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ABSTRACT 29 

Airborne concentrations of Polycyclic Aromatic Hydrocarbons (PAH), quinone and nitro 30 

derivatives have been measured at three sites on the coast of Saudi Arabia to the north of the city of 31 

Jeddah.  The PAH show a general reduction in concentrations from northwest to southeast, 32 

consistent with a source from a petrochemical works to the northwest of the sampling sites.  In 33 

comparison, the concentrations of quinones show little variation between the sampling sites 34 

consistent with these being predominantly longer lived secondary pollutants formed from PAH 35 

oxidation.  The nitro-PAH show a gradient in concentrations similar to but smaller than that for the 36 

PAH suggesting a balance between atmospheric formation and removal by photolysis.  The 2-37 

nitrofluoranthene:1-nitropyrene ratio increases from north to south, consistent with atmospheric 38 

chemical formation of the former compound, while the ratio of 2-nitrofluoranthene:2-nitropyrene is 39 

consistent with hydroxyl radical as the dominant reactant.  An investigation of the changes in PAH 40 

congener ratios during air mass transport along the Red Sea coast shows consistency with reaction 41 

with a relatively low concentration of hydroxyl radical only for the day with the highest 42 

concentrations.  It is concluded that while PAH degradation is occurring by chemical reaction, 43 

emissions from other locations along the air mass trajectory are most probably also leading to 44 

changes in congener ratios. 45 

 46 

Keywords:  Polycyclic aromatic hydrocarbons; quinones; nitro-PAH; atmospheric concentrations; 47 

chemical reactions.  48 



3 
 

1.  INTRODUCTION 49 

Polycyclic aromatic hydrocarbons (PAH) are a group of compounds emitted widely to the 50 

atmosphere from pyrolytic and petrogenic sources such as hydrocarbon fuel combustion and 51 

evaporation (Ravindra et al., 2008; Harrison et al., 1996).  Their atmospheric concentrations are 52 

measured both in national networks and in research studies in many parts of the world.  Some 53 

members of the PAH group of compounds (congeners) are known human carcinogens and the 54 

World Health Organization has determined an exposure-response function for cancer of the lung as 55 

a result of PAH exposure, and has also reviewed other non-cancer effects upon human health 56 

(WHO, 2010).  The European Union has set a target value of 1 ng m-3 of benzo(a)pyrene as an 57 

aspirational limit to minimise adverse effects upon public health. 58 

 59 

PAH are reactive compounds and are oxidised in the atmosphere with lifetimes typically from hours 60 

to days (Keyte et al., 2013).  Amongst the first products of oxidation are oxy-derivatives, typically 61 

quinones, and nitro derivatives.  Far less is known about the carcinogenic activity of the derivatives 62 

than for the PAH, but PAH quinones have been linked with reactive oxygen species (Verma et al., 63 

2015) and oxidative stress (Li et al., 2003), an important mechanism in the development of human 64 

disease, and both quinones and nitro-PAH are potent in vitro mutagens with a consequent potential 65 

to cause cancer or teratogenesis (Durant et al., 1996; Pederson and Siak, 1981). 66 

 67 

Keyte et al. (2013) have reviewed the chemical reactivity, including mechanisms of PAH oxidation 68 

and their potential for long-range transport.  Walgraeve et al. (2010) reviewed the published data 69 

describing oxygenated PAH in the atmosphere, including measurements of ketones, 70 

carboxaldehydes, diones and quinones.  Noting the relative scarcity of quinone data, Delgado-71 

Saborit et al. (2013) report measurements of 14 PAH quinones in Standard Reference Material 72 

(Urban Dust) SRM1649a and SRM1649b, and in the ambient air.  They compare their ambient air 73 

concentration data with that from 14 other published studies.  Other than for anthraquinone and 74 
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7,12-benzo(a)anthracene quinone which are reported by most studies, the majority of compounds 75 

are reported only by a sub-set of studies. Furthermore, Delgado-Saborit et al. (2013) studied the 76 

partition of quinones between the condensed and vapour phases.  They found that, as for PAH, 77 

molecular weight is a good predictor of partitioning and a transition occurs in the region of 78 

molecular weight 200 to 250 from a presence predominantly in the vapour phase, to one which is 79 

mainly particle-associated, with the 50% point at molecular weight 230-240, when average air 80 

temperatures were in the range of 1-4ºC. Albinet et al., 2008 investigated the partitioning of PAH, 81 

oxy-PAH and nitro-PAH during the summer and winter seasons and noted that the partitioning of 82 

oxy-PAH and nitro-PAH were significantly different in both seasons. The 50% point at which 83 

compounds were present in the vapour and condensed phase increased in the summer from a 84 

molecular weight of 180-190 to 200-210 for oxy-PAH and 190-200 to 210-220 for nitro-PAH, 85 

confirming that temperature may have an influence in the partitioning.  Data for nitro-PAH in the 86 

atmosphere are scarce in the literature, with very few studies  reporting concentrations of a few 87 

compounds (e.g. Albinet et al., 2007; Ringuet et al., 2012; Souza et al., 2014; Dimashki et al., 88 

