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Abstract 9 

 10 

Computational Fluid Dynamic (CFD) modelling of a heat pipe is a powerful tool that can be used to 11 

investigate the complex physical phenomena of the evaporation and condensation phase change 12 

processes inside thermosiphon heat pipes. In this work, a new CFD simulation of two phase flow inside 13 

thermosiphon heat pipe is carried out to investigate the effect of fill ratio (ratio of liquid volume to the 14 

evaporator volume) and inclination angle on its thermal performance in terms of temperature 15 

distribution and thermal resistance using FLUENT (ANSYS 15). Results of the CFD simulation were 16 

compared to published experimental data showing good agreement with maximum deviation of 4.2% 17 

and 8.1% for temperature distribution and thermal resistance, respectively. In addition, numerical 18 

results of inclination angle were also compared with experimental data in terms of thermal resistance 19 

giving maximum deviation of 1.3%. Using the validated CFD modelling, results showed that at low fill 20 

ratio and low inclination angle, there was a significant increase in the evaporator temperature. 21 

Regarding the thermal resistance, a fill ratio of 65% and inclination angle of 90o produced the lowest 22 

thermal resistance for all the heat input values used. Also, as heat input increases, the effect of the fill 23 

ratio and inclination angle becomes more significant. 24 
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NUMECLETURE 
 
Cp Specific heat J/kg K t Time s 
D Outside diameter of  thermosiphon m u Velocity m/s 
E Total energy per unit mass J/kg Greek symbols 
FS Continuum surface force Kg/m2s2 α Volume fraction  
g Acceleration gravity m/s2 μ Dynamic viscosity Pa s 
h Heat transfer coefficient W/m2 K ρ Density Kg/m3 
hfg Latent heat J/kg σ Surface tension coefficient N/m 
L Height m Subscripts 
K Thermal conductivity W/m K con Condenser  
KC Surface curvature  conv Convection  
P Pressure Pa cw,av Condenser wall, average  
Qcon heat removed from condenser W l Liquid  
Sq Energy source term                             J/m3s mix Mixture  
Sam Mass source term      Kg/m3s Sat Saturation  
T Temperature K v Vapour  
 26 

1. Introduction 27 

Heat pipes are devices for transferring heat from one point to another by evaporating and condensing 28 

the working fluid in a sealed vessel. They have the advantages of low thermal resistance, compact and 29 

uses small amount of working fluid thus are used in wide range of applications such as electronics 30 

cooling, heat exchangers and solar collectors. The main sections in the heat pipe are evaporator and 31 

condenser in which the heat is absorbed by working fluid in the evaporator side and rejected in the 32 

condenser. The vapour condensates by giving up its latent heat to the coolant at the condenser section 33 

and the condensate returns back to the evaporator by capillary force in the case of wicked heat pipe or 34 

by gravity in the case of wickless heat pipe (Thermosiphon). Considerable interest has been paid to 35 

wickless Two-Phase Closed Thermosiphon (TPCT) heat pipes due to their simple construction and low 36 

cost [1-3].  37 

Although many experimental studies have been performed to examine the impact of working fluid fill 38 

ratio and inclination angle on the performance of different types of heat pipes, limited number of these 39 

studies have tested the performance of two phase closed thermosiphon. Noie [4] studied the effect of 40 



filling ratio and the evaporator aspect ratio (evaporator length to evaporator diameter) on the heat 41 

transfer performance of the TPCT for a range of heat input. It was found that changing the fill ratio can 42 

reduce the evaporator wall temperature depending on the aspect ratio.  Jiao et al [5] developed an 43 

analytical model to investigate the effect of filling ratio on the steady state heat transfer characteristics 44 

of a vertical wickless heat pipe and compared the results with their experimental work. They reported 45 

that the fill ratio depends on geometrical parameters and heat input. Jouhara and Robinson [6] 46 

investigated experimentally the effect of using different working fluids namely, water, FC-84 and FC-47 

3283 and two filling ratios (100% and 50%) on the performance of thermosiphon heat pipe. A small 48 

size thermosiphon of 10 W with different working fluids (water, methanol and acetone) and liquid fill 49 

at various input energy has been investigated by Mozumder et al [7]. The study showed that the effect 50 

of charging liquid can be indicated by temperature difference, thermal resistance and overall heat 51 

transfer coefficient. The influence of the charged liquid and adiabatic length on the thermal 52 

performance of a long heat pipe charged with R-134a has been examined by Sukchana and Jaiboonma, 53 

