptations not con-
verging towards quality objectives. Achieving stability for
self-adaptive architectures during run-time calls for dynamic
models to measure and predict: (i) the extent to which the
architecture meets QoS objectives without violations, and
(ii) whether the adaptation converges to the right objectives.
Such models can be autonomously used by the self-adaptive
architectures to measure and predict the impact of tactics, and
hence, effectively perform stable adaptations.

Though architecture-level performance models provide a
tool for performance prediction [2], current approaches for
modelling the context of self-adaptive software are limited in
their coverage for various quality attributes, with performance-
being the commonly attribute of interest. They provide limited
built-in run-time support for managing QoS, especially when
dealing with stability of both QoS provision and adaptation.
The Environment Domain Models and Impact Models [3] [4],
designed to model the impact of adaptation, are declarative
specification languages equipped with formal semantics to
capture the run-time behaviour, but with no direct linkage to
quality targets and their stability.

As tactics are mechanisms to achieve quality attributes, the
dynamic management of these tactics shall be in the heart of
the adaptation process, essential for an effective and stable
adaptation. The run-time dynamic environment of cloud and
the important role of tactics as a quality-response during run-
time call for dynamic modelling is essential for measuring
and predicting the impact of tactics on the stability of quality
attributes, as well as the performance of tactics in converging
towards the adaptation goals.

In this paper, we propose a Markovian-based analytical
model for dynamically assessing the impact of architectural
tactics on the stability of quality attributes during run-time.
The model can assist in selecting the “optimal” tactic configu-
ration, which can ensure the stability of QoS objectives and the
convergence of adaptations towards these objectives. Given the
uncertain fluctuating workload that may trigger adaptations,
the Markov-based model is able to dynamically capture the
states for processing the workload and the probabilistic transi-
tions between these states. Several quality metrics; such as re-
sponse time, throughput, processing cost, energy consumption;



can, then, be deduced from the model. The proposed model
is assisted by queueing-theoretic concepts that discipline the
analysis when handling run-time workload. The analysis aims
for assessing and predicting the behaviour of the architecture
during run-time.

Though Markov-based and queueing models were studied in
the context of cloud performance modelling, the novelty of the
proposed model relies in: (i) employing multiple dynamic par-
allel queues to deal with the heterogeneity of the environment,
related to the different computational capacities and configu-
rations of physical and virtual machines in the architecture,
(ii) providing fine-grained control for the impact of tactics
on the stability of quality attributes, as well as predicting
their performance and their impact on inter-related attributes,
and (iii) employing self-awareness principles to discipline
the way workload is processed, in order to provide better
informed adaptations relative to various scenarios. Employing
self-awareness would provide more intelligent adaptation, and
better trade-off management between different tactics. The
benefit of the improved run-time adaptation is observed by
achieving the stability of quality attributes subject of interest.

Our model is experimentally evaluated on the RUBiS bench-
mark [5] using the World Cup 1998 workload trend [6]. The
quality-driven self-aware cloud architecture [7] was simulated,
extending CloudSim [8]. The comparison between the ex-
perimental results and the numerical results obtained by a
MATLAB implementation of the analytical model shows the
accuracy and correctness of our model. Comparing our self-
aware model with non-self-aware, the former outperform in
handling QoS and converging the architecture into stability
following adaptations.

The rest of this paper is organised as follows. Section II
introduces background about quality-driven self-aware archi-
tectures. Section III presents the proposed model, and section
IV presents our experimental evaluation. Section V discusses
related work. The paper is concluded in section VI.

II. BACKGROUND

Self-awareness and self-expression have recently emerged
in the design and operation of complex, heterogeneous and
dynamic software [9] [10]. The self-aware architecture style
draws on the principles of self-awareness to enrich self-
adaptive architectures with self-awareness capabilities, and is
defined based on a self-aware node unit [9].

Different levels of self-awareness, called capabilities, have
been identified to better assist the self-adaptive process;
such as stimulus-, goal-, interaction-, time-, and meta-self-
awareness [9] [10] . For more details, the reader is referred
to the latter references. In this work, we employ the goal-
awareness capability, that is having knowledge of current
goals, objectives, preferences and constraints, in such a way
that it can reason about it.