2000).  89 

 90 

In this study, concentrations of PAH, quinones and nitro-derivatives have been measured during 91 

summer and winter periods at three sites in Saudi Arabia and the concentration data and inter-92 

relations between compounds are reported in this paper. The spatial distribution of the PAH has 93 

been discussed in an earlier paper (Harrison et al., 2016), where it was concluded that the emissions 94 

from the large petrochemical works at Yanbu to the northwest of Rayes could be responsible for the 95 

observed spatial distribution and congener profile of PAH. 96 

 97 

2. AIR SAMPLING AND ANALYSIS 98 

The air sampling sites and protocols used in this work have been reported by Harrison et al. (2016), 99 

and a map of the sampling locations appears in Figure 1.  Particulate and vapour forms of the PAH 100 
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and their derivatives were sampled separately onto quartz filters and a PUF substrate respectively 101 

using a Tisch “pesticide” sampler with a TSP inlet.  Samples were collected over 24-hour periods, 102 

offset by 6 hours between samples, commencing at Rayes, with sampling 6 hours later at Rabegh 103 

and a further 6 hours later at Abhur.   104 

 105 

Quartz filters were cleaned prior to use by heating at 400ºC, followed by storage in a sealed 106 

container.  PUF substrates were cleared by ultrasonification in dichloromethane (200 mL) at 20ºC 107 

for 30 minutes.  These were stored in sealed bags in a -18ºC freezer.  After use in the field, filters 108 

and PUF substrates were wrapped in cleaned aluminium foil, sealed in plastic bags and stored at  109 

-18ºC.  The extraction, clean-up and preparation of samples prior to analysis incorporated a solid 110 

phase extraction step developed from methods described previously (Albinet et al., 2006; Cochran 111 

et al., 2012). Briefly, samples were spiked with a known amount of p-terphenyl-d14 (>99% purity, 112 

Greyhound Chromatography, Merseyside, UK) and 1-fluoro-7-nitrofluorene (>98% purity, Sigma-113 

Aldrich Company Ltd., Gillingham, UK) as recovery standards for PAH and OPAH/NPAH, 114 

respectively. Filters were placed inside a glass flask and spiked with internal standard (IS) mixture 115 

(deuterated PAH, NPAH and OPAH compounds (>98% purity, Sigma-Aldrich Company Ltd., 116 

Gillingham, UK)). Approximately 15 mL DCM (HPLC grade, >98% purity, Fisher Scientific UK 117 

Ltd) was added and the flask was covered with aluminium foil to prevent any evaporative loss of 118 

analyte and/or standard. PUF substrates were placed and compressed inside a large glass beaker, 119 

spiked with IS mixture. Approximately 300 mL DCM was added to each PUF substrate.  120 

 121 

Filters and PUF substrates were extracted by ultrasonication at 20°C for 30 minutes. Due to the 122 

larger volume of solvent used for PUF substrate extractions, samples were initially transferred to 123 

Turbovap apparatus (biotage Ltd, Uppsala, Sweden) and blown down under a gentle stream of 124 

nitrogen to reduce sample volume to approximately 5mL, prior to sample clean up. Extracted 125 

samples were passed through a Pasteur pipette containing 1g anhydrous sodium sulphate (Sigma-126 
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Aldrich Company Ltd., Gillingham, UK), concentrated under a gentle stream of nitrogen to almost 127 

dryness and then made up to 1mL with hexane (HPLC grade, >98% purity, Fisher Scientific UK 128 

Ltd).  129 

 130 

Sample extracts were then subject to a solid phase extraction step, based on the methodology 131 

described by Cochran et al., (2012). An aminopropyl solid phase extraction tube (Sigma-Aldrich 132 

Company Ltd., Gillingham, UK) was pre-eluted with 3x 1mL aliquots of DCM followed by the 133 

same measure of hexane. The sample was then passed through the column and target compounds 134 

were eluted by the sequential DCM/hexane solvent gradient (3 x 1mL) of 20/80%, 35/65%, 135 

50/50%. This resulted in optimum recovery of PAH, NPAH and OPAH compounds in one sample 136 

extract to undergo analysis for PAH and OPAH/NPAH separately. Extracts were further reduced 137 

under nitrogen to almost dryness and made up to a final volume of 100 µL with nonane (HPLC 138 

grade, >98% purity, Fisher Scientific UK Ltd), ready for analysis.  139 

 140 

Sixteen PAH, listed in Table 1 were analysed using Gas Chromatography (Agilent 6890) on a non-141 

polar capillary column (Agilent HP-5MS, 30 m, 0.25 mm ID, 0.25 µm film thickness – 5% 142 

phenylpolysiloxane) coupled to a quadrupole mass spectrometer (Agilent 5973N).  Detection limits 143 

lay below 1 pg m-3 for all compounds, and precision was 8 ± 4%, and accuracy (defined as the 144 

difference between the measured and true value as a percentage of the true value) was 6 ± 4% 145 

(Delgado-Saborit et al., 2010).  Analysis of NIST SRM 1649b was used to quality assure the 146 

measurements. 147 

 148 

Quinone and nitro-PAH compounds were analysed using Gas Chromatography (Agilent 6890W) on 149 

a Restek Rxi-PAH column (60 m, 0.25 mm ID, 0.1 µm film thickness) coupled to an Agilent 5973 150 

MSD operated in negative ion chemical ionisation (NICI) and SIM mode, as in Alam et al., (2015).  151 

We demonstrated good agreement of our measurements with values reported for NIST SRM 1649b 152 
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(as in Delgado-Saborit et al., 2013).  Some of the PUF substrates were found to be contaminated in 153 

the high molecular weight (five to seven rings) region, making quantification uncertain.  154 

Concentrations expressed are therefore only for the particle phase of these compounds, but the error 155 

is likely to be no more than ca. 10% (Alghamdi et al., 2015; Delgado-Saborit et al., 2013). 156 

 157 

As site details are important to the interpretation of these data, these are given below: 158 