2013 [8] who concluded that the optimum liquid charge and heat flux suitable for shorter adiabatic 54 

section were 15 % and 5.92 kW/m2, respectively. Chehade et al [9] tested effects of fill ratio, inlet 55 

cooling water temperature and mass flow rate in condenser jacket on the performance of the two-phase 56 

closed loop Thermosiphon. They concluded that the best fill charge ratio is between 7% and 10% and 57 

the fastest start up occurs by using the optimal fill ratio. 58 

 An experimental study has been performed by Manimaran et al [10] to examine the effect of heat 59 

input, charge fill ratio, and angle of inclination on thermal characteristics of a heat pipe, who reported 60 

that the lower thermal resistance was obtained at fill ratio 75% and vertical orientation. Sadeghinezhad 61 

et al and Ghanbarpour et al [11, 12] investigated the effect of different nanofluids and inclination angle 62 

on the thermal characteristics of a sintered wick and screen mesh heat pipe, respectively. They reported 63 

that the orientation has a strong effect on the thermal performance of a heat pipe and the lower thermal 64 



resistance is obtained at an angle of 60o. The effect of inclination angles on thermal performance of 65 

ammonia pulsating heat pipe and copper nanofluid heat pipe has been performed by Xue Zhihu and Qu 66 

Wei, and Senthilkurmar et al [13, 14], respectively. They demonstrated that the thermal performance of 67 

studied heat pipes increases as the inclination angle increases. Nazarimanesh et al [15] performed an 68 

experimental study to investigate the thermal of performance sintered heat pipe at various degree of 69 

inclination. They found that the lowest thermal resistance for base working fluid is achieved at an angle 70 

of 90o.     71 

There have been limited published CFD research work conducted to analyse TPCT heat pipes despite 72 

their numerous applications [16]. Fadhl et al [16] developed a CFD model to simulate condensation and 73 

evaporation processes inside the TPCT. CFD results were compared with experimental data in terms of 74 

temperature distribution along the heat pipe and thermal resistance at different heat inputs. They 75 

reported that the thermal performance of thermosiphon heat pipe improved by increasing heat input 76 

over 172 W. 77 

Alizadhdakel et al [17] have reported experimentally the effect of input energy and fill ratio on the 78 

performance of a wickless heat pipe. They have also carried out a CFD simulation to investigate the 79 

phase change phenomena with effect of noncondensable gases throughout thermosiphon, and compered 80 

the results of experiment and CFD model. An optimum value for fill ratio of 50% was concluded for 81 

the studied thermosiphon and heat input range. A three dimension CFD analyses to investigate the 82 

effect of water with different concentrations of nanoparticles on the thermosiphon heat pipe 83 

performance has been performed by Humic and Humic [18]. Results showed that the concentration of 84 

nanoparticles in water had a considerable effect on the heat transfer characteristics of The TPCT. Fadhl 85 

et al [19] carried out a CFD simulation of a wickless heat pipe with R134a and R404a as working 86 

fluids, and Results were compared with published experimental data in terms of temperature 87 

distribution along the wall of TPCT. They found that thermal characteristics of both fluids inside the 88 



thermosiphon differ significantly from that of water.  A numerical CFD analysis and experimental 89 

work to investigate cooling water flow rate, input energy an orientation on the thermal performance of 90 

a thermosiphon heat pipe have been carried out by Abdullahi [20]. Results show that the heat transfer 91 

characteristics of the TPCT increase as inclination angle and input energy increase. Kim et al [21] 92 

implemented a CFD simulation to study the effect of the condensation frequency on the mass transfer 93 

rate during phase change inside a thermosiphon heat pipe. The study concluded that the condensation 94 

frequency should be considered as 0.1×(ρl /ρv) to accurately simulate the mass transfer process during 95 

condensation and evaporation phenomena.  96 

From all mentioned experimental investigations, it can be concluded that the best fill ratio and 97 

inclination angle for any heat pipe depend on many factors such as geometry, heat input, type of liquid 98 

and operating conditions. Therefore, according to these parameters, the suitable inclination angle and 99 

liquid charge ratio change from one heat pipe to another and investigations to identify the best fill ratio 100 

and inclination angle is needed whenever anyone of these parameters is changed. For that reason, a 101 

numerical study should be used to specify optimum charging ratio and orientation before the 102 

experimental work to reduce time and cost of these investigations. In addition, all stated numerical 103 