Various self-aware architecture patterns have been intro-
duced, where each contains different self-awareness capabili-
ties [9] [10]. In our recent work [7], we have extended the

emerging class of self-aware architectures with QoS self-
management components and a catalogue of architectural
tactics designated to fulfil different quality attributes. The
architecture features a catalogue of architectural tactics; such
as vertical scaling, horizontal scaling, virtual machines con-
solidation [7]. The purpose of adaptation is to satisfy the QoS
requirements of multi-tenant users, by changing configuration
and choosing optimal tactics.

Incorporating tactics, as adaptation mechanisms to meet the
QoS objectives, aimed to improve and enrich the quality of
self-adaptation. Meanwhile, achieving a stable QoS provision
during run-time through stable adaptations requires continuous
fine-grained evaluation of the tactics performance and their
impact on the stability of inter-related quality attributes.

III. DYNAMIC SELF-AWARE IMPACT MODEL

Cloud architectures exhibit probabilistic behaviours during
run-time, due to the uncertain fluctuation of workload at run-
time, the constraints on available resources and changes in
the environment. A self-adaptive architecture would dynam-
ically respond to the run-time dynamics using adaptation
mechanisms; such as architectural tactics; for better tuning,
responding and achieving QoS. Architecture’s behaviour can
also be affected by prior adaptation actions.

Given the run-time cloud dynamics and the probabilistic
behaviours of the self-adaptive architecture, a Markovian an-
alytical modelling can provide a generic and scalable model
for these probabilistic behaviours. Based on multiple paral-
lel dynamic queues, the model can capture instance-related
information at finer-grained level of tactics’ configurations,
given the environment heterogeneity. The model can, then,
measure and predict quality attributes for a scenario of interest.
Such measurements and predictions can assist in choosing the
optimal tactics and their configurations, for stable adaptations
achieving the stability of QoS provision.

We also employ self-awareness capabilities to provide a
more intelligent way in handling workload and related adap-
tations. More specifically, we employ the goal-awareness ca-
pability in the model, in order to reach a stable adaptation
converging towards the quality objectives. This allows taking
better informed adaptation actions.

Nevertheless, the modelling is generic and can be extended,
following the same fundamental principle of the modelling,
to capture other adaptation properties similar to stability.
Examples include short settling time - the time required for
the adaptive architecture to reach the desired state - and
small overshoot - the utilisation of computational resources
during the adaptation process to achieve the adaptation goal
[1]. In more details, the model can be further refined to
capture more states and transitions between these states, where
these refinements can enable finer and explicit analysis for
other behavioural properties, which can influence adaptation
properties.

In the below sub-sections, we present our assumptions, the
dynamic queueing model, the quality model, and the tactics’
impact modelling.



A. System Model

A self-adaptive cloud node is running m Physical Machines
(PMs). A PMi, where i = {1, ...,m} runs ni Virtual Machi-
hes (VMs) sharing computational resources. The number of
running VMs varies from one PM to another according to its
computational capacity. Service requests (e.g., web service,
SaaS request, computational request) are received and pro-
cessed on the cloud infrastructure, where the workload tends
to vary in number of incoming requests, length of each request,
and quality requirements according to the client SLA.

We assume the total incoming workload λ will be divided
among the m PMs resulting {λ1, λ2, λi, ..., λm}. Several al-
gorithms have been proposed to manage the jobs placement
in PMs and VMs. Though we follow a simple approach for
requests placement, the same principle can apply to other
placement mechanisms. The distribution of workload, in our
case, is based on either the PM computational capacity in case
PMs computational capacity are different, or equally on all
PMs based on their availability.

Each PM, by its turn, will distribute its assigned workload
on its n running VMs. Workload is distributed on VMs
level either based on VM computational capacity in case the
incoming request is constrained by certain computational re-
quirements, or equally in case of no constraints. The workload
is denoted by λij , where i indicates the PM, j indicates the
VM, and j = {1, ..., ni}. For a VMij , an m/m/1 queue will
be formed for the incoming requests to be processed, where
the incoming rate of requests constitutes a poisson process of
rate λi/n (assuming equal workload distributed on all VMs),
and the service process is markovian exponentially distributed,
with parameter µij and mean 1/µij that is handled by that
VM. Thus, the total service handled by the self-aware node is
m∑
i=1

n∑
j=1

µij . The handling of workload in a self-aware cloud

node is illustrated in Figure 1.
Unlike most of the prior models that have employed only

single queues, we employ multiple parallel dynamic queues,
where the queuing can discipline the way we analyse the work-
load in relation to heterogeneous environments with varying
PMs, VMs, and their computational capacities. The model
also features scalability into the analysis, as well as helps in
tracking and predicting the behaviour at a given time instance.