 159 

Site C (Abhur) (21.7572ºN; 39.1147ºE) is located in the grounds of a research institute on the Red 160 

Sea coast to the west of major roads.  It is in the northern suburbs of the major city of Jeddah 161 

(population 5 million), with the King Abdulaziz international airport to the east (inland).  The site is 162 

approximately 130 km to the SE of Rabegh. 163 

 164 

Site D (Rabegh) (22.8122ºN; 39.0664ºE) is a site located about 1 km from the residential areas of 165 

this substantial city, which has appreciable local industry.  The sampling site is ca. 500 metres east 166 

of the coastal road.  It is approximately 100 km SSE of Rayes. 167 

 168 

Site E (Rayes) (23.5756ºN; 38.6058ºE) is a sparsely developed area with little road traffic and no 169 

appreciable local sources.  The sampling site is located about 950 metres inland (east) of the coastal 170 

road, and 25-50 km SSE of the large industrial complex in the region of Yanbu. 171 

 172 

3. RESULTS AND DISCUSSION 173 

Polycyclic aromatic hydrocarbons (PAH) are reactive in the atmosphere with lifetimes typically of a 174 

few hours for the most reactive congeners, and a few days for the least.  Ratios of compounds can 175 

change dramatically during atmospheric transport as a result of differential reactivity.  Alam et al. 176 

(2013) have interpreted differences in concentration ratios between roadside and urban background 177 

sites in terms of differential reactivity of congeners.  Compounds of low reactivity showed only a 178 
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small elevation in concentration at the roadside site, while the more reactive compounds show 179 

larger ratios due to loss in the more aged air sampled at the background site.  Using a similar 180 

approach,  Alam et al. (2014) studied ratios between congeners measured in urban air, and those 181 

sampled in rural air.  The urban/rural ratios were found to be greatest for the more reactive 182 

compounds, and in air masses which had aged most during atmospheric transport. 183 

 184 

Concentrations of PAH measured in this study have been discussed by Harrison et al. (2015) and 185 

will not be considered further.  The measured concentrations of the parent PAH, quinones and nitro-186 

PAH appear in Table 1, and ranges of comparative data from the literature appear in Tables 2 and 3.  187 

There are large divergences between published studies seen in Tables 2 and 3 for the sampled 188 

compounds, which are seen clearly when individual studies are identified in Tables S1 and S2 189 

(Supplementary Information).  These may arise from strongly differing degrees of local pollution, 190 

or interferences in the analytical procedure.  These are challenging trace analyses, and hence 191 

analytical artefacts are a very real possibility.  However, the concentrations measured in our work 192 

(Table 1) appear broadly consistent with those published previously (Tables S1 and S2). The PAH 193 

concentrations have been discussed in relation to other published data by Harrison et al. (2016). 194 

 195 

In addition to mean concentration, Table 1 includes the percentage particulate phase (%P). As is 196 

normally seen in PAH datasets, there is a strong trend of increasing percentage particulate phase 197 

with molecular weight, with three ring compounds being almost wholly vapour, while the 198 

compounds with five or more rings are predominantly particulate. This trend has been reported 199 

previously in samples collected in  Jeddah, Saudi Arabia by Alghamdi et al. (2015). Similar 200 

behaviour  is seen also in the quinones (as noted previously by Delgado-Saborit et al., 2013) and 201 

nitro-PAH (see Table 1). 202 

 203 

 204 
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3.1 Quinone: Parent PAH Ratios 205 

Alam et al. (2014) also studied quinone:parent PAH ratios, finding a relationship to air mass age.  In 206 

winter, ratios of phenanthraquinone to phenanthrene (PQ:PHE) in the UK were highest in the most 207 

aged air masses with origins in the arctic, with some values in the range 1.0-1.2, although some 208 

lower values were also present.  In the less aged air from mainland Europe and the United 209 

Kingdom, ratios were lower, almost all falling below PQ/PHE = 0.4.  In the present work, winter 210 

ratios were mostly in the range from <0.1-0.6, and in summer samples ranged up to 1.3.  Hence the 211 

two datasets appear broadly consistent, although the period of ageing of the emissions in the Saudi 212 

Arabian air masses is likely to be much smaller, provided the PAH are emitted in the vicinity of 213 

Yanbu as Harrison et al. (2016) hypothesise.  In the work of Alam et al. (2014) in the UK, ratios of 214 

anthraquinone to anthracene (AQ:ANT) in winter were again higher in the more aged air masses 215 

mostly in the range of 1.0-1.8.  In the less aged air masses winter ratios of AQ:ANT ranged from 216 

0.2-0.7.  In summer, in the more aged arctic air, AQ:ANT was generally higher than in the winter 217 

with all data in the range of 1.1-1.8 and in the less aged air was 0.2-0.8.  In the Saudi Arabian air 218 

masses, AQ/ANT was much higher with ratios ranging from 1.2-33.8.  The other ratio reported by 219 

Alam et al. (2014) was for benzo(a)anthracene-7,12-quinone which showed winter ratios to 220 

benzo(a)anthracene from 0.2-1.4 (BaAQ:BaA) with ratios in the more aged air masses generally 221 

>1.0,  but always <1.0 in the less aged air.  Ratios in the Saudi Arabian dataset ranged from <0.1-222 

4.6.  From this comparison, we infer that the ratios for PQ:PHE and BaAQ:BaA are broadly 223 

comparable in the current dataset from Saudi Arabia to that from the UK reported by Alam et al. 224 