CFD studies were not employed to analyse these effects. Thus, in the present study, a new CFD model 104 

was developed to investigate the influence of five different values of fill ratio (25%, 35%, 65%, 80% 105 

and 100%) of water and inclination angle range of (10, 30, 50, 70, and 90o) on the thermal performance 106 

of a two-phase closed thermosiphon at various values of heat input. Consequently, wide range of 107 

affecting parameters can be modelled to investigate their effect on the performance of the heat pipe.   108 

 109 

2. GOVERNING EQUATIONS  110 

Many researchers have used Volume of Fluid (VOF) model to solve numerically a multiphase flow 111 

because it is easier compared with finite volume method. Reasons behind that are that the location of 112 



the interface between phases varies for each computational step, and physical properties at the interface 113 

are also changeable which make the numerical simulation computationally expensive. Thus, solving 114 

these problems can be achieved using VOF model by defining the motion of all phases and tracking the 115 

location of the interface accordingly [16-28]. In the VOF model, movement of different fluids can be 116 

tracked by solving a single set of Navier-Stocks equations for the volume fraction of each fluid 117 

throughout the computational cell [28]. Therefore, the existence of a certain phase in any control 118 

volume can be easily specified from the volume fraction according to the following three cases:     119 

αl= 1: The cell is full of vapour  120 

αv = 0: The cell is full of liquid 121 

0 < αv < 1: The cell contains a mixture of liquid and vapour 122 

The third case means 123 

1=+ vl αα                                                                                                                                [1] 124 

Where lα and vα are volume fractions of liquid and vapour respectively.  125 

In order to define the motion of the fluid inside the TPCT during evaporation and condensation 126 

processes, the governing equations of mass continuity, momentum and energy with source terms are 127 

solved using Fluent Ansys. 128 

 129 

2.1 Continuity Equation 130 

0)()( =⋅∇+
∂
∂ u
u

ρρ                                                                                                          [2] 131 

Where, ρ and u are the density and velocity of the fluid. 132 

To track the interface between phases, solution of eq. (2) for the volume fraction is needed. Therefore, 133 

for the secondary phase (liquid phase) of VOF model, this equation can be written as follow: 134 

 135 
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Where, Sαm is the mass source term that can be used to find the mass transport from one phase to 137 

another during the evaporation and condensation processes. The above equation solves for the 138 

secondary phase (l) only and the volume fraction for the primary phase (v) can be calculated using eq. 139 

(4): 140 
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2.2 Momentum Equation 143 
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Where, the fluid properties ρ and μ are expressed by eq. (6) and eq.(7) respectively. According to the 145 

VOF model, the physical properties are determined for the mixture only based on the value of volume 146 

fractions of liquid and vapour. 147 

vvll ραραρ +=                                                                                                                     [6] 148 

vvll µαµαµ +=                                                                                                                     [7] 149 

FS is the Continuum Surface Force (CSF) acting on the interface between two phases which was 150 

proposed by Brackbill [29] and is used in Fluent Ansys to include the effect of surface tension. This 151 

term can be expressed as follow [30]: 152 

vl

llvvvvll
S

kckcF
ρρ

αρααρασ
+

∇+∇
= 2                                                                                    [8] 153 

Where, σ is the interfacial tension between two phases, Kcl and Kcv are surface curvatures of liquid and 154 

vapour respectively that can be written in the following forms:   155 
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 157 

2.3 Energy Equation:    158 

   159 
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Where, E and K are the internal energy and thermal conductivity which can be computed from Eq. (12) 161 

and Eq. (13) respectively, again, for mixture only. 162 

vvll kkk αα +=                                                                                                                    [12] 163 
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Where, lk and vk are the thermal conductivity of liquid and vapour and Cpl and Cpv are the specific 165 

heat of liquid and vapour respectively. Sq, is the energy source term which can be employed to 166 

determine the heat transfer during the phase change which is calculated from mass source term Sαm and 167 

the latent heat (hfg) as follow: 168 

fgmq hSS α=                                                                                                                        [14] 169 