B. Quality Model

Considering the formed queue of incoming requests for
VMij as a continuous time Markov chain, the markovian an-
alytical model allows to estimate the quality of service. Given
the expected workload λ, the number of PMs m, VMs, and the
capacity of both of them, the model can approximate different
quality attributes; such as response time (R), mean queue (W ),
throughput (T ), utilisation (ρ), by applying m/m/1 queue and
Markov process properties, as well as Little’s law.

Having performance metrics of each VM independently, all
performance metrics for a given PM could be deduced, as well
as for the self-adaptive cloud node. The mean response time
for PMi is the mean response time for the ni VMs running on

Fig. 1. Dynamic self-aware workload handling

that PM. Also, the mean utilisation and the throughput can be
calculated as the sum of the related measures of the ni VMs.

On the node level, same metrics could also be calculated
as the sum of related metrics for the m PMs operating on
the node. Operational cost could also be calculated among the
node, that is the cost of processing the incoming workload:

C =
m∑
i=1

n∑
j=1

Cost(CPU)ij + Cost(memory)ij .

And, the total power consumption of all running PMs, given
the varying number of VMs and their allocated CPU threads,

would be: C =
m∑
i=1

Ei

C. Modelling the impact of adaptation tactics

As an architectural tactic represents codified knowledge
about the relationship between architectural decisions and
quality attributes, we describe hereunder how our analytical
model can accommodate the impact of a diverse range of
tactics on the stability of these quality attributes.

First, tactics related to PMs; such as horizontal scaling and
consolidation; are reflected on our model by varying the value
of m PMs. That is, scaling with a certain number of PMs
will be reflected in our model when dividing the incoming
workload λ on more PMs; i.e. m + 1. This would influence
the stability of performance (response time) and greenability
(energy consumption).

Second, tactics related to VMs; such as vertical scaling and
VMs consolidation; are reflected in our model by increasing
or decreasing the total value of n VMs. This influences the
average latency of processing the incoming requests.

Third, tactics related to computational capacity; i.e., CPU
threads of a specific VMij ; are reflected in the increase or
decrease of the corresponding service rate µij , and hence



influence the throughput. Also, the utilisation of VMs, de-
termined by our model, allows consolidating the less utilised
VMs (e.g. x VMs are less than 10% utilised) and re-checking
the performance metrics given the new number of VMs (n−x).

Aiming to stabilise a specific quality attribute, the impact of
related tactic could be predicted under different configurations
of the tactic, in order to select the optimal configuration.
Unlike prior related work, which considered a case of ho-
mogeneity, we consider the heterogeneity of environment in
PMs, VMs, and their computational capacity. The proposed
model is capable to model the sensitivity of quality parameters
behaviour with different scenarios varying number of PMs,
computational capacities of PMs, number of VMs, allocated
CPU threads and requests constraints. Besides, our model
allows measuring the cost and energy consumption of the self-
adaptive cloud node under these different scenarios.

Given QoS objectives, the model can deduce the impact of
adaptations on keeping the provision of these objectives stable.
The model can also deduce to what extent an adaptation action
could converge towards the stability of adaptation goals. The
goal-awareness capability, when employed to discipline the
way workload is processed dynamically, has better informed
the adaptation process to select the tactic configuration that
converges towards the adaptation goal.

IV. EXPERIMENTAL EVALUATION

The main objective of our experiments is to evaluate the
correctness and accuracy of our analytical model. We also
examine the efficiency of our self-aware model compared with
non-self-aware.