(2014).   225 

 226 

It is noteworthy that the rate coefficient for oxidation of anthracene by the hydroxyl radical is a 227 

factor of 5.1 times greater than that of phenanthrene. Consequently if the processing time were 228 

shorter in Saudi Arabia as would be consistent with transport of emissions arising from the Yanbu 229 

petrochemical works, but the hydroxyl radical  concentrations were greater, then higher AQ:ANT 230 
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ratios than PQ:PHE ratios would be expected, and are observed.  Due to higher sunlight intensity 231 

and hence more rapid ozone photolysis, combined with higher absolute water vapour concentrations 232 

in the Saudi atmosphere, higher concentrations of hydroxyl radical are to be expected.  At a 233 

representative hydroxyl radical concentration of 2 x 106 cm-3, the atmospheric lifetime (time taken 234 

to reduce concentration by 1/e) of anthracene is around one hour, whereas that for phenanthrene is 235 

around 5.5 hours.  The travel time for the air mass from Yanbu to Rayes is of the order of 2-3 hours.  236 

It should be remembered that the samples were collected over 24-hour periods and hence include 237 

nighttime when reactions will have been much slower than during daytime.  Although nocturnal 238 

reactions with the NO3 radical are possible (Keyte et al., 2013), their rate is very uncertain without 239 

knowledge of the concentration either of NO3 itself, or of its precursor NO2. 240 

 241 

3.2 Seasonal Variations in Ratios 242 

Walgraeve et al. (2010) reviewed quinone:parent PAH ratios from various parts of the world, 243 

reporting that during winter, 50% of ratios fell between 0.006 and 0.16.  On the other hand, in 244 

summer, ratios were typically 20-fold higher, with 50% lying between 0.54 and 3.6. 245 

 246 

Ratios between quinones and  their parent PAH were scrutinised for seasonal differences (see also 247 

discussion above).  Compounds showing a marked elevation in quinone:PAH ratio in the summer 248 

samples were anthraquinone and phenanthraquinone, while ratios for other quinones, 249 

acenaphthoquinone to acenaphthene, 2-methylanthraquinone and 2,3-dimethylanthraquinone to 250 

anthracene did not show obvious seasonal differences. The quinone:PAH ratio may be viewed as 251 

reflecting the relative stability of the parent PAH and quinone to oxidation.  The oxidative capacity 252 

of the atmosphere is expected to be greater in summer than winter, and those compounds for which 253 

quinone/parent PAH ratios are elevated in summer seem likely to be those for which the quinone is 254 

more resistant to oxidation than the parent PAH. 255 

 256 
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Some contrasting behaviour was seen in the nitro-PAH compounds.  The compounds 1-257 

nitronaphthalene, 2-nitronaphthalene, 1-nitrofluoranthene, 2-nitrofluoranthene and 1-nitropyrene 258 

showed higher concentrations in winter than summer.  These compounds include some which arise 259 

predominantly from primary emissions and others largely resulting from atmospheric chemical 260 

reactions of PAH.  The nitro-PAH are subject to atmospheric decay by photolysis 261 

(Phousongphouang and Arey, 2003; Feilberg et al., 1999; Reisen and Arey, 2005) and hence it 262 

might be expected to find higher concentrations when sunlight is less intense, unless more rapid 263 

formation via a photochemically driven pathway outweighs this.  Not only were concentrations of 264 

nitro-PAH higher in the winter, ratios of 9-nitroanthracene:anthracene, 1-265 

nitrofluoranthene:fluoranthene, 2-nitrofluoranthene:fluoranthene, 1-nitropyrene:pyrene, 2-266 

nitropyrene:pyrene, and 6-nitrochrysene:chrysene, were all higher in the winter samples. 267 

 268 

3.3 Spatial Variation of Concentrations 269 

As seen in Figure 2 there was remarkable similarity in the concentrations measured at all three sites 270 

for anthraquinone, and phenanthraquinone, and between Rabegh (Site D) and Rayes (Site E) there 271 

was quite close agreement for acenaphthoquinone, 2-methyl-anthraquinone, 2,3-272 

dimethylanthraquinone and benzo(a)anthracene-7,12-dione.  The Coefficient of Divergence (COD), 273 

defined in Harrison at al. (2016) is a measure of spatial uniformity of concentrations. It takes values 274 

between zero (total uniformity) and one (totally divergent).  In all cases, the COD (see Table 4) was 275 

below 0.3, and in the closest case (phenanthraquinone and anthraquinone between Rabegh and 276 

Rayes) was <0.1.  This level of agreement was much higher than for the PAH concentrations.  Also 277 

in the case of 1,5-dinitronaphthalene, 9-nitroanthracene, 1-nitrofluoranthene, 2-nitrofluoranthene 278 

and 7-nitrobenzo(a)anthracene the COD was <0.3 for Rabegh and Rayes, showing moderate 279 

agreement.  This high degree of spatial uniformity is typically seen for secondary pollutants such as 280 

sulphate, which are formed slowly in the atmosphere, and are subject to sink processes working on 281 

a long timescale.  Rates of sulphur dioxide oxidation to form sulphate are typically only about 1-3% 282 
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per hour, far slower than the comparatively very rapid oxidation processes of the predominantly 283 

vapour phase PAH, such as anthracene and phenanthrene.  It would appear that the lifetimes of the 284 

quinones are far greater than those of the parent PAH, or they would show far greater spatial 285 

dependence than is actually observed.  Following this line of argument, it appears that the lifetimes 286 

of the majority of nitro-PAH would probably be intermediate between those of the PAH (short) and 287 

quinones (long).  The increase in quinone:PAH ratios with atmospheric transport seen by Alam et 288 