Single momentum equation and energy equation will be solved all over the control volume for both 170 

fluids. Accordingly, the computed velocity and temperature will be shared between two phases. 171 

  172 

 2.4 Phase Change Equations 173 

In order to model the transport phenomenon inside the thermosiphon represented by mass and heat 174 

transfer from one phase to another during evaporation and condensation processes, source terms 175 

proposed by De Schepper et al [22] need to be added to the continuity and energy equations used by the 176 



VOF model in Fluent Ansys. As stated previously, a single volume fraction equation will be solved for 177 

each cell for secondary phase while the volume fraction for the primary phase will be obtained from 178 

eq.(4). Therefore, to describe the mass transfer related to the evaporation process, two equations are 179 

needed, one for liquid phase and another for vapour phase as follow: 180 

 181 

Evaporation   satmix TT >  182 

Liquid phase: 183 

sat

satmix
llM T

TT
S

−
−= ρaa 1.0                                                                                                        [15] 184 

Vapour phase: 185 

sat
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S

−
= ρaa 1.0                                                                                                         [16] 186 

Similar to the evaporation process, two expressions are also required to represent the mass transfer 187 

during the condensation process. Again, one for liquid and another for vapour as follow:  188 

Condensation   satmix TT <    189 

 Liquide phase:  190 

sat

satmix
vvM T

TTS −
= ρaa 1.0                                                                                                     [17] 191 

Vapour phase: 192 

sat

satmix
vvM T

TT
S

−
−= ρaa 1.0                                                                                                        [18] 193 

Accordingly, the energy source term Sq that needs to be added to the energy equation (eq. (11)) to 194 

represent the amount of heat transfer from one phase to another during the evaporation and 195 

condensation processes can be determined from eq. (14) as follow: 196 

 Evaporation 197 

fg
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S
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Condensation 199 

fg
sat

satmix
vvq h

T
TT

S
−
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 Where, Tmix and Tsat are the temperature of mixture and saturation temperature respectively. Equations 201 

(15-20) are set in a sub-program and linked to the Fluent to add the calculated mass source terms 202 

(eqs.15-18) and energy source terms (eqs.19 and 20) to the mass conservation equation (3) and energy 203 

equation (11) respectively in the VOF model in order to completely model the phase change process.    204 

 205 

3. CFD SIMULATION SET UP 206 

3.1 Geometry and Mesh 207 

Geometry of a vertical two-dimension wickless heat pipe has been generated using workbench design 208 

modular (Ansys 15). The geometry represents a copper tube with a total height of 400 mm, outer and 209 

inner diameters of 22 and 20.2 mm respectively. The thermosiphon is divided into two sections, 210 

evaporator and condenser with height of 200 mm each as illustrated in Fig. 1. These dimensions are 211 

chosen to be similar to geometry of a previous experimental work by Abdullahi [20] to validate the 212 

CFD simulation.  213 

Workbench design modular (Ansys 15) was also used to mesh the geometry where Control edge sizing 214 

technique was employed to control the grid in every domain and to govern cell sizes near inner walls 215 

and inside the solid domain (walls) with bias factor of 10 used in these regions to ensure that the flow 216 

and heat transfer can be correctly captured in these areas. The number of cells in the fluid domain was 217 

24522 and 9620 grids in the solid domain. The mesh size and type are shown in Fig. 2.a. 218 

 219 
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 Fig.1. Heat pipe geometry                                   Fig.2.a. Mesh of zoomed section 230 

 231 

 232 

3.2 Initial and Boundary Conditions 233 

Five different filling ratios and inclination angles are used in this study namely, 25%, 35%, 65%, 80% 234 

and 100% of the evaporator volume, and 10, 30, 50, 70 and 90o, respectively. To set up the fill ratio for 235 

each case, the corresponding evaporator height is initially patched with liquid while the remaining 236 

height is patched with vapour. In addition, the inclination angle is defined as the inclination of 237 

thermosiphon from the horizontal axis and can be set up by multiplying y-component of acceleration 238 

gravity with sine of the angle and x-component with cosine as shown in fig.2.b.  239 

