

Asset-centric security-aware service selection
Tziakouris, Giannis; Zinonos, Marios; Chothia, Tom; Bahsoon, Rami

DOI:
10.1109/BigDataCongress.2016.50

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Tziakouris, G, Zinonos, M, Chothia, T & Bahsoon, R 2016, Asset-centric security-aware service selection: cloud
storage and app markets. in C Pu, G Fox & E Damiani (eds), 2016 IEEE International Congress on Big Data
(BigData Congress)., 7584956, Institute of Electrical and Electronics Engineers (IEEE), pp. 327-332, 5th IEEE
International Congress on Big Data, BigData Congress 2016, San Francisco, United States, 27/06/16.
https://doi.org/10.1109/BigDataCongress.2016.50

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 12/08/2016

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

G. Tziakouris, M. Zinonos, T. Chothia and R. Bahsoon, "Asset-centric Security-Aware Service Selection," 2016 IEEE International Congress
on Big Data (BigData Congress), San Francisco, CA, 2016, pp. 327-332.
doi: 10.1109/BigDataCongress.2016.50

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1109/BigDataCongress.2016.50
https://research.birmingham.ac.uk/portal/en/publications/assetcentric-securityaware-service-selection(2025823b-bcfd-44cd-9aac-dea4a69e512d).html

1

Asset-Centric Security-Aware Service Selection
Giannis Tziakouris, Marios Zinonos, Tom Chothia, Rami Bahsoon

School of Computer Science, University of Birmingham

Birmingham, United Kingdom

{yxt101, mxz178, t.chothia, r.bahsoon}@cs.bham.ac.uk

Abstract—Catering for the runtime security of users and their
assets (e.g. files, accounts, etc.) in service oriented environments
is a challenging problem. We motivate the need for an adaptive
framework that selects online services according to the runtime
security requirements and cost constraints of assets. We report on
a market-inspired approach (i.e. reversed Posted-Offer auction)
that satisfies multiple, heterogeneous requests for online services
in environments with shared and scarce resources. The solution
is tested on the specific area of Cloud storage services.

Keywords-security; service selection; market-inspired method-
ology; asset-centric;

I. INTRODUCTION

We perceive service repositories as marketplaces consisting
of diverse, on-demand resources and services that can be
traded to users for satisfying their functional and security
requirements. The service markets and repositories have been
witnessing significant increase in the number of services
offering comparable capabilities but tend to vary in their
security provision. Despite their similarities, each service is
associated with different security features, costs, strengths and
limitations from which users are inquired to select the one that
best satisfy their needs. Their selection can be a challenging,
time-consuming and expensive task, as users need to conduct a
thorough survey on the documentation of all available services
and service providers (SPs). The screening can inform an op-
timal selection decision. It can also inform the extent to which
the selection can protect the users’ assets. By users’ assets, we
refer to contextual (e.g. location) and contentual (e.g. files)
data maintained by users. The problem is complex as we
operate in elastic environments with multiple self-interested
users, each maintaining various assets that are associated with
different security requirements and cost constraints.

In spite of the vast research conducted on service selection,
only a small fraction of the work is concerned with the
security of services as either an additional quality dimension
or as an explicit one. However, these systems appear to be
incapable of handling diverse user requests that necessitate the
enforcement of different security policies for different assets
and the trade-offs that might arise from them. This limitation
outcomes into the provision of “one service for all”, which
leads to higher costs (users pay for services and resources
that they do not utilize) and unmet security requirements
(in terms of individual assets). Furthermore, existing service
selection frameworks tend to focus on the satisfaction of
the security goals as an "aggregate quality". They tend to

provide limited or no support for the composite security
attributes, their global satisfaction and trade-offs. Added, the
Ad-hoc allocation mechanisms utilized by existing service
selection systems can cause resource starvation when applied
in environments with scarce and shared resources. This is
due to their simplistic “first come first served” allocation
policy, which does not allow the prioritization of user requests
based on their security requirements and criticality. This can
result in the wasteful allocation of services/resources to users
that do not wish their immediate utilization, while refusing
provision to users that they need it. A solution to the problem
is to engineer security-aware service selection frameworks that
leverage market-inspired allocation methodologies. The choice
of market-inspired solution is justified for its proven ability in
converging towards "optimal" allocation in scenarios involving
multiple users competing for shared resources in dynamic
and elastic environments. Our market-inspired solution aims
to select service(s) that can best satisfy competing users’
requirements for both security and price of provision. Our
work features the following novelties:
• Develop a security-aware service selection framework

that utilizes market-inspired allocation methodologies and
the Weighted Linear Combination algorithm [1].

• Demonstrate the applicability of our framework on the
specific-area of Cloud storage services. We suggest a
list of security attributes that can drive the selection of
services in the context of Cloud storage services. We
also show how the selection can be sensitive to these
attributes.

The remaining of the paper is structured as follows. Section
II reviews related work. Section III introduces the proposed
framework. Section IV applies our framework on Cloud stor-
age services. Section V tests and evaluates our approach.
Section VI concludes with future work.