al. (2013; 2014) and in this work is consistent with quinones having greater stability than the parent 289 

compound. 290 

 291 

3.4 Spatial Transformation of PAH and Derivatives 292 

As outlined by Harrison et al. (2016),  who show an example trajectory, there were 14 days on 293 

which the air mass arriving at Abhur had followed the Red Sea coast from the northwest.  As some 294 

data were missing, data were averaged for a sub-set of 4 days with complete data, and a coastal 295 

trajectory.  Figure 2 shows (a) the average PAH, (b) average quinones, and (c) average nitro-PAH 296 

concentrations at the three sites over these days.  The average travel time of the air mass between 297 

sites E (Rayes) and C (Abhur) was estimated as 9.5 hours.  Figure 2(a) shows a substantial decline 298 

in the concentrations of all PAH, which could be the result of dilution with cleaner air, or chemical 299 

reactions, or more probably a combination of the two.  The quinones (Figure 2(b)) show much 300 

greater spatial uniformity, reflected in low coefficients of divergence (Table 4(a)), probably 301 

reflecting their largely secondary nature (although there is an important primary component) and 302 

suggesting appreciable longevity.  It is clear that the PAH loss between sites seen in Figure 2(a) is 303 

not converted to any substantial degree into quinone, or there would be larger inter-site differences 304 

seen in Figure 2(b).  The nitro-PAH do show greater spatial variation (Figure 2(c) and Table 4(b)).  305 

Most nitro-PAH have a primary component, and the spatial differences seen in Figure 2(c) may 306 

reflect dilution of primary emitted material.  This, however, seems unlikely.  If the major upwind 307 

source is a petrochemical plant, vapour loss is likely to be the largest PAH source and this would 308 
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contain PAH, but not the quinones and nitro-PAH which are combustion products.  Consequently, 309 

nitro-PAH are more probably reflective of reaction products, and their concentrations reflect a 310 

balance between formation and loss, the latter predominantly by photolysis (Phousongphouang and 311 

Arey, 2003; Feilberg et al., 1999; Reisen and Arey, 2005). 312 

 313 

Ratios between nitrofluoranthene and nitropyrene compounds can be indicative of atmospheric 314 

processes.  Specifically, the 2-nitrofluoranthene:1-nitropyrene ratio (2-NF/1-NP) is indicative of the 315 

relative contribution of atmospheric reactions via OH and NO3 relative to direct emissions (Keyte et 316 

al., 2013).  A ratio >5 can be taken as indicative of atmospheric reactions, while a ratio <5 is more 317 

likely to reflect direct emissions.  Mean site ratios in this study varied between 1.98 at site E and 318 

5.38 at site C (Table 5) indicating contributions from both sources.  It is notable that the ratio rises 319 

monotonically from site E (Rayes) to site C (Abhur) showing an increasing influence of 320 

atmospheric chemical formation. The ratio of 2-nitrofluoranthene:2-nitropyrene (2-NF/2-NP) can be 321 

diagnostic of the relative importance of OH and NO3 radicals in oxidising PAH.  A value of 322 

between 5-10 indicates dominance of the OH reaction, while those of >100 reflect an important 323 

contribution of NO3 radical attack on the aromatic compound (Keyte et al., 2013).  In this study, 324 

ratios remained close to 5 (see Table 5), suggesting that the OH radical is the more important 325 

reactant.  For identical concentrations of fluoranthene and pyrene, the yield ratio for OH reaction is 326 

2-nitrofluoranthene:2-nitropyrene = 6, which is close to our observed values.  This is similar to that 327 

observed by Alam et al. (2015) in Birmingham, UK. 328 

 329 

3.5 Decay Rates of PAH   330 

With the exception of acenaphthene which reacts rapidly with ozone, the atmospheric degradation 331 

of PAH is primarily by reaction with the hydroxyl radical (Keyte et al., 2013).  Rate coefficients are 332 

available for the reaction of the vapour of low molecular weight PAH with the hydroxyl radical, 333 

hence allowing prediction of their atmospheric decomposition.  The use of such decay rates is 334 
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however difficult to relate to decay during transport in the atmosphere since a plume containing 335 

PAH will be subject to dilution and potentially to the introduction of fresh emissions.  In the case of 336 

the three sites to the north of Jeddah (Rayes, Rabegh and Abhur), there are relatively few PAH 337 

sources and the possibility exists that the plume from the Yanbu petrochemical works would travel 338 

to the southeast with relatively little injection of fresh pollutant.  Since PAH react at very different 339 

rates with the hydroxyl radical, the ratios between congeners should change in a consistent manner 340 

irrespective of absolute concentrations which are affected by dilution processes. The concept was 341 

tested by application of the following equation which describes the change of PAH ratios as a 342 

function of their relative rates of reaction with the hydroxyl radical: 343 

 344 
ln([PAHi]t/[PAHj]t) = ln([PAHi]0/[PAHj]0) + [OH](k'(g)OH - k(g)OH)t 345 

where [PAHi]t and [PAHj]t are the final concentrations of PAH congeners i and j after reaction time 346 

(t), [PAHi]0 and [PAHj]0 are the initial concentrations of PAH congeners, [OH] is an estimated 347 

hydroxyl concentration, and k(g)OH and k'(g)OH are the OH reaction rate coefficients for PAHi and 348 