 240 
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 241 

Fig.2.b. Inclination angle of thermosiphon heat pipe 242 

The initial temperature of both evaporator wall and liquid should be selected slightly above the boiling 243 

point which was chosen to be 373 oK to insure that the boiling process occurs once simulation time 244 

starts to reduce computational time [30] and the condenser wall and fluid temperatures were set as 290 245 

oK (condenser cooling temperature). Operating temperature should be set to be the smallest temperature 246 

in the system (290 oK) and operating density must be set as 0 Kg/m3 when ideal gas is used and as the 247 

smallest density in the system when constant gas density is used [30]. In addition, saturation 248 

temperature and operating pressure were set to be 373 oK and 101325 Pa, respectively. 249 

At the internal walls of evaporator and condenser sections, a non-slip boundary condition is applied, 250 

while a constant heat flux is imposed at the outer wall of the evaporator to simulate the heat added to 251 

the thermosiphon. Three values of heat flux were employed 2858, 5910 and 7346 W/m2 corresponding 252 

to heat transfer rates 39, 81 and 101W respectively, which is taken from [20]. The top and the bottom 253 

ends of the thermosiphon is assumed to be insulated, which means no cooling or heating effect applied 254 

at these walls. As a result, a zero heat flux is defined at these ends. To model the heat removed from the 255 

condenser section, a convection boundary condition is applied at the outer wall of the condenser 256 

section. Thus, the heat transfer coefficient between cooling water and the condenser’s wall needs to be 257 

calculated from the following relation: 258 

)(2 , mavcwcond

cond
conv TTDL

Qh
−

=
π

                                                                                             [21] 259 



Where, hconv is the convection heat transfer coefficient between the cooling water and the condenser’s 260 

wall, Qcond is the heat removed from the condenser section, Tcw,av is the average wall temperature of the 261 

condenser section and Tm is the mean temperature of the cooling water. Values of Qcond, and Tm are 262 

obtained from Abdallahi [20] experimental work. 263 

 264 

To include the effect of the interfacial force between liquid and vapour, the term Fs is added to the 265 

momentum equation eq. (5) by activating the CSF in the fluent. Consequently, the value of the surface 266 

tension in eq. (6) can be computed from the following formula [16]: 267 

275 103.210845.109805856.0 TT −− ×−×−=σ                                                                   [22] 268 

 269 

3.3 Solution Methods and Techniques 270 

In present analysis, the VOF model is used to simulate the multi-phase flow, while the gravitational 271 

acceleration of 9.81 m/s2 is activated to include a body force term. The water liquid is chosen to be a 272 

secondary phase (liquid phase) and its density can be determined from the following relation [16]: 273 

20026429.0252209.10083.859 TTl −+=ρ                                                                        [23] 274 

A transient solution with a time step of 0.001s is employed for all cases due to dynamic behaviour of 275 

the two-phase flow [17, 22]. A combination of the SIMPLE algorithm for pressure-velocity coupling 276 

and first-order upwind scheme for the calculation of the momentum and energy are used. For 277 

determination of the volume fraction and pressure, Geo-Reconstruct and PRESTO discretisation are 278 

chosen, respectively [16, 17]. The solution is considered to be converged when the residuals of the 279 

mass and velocity components are reduced to 10-4 while the residuals of the temperature variables are 280 

reduced to 10-6.  281 

4. RESULTS AND DISCUSSION  282 



4.1 Validation of the CFD Solution 283 

To validate the CFD simulation, same geometry and boundary conditions as Abdullahi [20] have been 284 

adopted. Therefore, the temperature distribution along the wall and the thermal resistance of the 285 

thermosiphon for the stated three different heat inputs which are determined from CFD modelling have 286 

been compared with those obtained from Abdullahi [20] experimental work.  287 

A comparison of the temperature distribution along thermosiphon wall between the CFD modelling 288 

(current work) and the experimental work [20] is illustrated in fig.3 for three input energies. It is shown 289 

that the CFD simulation (solid lines) predicts well the experimental results (marks). However, there is a 290 

slight deviation (maximum 4.2%) at the bottom of the evaporator and the top of the condenser where 291 

the difference becomes larger at larger heat input. 292 

 293 

 294 

Fig.3. comparison of Variation of temperature along the wall of thermosiphon between experimental 295 

data and CFD results (Vertical orientation) 296 

 297 

Figure (4) presents a comparison of the thermal resistance between CFD simulation and experimental 298 

study [20] at different heat inputs. It is observed that the CFD solution over predicts the experimental 299 



results by 8.1%. This is due to higher evaporator temperature and lower condenser temperature 300 

obtained from the CFD solution, which yield higher thermal resistance. However, the same trend has 301 

been achieved in which the thermal resistance decreases with increasing the heat input.   302 