To conduct the experimental evaluation, the cloud self-
aware architecture [7] was simulated, extending CloudSim
[8]. The simulation was built using Java JDK 1.7, and was
run on an Intel Core i5 3.40 GHz, 8 GB RAM computer.
Our experiments used the RUBiS benchmark [5], an online
auction application defining different services, categorised in
two workload patterns: the browsing pattern assuming read-
only services, and the bidding pattern simulating both read and
write intensive services. Instead of using random workload
trend to simulate the number of requests, the number of
requests was varied proportionally according to the World Cup
1998 trend [6]. We compressed the trend in the way that the
fluctuation of one day in the trend corresponds to 200 seconds
in our experiments. We simulated the cloud dynamics based
on the benchmark workload patterns and run the entire World
Cup 1998 trend separately for each workload pattern.

To verify the correctness and accuracy of our analytical
model, we conducted experiments on the cloud architecture
and implemented the equations derived from the analytical
model using MATLAB. The model is applied at sampling
interval of 200 seconds with the total of 87 intervals corre-
sponding to the number of days in the World Cup 1998 trend.
The predictions obtained from the analytical model are, then,
compared with the results measured from the experiments,
as shown in Figure 2. The comparative results show that
both the analytical model and experiments are in agreement,

with insignificant discrepancy, throughout the different time
intervals of the varying workload trend.

To examine the efficiency of our model, we compared our
model in cases of self-aware architecture and conventional
self-adaptive architecture lacking self-awareness capabilities.
More specifically, we run the entire workload for both service
patterns under heterogeneous computational capacities and
measured the quality attributes after performing necessary
adaptations in both architectures. We report, here, on the
average response time in the time intervals where the workload
tends to highly fluctuate. The results are depicted in Figure 3.
As shown in the figure, the self-aware queueing was able to
result in better response time compared with the non-aware
queueing. It is also worth to note that the model assisted with
self-awareness showed better performance in cases of peak
workload for the intensive workload pattern. This reflects the
higher quality of adaptations and tactics selection.

To conclude, experimental evaluations have shown the cor-
rectness and accuracy of our analytical model, as well as
the performance achieved when assisted with self-awareness
capabilities. This reflects the model effectiveness in capturing
fine-grained information to determine the impact of tactics on
the stability of various quality attributes. Yet, it is worth to note
some threats to validity: (i) the experiments were conducted
in a controlled environment assuming poisson arrivals and
servicing, which could be relaxed in real world dynamics,
and (ii) experiments have not considered the real life scenario
of switching between the browsing and bidding workload
patterns. Though, we can consider that our experiments have
given good enough indication and approximation of likely
scenarios in a practical setting, given the use of the RUBis
benchmark and the real world workload trend.

V. RELATED WORK

In the context of modelling the impact of adaptations,
Impact Models for architecture-based self-adaptation were
proposed [4] to describe the impact of adaptations. Environ-
ment Domain Models were also used by adaptive systems to
describe their run-time behaviour [3] [4]. The core contribution
of both was declarative specification language equipped with
formal semantics, but with no direct linkage to quality targets
and their stability.

On the other hand, architecture-level performance models
have been proposed in the performance engineering commu-
nity. The works of [2] [11] developed run-time architecture-
level performance models that explicitly consider the dynamic
aspects of service-oriented software systems as part of their ar-
chitectural model. Though these models provide performance
prediction, they tend to be limited in covering various quality
attributes, with performance being the commonly attribute of
interest.

VI. CONCLUSION

In this paper, we proposed a dynamic analytical model for
assessing the impact of architectural tactics on the stability of
QoS provision and adaptations, given the run-time fluctuating



Fig. 2. Actual and predicted response time

Fig. 3. Response time in cases of self-aware and non-aware queueing

workload. The model features a fine-grained control of the
tactics’ impact on quality attributes in self-adaptive cloud
architectures. This allows dynamically determining the optimal
tactic configuration, that will lead to a stable adaptation achiev-
ing the adaptation goal. Employing self-awareness capabilities
have better informed the adaptation process, compared with
non-self-aware. While we have looked at finer analysis of
the queuing model to achieve the stability as an adaptation
property, the model is scalable to capture other adaptation
properties of interest following the same fundamental principle
of the modelling.

Our future work will focus on employing historical in-
formation from the time-awareness level to devise learning
about the performance of tactics under different workloads
and environmental conditions.
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