PAHj, respectively.  It is assumed that the compounds considered in the calculation are wholly in 349 

the vapour phase, as only a very small proportion of the low molecular weight compounds is in the 350 

condensed phase (Alghamdi et al., 2015 and Table 1).  It is also assumed that loss by deposition is 351 

similar for both compounds. 352 

 353 
The unknown in the equation is the hydroxyl radical concentration which can be output from the 354 

calculation, and can be compared with measured or modelled values giving a valuable check on the 355 

likelihood that the concentration changes seen are consistent with this reaction.   356 

 357 
For periods with appropriate air mass back trajectories, the ratios of PAH congeners (fluorene, 358 

phenanthrene, anthracene, fluoranthene and pyrene) were used in the above equation for a source 359 

site (Rayes or Rabegh) and a receptor site (Rabegh or Abhur) and a travel time estimated from the 360 

air mass back trajectory calculated using HYSPLIT.  The results of this calculation were in many 361 
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cases inconsistent with the congener ratios changing due solely to reaction with the hydroxyl radical 362 

except in the case of 29th September which was the date with the highly elevated concentrations 363 

which are shown for the three sites in Figure 3. For this date, the various combinations of sites and 364 

congener ratios led to broadly consistent estimates of hydroxyl radical concentration (24-hour 365 

mean) and a typical value calculated from concentration of phenanthrene and anthracene at Rayes 366 

and Abhur is 3.4 × 10⁵ cm-3.  This is low in relation to what might be anticipated as a hydroxyl 367 

radical concentration for rural Saudi Arabia based upon published data. Bahm and Khalil (2004) 368 

estimate September zonally averaged OH concentrations at 0.5km altitude and 25°N as 2.6 × 106 369 

cm-3. They comment that the Spivakovsky model (Spivakovsky et al., 2000) and MOZART-1 370 

model (Brasseur et al., 1998; Hauglustaine et al., 1998) estimate lower OH over land near the 371 

surface.  An important consideration, however, is that a release of PAH from the petrochemical 372 

works is likely to have been accompanied by much greater concentrations of other volatile organic 373 

compounds whose effect on the concentration of hydroxyl radical is difficult to predict as many 374 

would act as a sink, although the cycling of OH through peroxy radical chemistry may well also be 375 

promoted. This effect cannot be quantified without measurements of concentrations of VOC and 376 

NOₓ, and a chemistry-transport model, or direct OH measurements.  377 

 378 

Our inference is that the concentrations measured on 29th September are consistent with the decay 379 

of PAH by reaction with a relatively low concentration of hydroxyl radical;  however, data for the 380 

other days could not be fitted with this model suggesting that emissions of PAH from intermediate 381 

sites on the air mass trajectory introduced fresh pollutant hence changing congener ratios from those 382 

which would have prevailed in the absence of such emissions. 383 

 384 

The data in Table 1 has been scruitinised to look for any consistent shift in the % particulate which 385 

would be indicative of a  preferential reaction of either the vapour or condensed phase of the PAH 386 

(Keyte et al, 2013). No obvious pattern of behaviour is seen in Table 1 which is unsuprising as PAH 387 
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repartition actively between the phases in response to changing temperature or concentrations 388 

within a phase, in order to restore the phase equilibrium. 389 

 390 

4. CONCLUSIONS 391 

The spatial distribution of PAH and their nitro- and oxy- derivatives have been demonstrated 392 

through sampling at three sites on the Red Sea coast of Saudi Arabia. The PAH  show greater 393 

spatial variability than either the oxy derivatives (quinones)  or nitro-PAH reflecting their greater 394 

chemical reactivity.  The more abundant quinone compounds show a high degree of spatial 395 

uniformity consistent with their presence primarily as secondary pollutants, and the ratio of 396 

quinones to parent PAH increases with distance from the probable major source of PAH which is a 397 

petrochemical works to the northwest of the sampling locations. The concentrations of PAH decline 398 

monotonically from northwest to southeast as air masses travel along the Red Sea coast, which is a 399 

result both of chemical degradation and atmospheric dilution. The influence of chemical reactions 400 

has been assessed through the evaluation of changing ratios of compounds of different reactivity, 401 

which inherently controls for concentration changes due to dilution. Using the assumption that the 402 

breakdown of PAH is due to the reaction with hydroxyl radical, concentrations of hydroxyl have 403 

been calculated from the changing PAH ratios and estimated travel time of air masses between the 404 

sampling sites. In general the calculations do not yield realistic values for OH except for one day, 405 

29th September 2013, when higher PAH concentrations were observed. However the calculated OH 406 

radical concentration is significantly lower than the prediction of global models, which maybe due 407 

to emissions of VOC and NOₓ acting as a sink for OH or may be due to other sources of PAH 408 

emissions influencing concentrations between the source and receptor sites. However the results 409 

illustrate that atmospheric transport of PAH across a sparsely populated desert area is accompanied 410 

by an atmospheric breakdown rate broadly consistent with anticipated free radical concentrations.  411 

On other days, it appears likely that PAH emitted between the upwind and downwind sites has a 412 

sufficient influence upon the ratio to make the calculation unworkable. 413 
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Figure 1:  Locations of sampling sites and the city of Jeddah.  The sites are:  C Abhur; D-Rabegh 553 

and E-Rayes.  Sites A and B are within Jeddah. 554 
 555 
Figure 2:  Figure 2:  (a) Total PAH; (b) total oxy-PAH and (c)total nitro-PAH averaged over 4 556 

days on which the air travelled from northwest to southeast following the Red Sea coast. 557 

Figure 3:  (a) Total PAH, (b) total oxy-PAH and (c) total nitro-PAH at the three sites on 29th 558 
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Table 1: Total concentrations of PAH, quinone, and nitro-PAH compounds and percentage in the particulate phase at Abhur (site C), Rabegh (site D) 
and Rayes (site E) (ng m-³). 