 303 

Fig.4. Comparison of Variation of the thermal resistance with heat input between experimental data and 304 

CFD results (Vertical orientation) 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 



Fig.5.Temperature contours at various simulation times (101W, 65 % and 90o) 313 

T Figure (5) shows the heat transfer process represented by temperature contours during simulation 314 

time at heat input 101W, fill ratio 65% and vertical orientation. Firstly, heat transfer from evaporator 315 

wall to the liquid due to constant heat flux, then, when the working fluid reaches its saturation 316 

temperature, it starts boiling and the phase change occurs. Therefore, vapour raises up to heat the upper 317 

part of the heat pipe and the temperature increases accordingly with time until reaching the steady state. 318 

 319 

The variation of the vapour volume fraction with simulation time is illustrated in figure (6) in which the 320 

red colour refers to vapour phase (volume fraction=1) and the blue one refers to liquid phase (volume 321 

fraction=0). At the beginning, a very small bubble size is observed at time 0.1 second, then, bubbles 322 

size and number increase as simulation time increases due to increase in the temperature of the liquid 323 

reaching the boiling temperature and, hence, the steady state condition at time 60 seconds.     324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

Fig.6.Vapour volume fraction contours at various simulation times (101W, 65 % and 90o)  332 

 333 



4.2 Fill Ratio Effect 334 

The influence of the volume of the charged liquid on the thermal performance of the (TPCT) is 335 

obtained by employing the CFD simulation. Therefore, the temperature distribution on the outer wall of 336 

the thermosiphon for fill ratios 25%, 35%, 65%, 80% and 100% is shown in figures (7.a), (7.b) and 337 

(7.c) at heat inputs of 39, 81 and 101W respectively. Figures (7.a, b and c) show similar trends in 338 

temperature distribution along the wall of thermosiphon at three heat inputs for each fill ratio. It is also 339 

observed that the effect of changing fill ratio and increasing heat input on temperature profile is more 340 

significant in the evaporator section than in condenser section. In addition, a lowest wall temperature 341 

distribution is seen at fill ratio 65% for all input energies. On the other hand, a high wall temperature 342 

occurs at the mid-distance of the evaporator wall at fill ratio 25% and 35% for all heat inputs. This wall 343 

temperature increases with increasing the heat input until reaching the highest value at heat input 101W 344 

and fill ratio 25%. For fill ratios 80% and 100%, a higher wall temperature in upper part of the 345 

evaporator is observed compared with other values of fill ratio for three heat inputs. This is due to 346 

higher liquid height in the evaporator which prevents large bubbles to reach liquid surface forming a 347 

vapour film on the inner wall of the evaporator and hence, increasing the wall evaporator temperature 348 

in that region. The effect of higher liquid height decreases with increasing the heat input in the case of 349 

80% fill ratio whereas increases in the case of 100%.   350 



 351 

Fig.7.a Variation of temperature with the distance along the wall of the thermosiphon at heat input 39 352 

W for different fill ratios (Vertical orientation) 353 

 354 

 355 

Fig.7.b Variation of temperature with the distance along the wall of the thermosiphon at heat input 81 356 

W for different fill ratios (Vertical orientation) 357 

 358 



 359 

Fig.7.c Variation of temperature with the distance along the wall of the thermosiphon at heat input 101 360 

W for different fill ratios (Vertical orientation)  361 

 362 

Figure (8) presents the effect of the fill ratio on the average wall temperature of the evaporator for three 363 

heat inputs. It is shown that the average evaporator wall temperature decreases from its maximum value 364 

at fill ratio 25% to the minimum value at 65% then increases again to a certain value at fill ratios 80% 365 

and 100% for input energies 81and 101W (similar trend was obtained by [9]). However, at heat input 366 

39 W, there is a slight change in evaporator wall temperature between fill ratios 25% and 35% and after 367 

fill ratio 80% the trend decreases slightly at fill ratio 100%. Therefore, the effect of fill ratio on 368 

evaporator wall temperature is more clear at relatively high input energy (81and 101W) than that at low 369 

energy (39W).  370 

 371 



 372 

Fig.8. Variation of average wall temperature of evaporator with fill ratio at different heat inputs 373 