II. RELATED WORK

The services computing literature is saturated with contribu-
tions that relate to dynamic service selection. We only review
closely related work that is concerned with security.

The work of [2] proposes a service selection framework that
identifies web services based on user search keyword criteria,
while preserving the privacy of users and SPs. The proposed
system conceals the search criteria of users and the provision
rules of SPs via the utilization of the Private Matching (PM)
protocol. PM derives the intersection between the inputs of a
user and a SP without leaking any additional information.

2

Mouratidis et al. [3], proposes a framework that selects
Cloud services and integrates them in software products based
on the security requirements of clients. When a client needs
to select a Cloud service, it constructs a risk assessment docu-
ment describing possible threats. Based on the document, the
framework models security/privacy requirements. Following,
each modeled requirement is assigned weights to reflect their
significance for the client. Finally, the weights of each service
are summed up, from which the one acquired the highest
weight score is selected and integrated in the software.

Costante et al. [4], propose an approach for Web service
selection and composition based on user privacy preferences.
The proposed work utilizes AND/OR trees to represent the
orchestration schema, component services and their privacy
policies. Based on this representation, the system composes
suitable Web services that satisfy a user’s privacy preferences.
To achieve this, the system ranks composite Web services with
respect to their privacy level. The privacy level quantifies the
risk of misuse of personal data based on three dimensions:
sensitivity, visibility and retention period of information.

Khani et al. [5], suggest an intrusion-tolerant composite
Web Service (WS) system, that performs selection of WSs
based on their security vulnerabilities. The authors utilize pen-
etration tools against WSs to identify security gabs. Based on
the auditing findings and the user requirements, the framework
selects the WS with the highest performance and resilience.

III. FRAMEWORK DESIGN

This section reasons for the selection of a market-
inspired architecture as the foundation of our frame-
work. Additionally, it introduces and examines the en-
tities and operation phases comprising our framework.
The source code of our system can be found at:
https://github.com/GiannisT/AssetsAwareSecurity.git.

A. Market-Inspired Architecture

Following the argument of [6], we view service repositories
as marketplaces supporting the "5th utility" and delivering
on-demand services that are traded in a similar manner as
traditional utilities. The services in the market serve the
security goals that users require when operating in dynamic
environments. As a result, assets can be secured by practicing
service selection, based on their runtime security requirements.

Market inspired methodologies can be an effective opti-
mization mechanism for the continuous satisfaction of the
varying security requirements of multiple self-interested users
and their assets. Market models promote transparency in the
way services and resources are traded as their operations
are based on systematic procedure; henceforth, promoting
trust between SPs and users. Furthermore, the decentralized
decision making nature of market methodologies promote the
development of more dependable and elastic frameworks as
it can eliminate the single point of failure and enable the
isolation of users from the unsecure collaborations of SPs. In
addition, market frameworks allow users to handle their own
security requirements and data, which simplifies the concurrent
management of multiple heterogeneous user requests as a

major part of the computations and decisions are performed
in a decentralized manner. This also mitigates trade-offs and
conflicts that can rise between users. Lastly, the usage of
such methodologies allow for the regulation of the supply and
demand of services/resources at market equilibrium.

B. Framework Entities

1) Agents: Agents are self-interested, decentralized, au-
tonomous entities representing users. An agent is concerned
with monitoring two events, the creation of assets and their
runtime modification (e.g. the addition of data in a text file,
etc.). When an asset is created, an agent requests the selection
of a service that best satisfies its runtime security requirements
and cost constraints. Contrary, if an asset is modified, the
agent re-evaluates the current service to determine if it can still
satisfy the existing security requirements and cost constraints.
If the assessment illustrates that it is sufficient no action is
required, whereas if its deemed insufficient, the agent inquires
the selection of a new service. To trigger service selection, a
user forms a bid which contains the security specification and
cost constrains of an asset and forwards it to the auctioneer
for auctioning with suitable services.

2) Service Providers (SP): SPs are companies that trade
their services to agents for a fee. Each SP is responsible for
submitting its offers (asks) to the auctioneer. Each ask encloses
a description of the type of the service that is offering and
the security features provided. If a match occurs, the winner
SP receives payment from the agent and makes the requested
service(s) available for usage.

3) Auctioneer : The market auctioneer is responsible for
matching asks with bids. We assume that we operate in a
market with a large number of agents, where the demand
often surpasses the supply and consequently agents may need
to compete for acquiring service. To perform auctions the
auctioneer utilizes a reversed version of the Posted-Offer
model [7]. Our reversed Posted-Offer model is founded on
a take-it-or-leave-it basis. The auctioneer collects all available
bids for a certain trading period and it is up to the SPs to
accept or decline the requests. The SPs serve the agents with
the highest bidding prices, until they are not able to cater for
more agents due to resource exhaustion.

C. Framework Operation Phases

Our system consists of four phases: Asset Monitoring,
Requirements Assemble, Discovery and Feedback.

1) Monitor Phase: Sensors are deployed at the agent side
for monitoring the creation and runtime modification of assets.
When such an event occurs, the requirements assemble phase
is triggered (Fig. 1, step 1).