PAH Congener 
Site C Site D Site E 

Mean Range Number of 
samples 

Mean 
P% Mean Range Number 

of samples 
Mean 
P% Mean Range Number of 

samples 
Mean 
P% 

Fluorene 0.47 0.20-1.54 10 1.8% 0.91 0.45-1.92 15 0.7% 1.13 0.36-6.98 22 0.9% 
Phenanthrene 6.03 2.57-12.09 10 3.1% 7.74 4.51-14.41 15 2.0% 9.58 3.24-29.92 22 1.9% 
Anthracene 0.31 0.14-0.79 10 4.5% 0.40 0.20-1.30 15 2.8% 0.82 0.19-7.53 22 2.4% 

Fluoranthene 0.94 0.50-1.67 10 6.3% 1.20 0.69-2.53 15 4.5% 1.18 0.40-5.86 22 5.9% 
Pyrene 0.89 0.43-1.50 10 7.5% 1.44 0.79-2.51 15 3.9% 1.11 0.27-7.08 22 7.2% 
Retene 0.56 0.05-1.14 10 16.0% 0.49 0.16-1.09 15 5.3% 0.52 0.21-1.75 22 8.6% 

Benzo(a)anthracene 0.26 0.05-0.59 10 27.6% 0.39 0.04-1.00 15 21.0% 0.37 0.02-1.48 22 30.0% 
Chrysene 0.26 0.07-0.47 10 60.4% 0.30 0.02-0.61 15 54.4% 0.39 0.06-1.91 22 47.7% 

Benzo(b)fluoranthene 0.12 0.01-0.25 19 88.1% 0.16 0.05-0.25 22 85.8% 0.23 0.04-1.53 22 78.2% 
Benzo(k)fluoranthene 0.12 0.02-0.23 19 90.3% 0.16 0.02-0.25 22 86.5% 0.24 0.04-2.08 22 84.7% 

Benzo(e)pyrene 0.10 0.01-0.27 19 100.0% 0.11 0.02-0.29 22 100.0% 0.19 0.03-1.68 22 100.0% 
Benzo(a)pyrene 0.07 0.01-0.16 19 100.0% 0.09 0.01-0.14 22 100.0% 0.16 0.01-1.53 22 100.0% 

Indeno(1,2,3-cd)pyrene 0.09 0.01-0.17 19 100.0% 0.09 0.02-0.29 22 100.0% 0.18 0.03-1.89 22 100.0% 
Dibenz(a,h)anthracene 0.03 0.01-0.08 19 100.0% 0.04 0.01-0.12 22 100.0% 0.08 0.01-0.67 22 100.0% 

Benzo(ghi)perylene 0.11 0.02-0.32 19 100.0% 0.18 0.04-0.69 22 100.0% 0.24 0.04-2.32 22 100.0% 
Coronene 0.09 0.03-0.21 19 100.0% 0.16 0.04-0.45 22 100.0% 0.20 0.06-1.54 22 100.0% 

Quinone Congener          

1,4-Naphthoquinone 0.00 0.00-0.01 19 100.0% n.d. n.d. 22 n.d. n.d. n.d. 22 n.d. 
2-Methyl-1,4-naphthoquinone 0.12 0.02-0.41 19 100.0% 0.10 0.05-0.14 22 100.0% 0.11 0.01-0.26 22 100.0% 

Acenaphthoquinone 9.14 1.70-23.30 10 0.2% 10.89 2.44-25.62 15 9.6% 6.61 2.84-11.31 22 12.6% 
Anthraquinone 3.31 0.44-8.37 10 3.9% 4.02 0.80-9.33 15 19.0% 3.15 0.76-8.92 22 16.9% 

Phenanthraquinone 2.31 0.31-5.93 10 5.7% 2.86 0.57-7.35 15 18.6% 2.34 0.52-8.25 22 16.4% 
2,6-Di-tert-butyl-1,4-benzoquinone 1.43 0.91-2.32 10 6.8% 1.99 1.19-4.74 15 28.5% 1.78 0.71-3.54 22 27.7% 

2-Methyl-anthraquinone 0.17 0.05-0.81 10 44.6% 0.52 0.13-0.82 15 81.4% 0.42 0.07-0.93 22 79.8% 
2,3-Dimethyl-anthraquinone 0.18 0.12-0.27 10 80.2% 0.38 0.14-0.64 15 91.8% 0.36 0.10-0.80 22 91.9% 
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Benz(a)anthracene-7,12-dione 0.11 0.01-0.20 19 100.0% 0.05 0.01-0.11 22 100.0% 0.07 0.02-0.37 22 100.0% 
5,12-Naphthacenequinone 0.11 0.02-0.20 19 100.0% 0.07 0.01-0.41 22 100.0% 0.09 0.00-0.42 22 100.0% 

NPAH Congener          
1-Nitronaphthalene 5.62 1.55-18.82 10 2.0% 6.70 1.43-23.13 15 1.2% 3.98 0.45-13.84 22 2.0% 
2-Nitronaphthalene 4.88 1.37-15.65 10 6.6% 4.77 1.60-15.39 15 4.8% 2.41 0.33-7.03 22 5.8% 

1,5-Dinitronaphthalene 0.78 0.26-1.57 10 50.9% 0.82 0.44-1.63 15 47.4% 1.07 0.58-1.79 22 52.5% 
9-Nitroanthracene 0.61 0.35-1.11 10 56.7% 0.56 0.21-1.08 15 56.0% 0.65 0.24-1.71 22 56.2% 