(Vertical orientation) 374 

Figure (9) shows the effect of heat input on thermal resistance for various fill ratios. It is seen that the 375 

thermal resistance decreases with increasing heat input for all fill ratios. A higher thermal resistance is 376 

observed at fill ratio 25% due to a small amount of working fluid whereas a lower value at 65% for all 377 

energy inputs (similar trend was obtained by [10]). However, a lower difference in thermal resistance 378 

between the fill ratios is seen at heat input of (39W), especially, between 25% and 35% compared with 379 

that at higher energy inputs (81 and 101W). This indicates that with low fill ratios and a heat input of 380 

101W, the heat pipe reaches its heat transfer limit leading to high temperatures at the upper part of the 381 

evaporator as shown in figures 7.b and 7.c. In addition, the thermal resistance for fill ratio 80% is 382 

greater than that for 100% at input energy 39W compared with that at higher heat inputs (81 and 383 

101W). Thus, the best fill ratio is 65% and this is a similar conclusion as those were concluded by [17] 384 

and [10]. The reason behind increasing the evaporator wall temperature and, hence, the thermal 385 

resistance at high fill ratios (80% and 100%) attribute to the fact that the thermal resistance of liquid 386 

film in the evaporator increases as liquid height increase (fill ratio) above the optimum value. 387 



 388 

Fig.9. Variation of thermal resistance with heat inputs at different fill ratios (Vertical orientation) 389 

4.3 Effect of Inclination Angle 390 

CFD simulation has been used to investigate the effect of inclination angle on the thermal performance 391 

of the thermosiphon at angles of (10, 30, 50, 70 and 90o). Firstly, the numerical results were compared 392 

with the experimental work of Abdullahi [20] in terms of thermal resistance to validate the CFD 393 

solution. Fig.10 presents a comparison of variation of thermal resistance with inclination angle of 394 

thermosiphon at heat input 109W between CFD modelling and experimental work [20]. CFD results 395 

show a good agreement with experimental data with maximum deviation of (1.3%) and produce a 396 

similar trend in which the lowest thermal resistance is obtained at angles of (80 and 90o) whereas the 397 

highest at (70o).  398 

 399 



 400 

Fig.10. Comparison of variation of thermal resistance with inclination angle between CFD result and 401 

experimental work (109W and FR=65%) 402 

 403 

Figure (11.a) presents the variation of vapour volume fraction during flow time for inclination angle of 404 

10o, heat input 101W and fill ratio 65%. It is clear that the liquid in evaporator is not in contact at 405 

certain parts of evaporator wall due to inclination leading to increase the wall evaporator temperature. 406 

In addition, it is observed that the bubble size remains relatively small as time increases and this may 407 

be attributed to the nearness of liquid surface to the bubble nucleation sites because of the inclination. 408 

As a result, a vapour film forms on the upper part of the evaporator wall which leads to additional 409 

increase in evaporator wall temperature. Fig.11.b shows the vapour volume fraction at simulation times 410 

3 and 60 seconds for different fill ratios. Relatively small bubbles are observed for fill ratios 25% and 411 

35% due to nearness of liquid surface from bubble sites. On the other hand, for fill ratios 80% and 412 

100%, many large bubbles stuck on evaporator wall before they reach liquid surface due to high height 413 

of liquid column resulting in higher evaporator temperature compared with fill ratio 65%.      414 

Bubble dynamics and frequency can be greatly changed by changing surface wettability in terms of 415 

contact angle [31]. This also depends on the type of fluid used where the contact angle is a function of 416 



surface tension which changes from one fluid to another. Therefore, investigating of such point would 417 

be important to study the effect of these parameters on the thermal performance of thermosiphon heat 418 

pipe in future work.  419 

. 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

Fig.11.a. Vapour volume fraction contours at various simulation times for inclination angle 10o  433 

 434 



 435 

Fig.11.b. Vapour volume fraction contours at various simulation times for different fill ratios 436 

 437 

Figures (12.a, 12.b and 12.c) illustrate the variation of the wall temperature of thermosiphon with the 438 

distance along the wall for three heat inputs (39, 81 and 101W) at five inclination angles (10, 30, 50, 70 439 

and 90) and fill ratio of 65%. They show a similar trend for three input energies in which the highest 440 

and lowest wall temperature occur at angles of 10o and 90o, respectively. These higher temperatures at 441 

low inclination angles attribute to the fact that some of the upper part of the evaporator section is not in 442 

contact with liquid due to inclination. However, at the inclination angle of 10o and heat input 39 W, the 443 

wall temperature near 0.2 m (at the beginning of the condenser section) remains constant for a short 444 

distance and then decreases. This can be attributed to the existence of liquid at the lower part of the 445 

condenser as a result of inclination near the horizontal orientation (10 degree) leading to blockage of 446 

this part which prevents the temperature to decrease, after that, the wall temperature starts decreasing 447 



again. This effect decreases as heat input increases (81W) due to increasing the evaporation rate which 448 

reduces the amount of liquid at that region allowing the wall temperature to decrease. It is also 449 

observed that the effect of inclination angle increases as the heat input increases. 450 

 451 

 452 

 453 

Fig.12.a. Wall temperature distribution at heat input 39W and fill ratio 65% for different inclination 454 

angles 455 

 456 



 457 

 458 

Fig.12.b. Wall temperature distribution at heat input 81W and fill ratio 65% for different inclination 459 

angles 460 

 461 

 462 

Fig.12.c. Wall temperature distribution at heat input 101W and fill ratio 65% for different inclination 463 

angles 464 

 465 



The effect of inclination angle on the average wall temperature of the evaporator at input energies of 466 

39, 81, and 101W is illustrated in figure 13. It can be seen that the evaporator temperature increases as 467 

the inclination angle decrease toward the horizontal orientation for all heat inputs and this increase is 468 

higher when the heat input is higher. However, at angle of 50o the value of the evaporator temperature 469 

is less than that at angle 70o for all three cases, but it is still higher than the value at angle 90o. 470 

 471 

 472 

 473 

Fig.13. variation of the evaporator wall temperature with inclination angle at heat inputs 39, 81, and 474 

101W (FR=65%) 475 

Figure 14 shows the effect of inclination angle on the thermal resistance of the thermosiphon at heat 476 

inputs 39, 81, and 101W. The results show that the thermal resistance decreases as the inclination angle 477 

increases and the highest and lowest thermal resistance are at inclination angle 10o and 90o, 478 

respectively, for all input energies. Therefore, the thermal performance of the (TPCT) is better at 479 

vertical orientation (90o) than that at other orientations (similar conclusions were reported by [10] and 480 

[15]). 481 



 482 

Fig.14. variation of the thermal resistance with inclination angle at heat inputs 39, 81, and 101W (FR= 483 

65%) 484 

 485 

5. CONCLUSIONS 486 

The effect of five fill ratios of working fluid (25%, 35%, 65%, 80% and 100% of the evaporator 487 

volume) and five inclination angles (10, 30, 50, 70 and 90o) on the performance of the tow phase closed 488 

thermosiphon was investigated numerically by developing a new CFD simulation. A comparison 489 

between the CFD solution and a published experimental work was also carried out for different heat 490 

inputs 39, 81 and 101W and at fill ratio of 65%. It is concluded that: 491 

 492 

1- Developed CFD simulation was successfully used to model the TPCT and investigate the effect of 493 

fill ratio and inclination angle on its thermal performance. This proved by comparing the wall 494 

temperature distribution and thermal resistance for three input energies at fill ratio 65% with published 495 

experimental data, and maximum deviations of 4.2% and 8.1% has been reported, respectively. 496 

Regarding to inclination angle, a comparison in terms of thermal resistance for inclination angles of 50, 497 



60, 70, 80 and 90o at heat input 109W and fill ratio 65% has been carried out with a maximum 498 

deviation of 1.3%.  499 

2- Heat transfer limit is reached when the volume of the charged liquid is small at fill charge ratio of 500 

25% and 35%. This is observed when a considerable increase in evaporator wall temperature takes 501 

place, especially at higher energy input. 502 

3- The lowest average evaporator wall temperature and thermal resistance take place at fill ratio of 65% 503 

and angle of 90o whereas the highest at 25% and 10o due to the effect of small fill ratio and inclination, 504 

respectively. This effect is higher as heat input increases. 505 

4- The best fill ratio and inclination angle regarding to the thermal performance for this case were 506 

found to be 65% and 90o, respectively. 507 
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