1-Nitrofluoranthene 0.13 0.01-0.57 19 91.7% 0.15 0.02-0.50 22 93.0% 0.23 0.08-0.54 22 91.7% 
2-Nitrofluoranthene 0.78 0.13-2.39 19 86.0% 0.50 0.12-1.27 22 89.2% 0.59 0.08-3.32 22 88.5% 

1-Nitropyrene 0.34 0.01-2.03 19 89.0% 0.55 0.01-4.23 22 87.5% 0.61 0.06-4.24 22 89.9% 
2-Nitropyrene 0.16 0.02-0.44 19 88.6% 0.13 0.02-0.61 22 91.9% 0.23 0.03-1.71 22 93.7% 

7-Nitrobenzo(a)anthracene 0.56 0.01-2.49 19 100.0% 0.47 0.10-1.32 22 100.0% 0.53 0.10-1.85 22 100.0% 
6-Nitrochrysene 0.06 0.01-0.16 19 100.0% 0.06 0.01-0.19 22 100.0% 0.1 0.01-0.19 22 100.0% 

n.d. = not determined   
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Table 2:  Range of concentrations of PAH quinones reported in the literature. 
 
Compound Concentration (ng m-3) 
9,10 phenanthrenequinone 0.01 – 2.0 
5,12-naphthacenequinone 0.02 – 1.6 
1-acenaphthenone 0.01 – 0.45  
1,4-naphthoquinone 0.02 – 1.03 
Anthracene-9,10-dione 0.056 – 13   
2-methylanthraquinone 0.05 – 1.31  
Benz(a)anthracene-7,12-dione 0.012 – 1.0  
2,3-dimethylanthraquinone 0.04 – 0.54  
 
 

Table 3: Range of concentrations of nitro-PAH reported in the literature. 

Compound Concentration (pg m-3) 
1-Nitronaphthalene 0.2 - 700 
2-Nitronaphthalene 0.0 - 292 
1,5-Dinitronaphthalene No data 
2-Nitrofluorene 0 – 100  
9-Nitroanthracene 9 – 846  
1-Nitrofluoranthene 0.01 – 0.19+ 
2-Nitrofluoranthene 11.7 – 1700  
3-Nitrofluoranthene 0.28 - 250 
4-Nitropyrene 0 – 2.9  
1-Nitropyrene 1 – 222  
7-Nitrobenz(a)anthracene 0.7 – 130  
6-Nitrochrysene 0.1 – 148 
2-Nitropyrene 0.8 – 60  
1,3-Dinitropyrene 0.1 – 1.2 
1,6-Dinitropyrene 0 – 0.1 
1,8-Dinitropyrene 0.3 – 8.7  
+  Sum of particulate plus vapour phases 
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Table 4: Coefficients of divergence (COD) values for (a) oxy-PAHs; (b) nitro-PAHs. 

(a) 
Species CODA&Rg CODA&Rs CODRg&Rs 

1,4-Naphthoquinone 1.000 0.964 / 
2-Methyl-1,4-naphthoquinone 0.349 0.444 0.294 

Acenaphthoquinone 0.257 0.224 0.255 
Anthraquinone 0.195 0.177 0.101 

Phenanthraquinone 0.195 0.185 0.098 
2,6-Di-tert-butyl-1,4-benzoquinone 0.270 0.247 0.134 

2-Methyl-anthraquinone 0.628 0.575 0.216 
2,3-Dimethyl-anthraquinone 0.409 0.425 0.168 

Benz(a)anthracene-7,12-dione 0.446 0.377 0.250 
5,12-Naphthacenequinone 0.441 0.435 0.343 

 
(b) 

Species CODA&Rg CODA&Rs CODRg&Rs 
1-Nitronaphthalene 0.260 0.415 0.381 
2-Nitronaphthalene 0.292 0.480 0.422 

1,5-Dinitronaphthalene 0.219 0.332 0.226 
9-Nitroanthracene 0.135 0.145 0.156 

1-Nitrofluoranthene 0.337 0.457 0.335 
2-Nitrofluoranthene 0.302 0.450 0.328 

1-Nitropyrene 0.309 0.519 0.421 
2-Nitropyrene 0.365 0.471 0.404 

7-Nitrobenzo(a)anthracene 0.392 0.396 0.291 
6-Nitrochrysene 0.299 0.465 0.451 

 

Note: A = Abhur ; Rg = Rabegh ; Rs = Rayes 
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Table 5:  Range and mean of ratios at C (Abhur), D (Rabegh) and E (Rayes) sites for 
nitrofluoranthene (NF) and nitropyrene (NP) isomers. 
 
 

 

  

Ratios Site C Site D Site E 
Mean Range Mean Range Mean Range 

2-NF/1-NP 5.38 0.16-11.18 2.82 0.07-9.38  1.98 0.08-6.56 
2-NF/2-NP 4.78 2.11-7.40 4.49 1.02-9.19  3.91 0.94-14.12 
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Figure 1: Locations of sampling sites and the city of Jeddah.  The sites are:  C Abhur; D-Rabegh 
and E-Rayes.  Sites A and B are within Jeddah. 
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Figure 2:  (a) Total PAH; (b) total oxy-PAH and (c)total nitro-PAH averaged over 4 days on which 
the air travelled from northwest to southeast following the Red Sea coast. 

(c) 

(b) 

(a) 
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Figure 3: (a) Total PAH, (b) total oxy-PAH and (c) total nitro-PAH at the three sites on 29th 
September 2013. 
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