2) Requirements Assemble Phase: In case where an asset is
created, an agent must either form a new bid or select an ex-
isting one (older bid) to specify the security features required
for his/her asset along with the significance of each feature
for the agent (Fig. 1, step 2). The significance of each feature
is denoted with a number between 1-3, where 1 is low, 2 is
medium and 3 is high. Following, the agent specifies the cost
that is willing to pay to obtain the needed service(s). Next, the

3

Figure 1. Shows the steps performed by our framework to select a service

agent chooses between two service selection methods, namely:
the explicit selection and implicit selection. In the explicit
selection, the auctioneer is only allowed to select service(s)
that satisfy the exact security requirements specified in a bid
(perfect match). In case that a bid cannot be satisfied (e.g.
additional non requested security features, missing security
features, etc.) a match cannot occur. Similarly, the implicit
selection methodology aims to select service(s) that can satisfy
the exact requirements set in a bid, however the auctioneer is
not restricted to a perfect solution. The auctioneer is able to
select the service with the least degree of variation from the
specification of an agent. To make the proposed framework
more convenient, we offer a set of three preloaded policies
which allow agents to quickly select between low, medium
and high level of security provision for their assets. In case
where an agent requires to form its own security policy to
tailor its security provision, the custom security policy can be
selected.

Contrary, when an asset is modified, the agent must re-
evaluate the selected service(s) to determine if they still meet
the requirements of the asset. If the service is found adequate
no action is performed, whereas if it is insufficient a bid is
formed to inquire the selection of new service(s). Finally, in
both cases the bid is forwarded to the auctioneer for auctioning
with available asks (Fig. 1, step 3).

3) Discovery Phase: Once the auctioneer receives a bid b
from an agent the discovery phase is initiated. The auctioneer
retrieves all asks (denoted as Os1, s2, s3, s4 . . . sn) from the
SPs (denoted as {SP1, SP2, SP3, . . . , SPn}) that an agent is
registered with (Fig. 1, step 4). Following, the auctioneer initi-
ates the preliminary elimination of unsuitable asks that violate
the functional requirements of an agent’s bid. The functional
specification of every ask in the set O{s1, s2, s3, s4 . . . sn}is
compared with the functional requirements specified in an
agent’s bid. In case where the requirements (case specific)
of an agent are met, then the examined service si is added

to the set of suitable services/asks O ′{s2, s3, . . . , sn}. Upon
completion of the filtering stage, a utility score is calculated
for each ask in the set O ′{s2, s3 . . . sn} (Fig. 1, step 5) in
accordance to bid b.

The utility score aims to quantify the level of security pro-
vision of each service and enable us to identify the dominant
service(s). As the specification of bids and asks contain mul-
tiple attributes, the multi-attribute decision making algorithm:
Weighted Linear Combination (WLC) is used for selecting
suitable service. The WLC operates by adding contributions
from each attribute to obtain a global score. In our case we
assess each of the security attributes contained in a bid to
examine if they are satisfied by their respective attributes in
the asks. If an attribute is satisfied we set a score h (we have
chosen the value 10), where if the attribute is not satisfied we
set a lower score l (i.e 5). Lastly, we multiply the appointed
scores for each of the examined attributes with their associated
weights w and then sum all of them to obtain the total utility
score Ut of each SPi (Equ. 1).

Ut =

n∑
i=1

wi ∗ (ri||li) (1)

Once the utility score of all asks is calculated, the set of
services O ′{s2, s3, . . . , sn} is ordered in a descending order
based on their utility scores. In case that the agent has selected
the implicit method for service selection, the first service in
the ordered set O ′{s2, s3, . . . , sn}is selected as the optimal
service, whereas if the explicit method is selected the first
service is only selected if all of the attributes in a bid were
satisfied by the attributes specified in an ask. In case of
an imperfect match no service is selected, as the security
requirements of the agent are violated (Fig. 1, step 6). Upon
selection of a suitable service, the bid is forwarded to the
matched SP. If the demand for the required service(s) exceeds
the market supply, then the agent needs to engage in auctioning
with rival agents to acquire the service. The auctioning is
performed based on our reversed Posted-Offer auction model,
in which after each auctioning round SPs need to either accept
or decline available bids based on their bidding prices. Agents
are sorted in a descending price order, where the first agents
obtain service until a SP cannot cater for more agents.

4) Feedback: Upon service selection, the auctioneer notifies
the winner SP and agent for the match and releases the service
instance for allocation (Fig.1, step 7).

IV. APPLICATION IN CLOUD STORAGE SERVICES

This section promotes the effectiveness of our framework
via its direct application on Cloud storage services. We intro-
duce a list of security attributes (used by our prototype system)
for describing and selecting Cloud storage services. We then
present a scenario to illustrate the workings of our framework.

A. Cloud Storage Security Descriptors

To capture the runtime security requirements and cost con-
straints of assets along with the specification of Cloud storage
services, we have formed a list of fifteen attributes/security

4

descriptors that agents and SPs use to form their bids and
asks respectively:
Encryption At Rest: Illustrates whether an asset is encrypted
in the machines of a Cloud storage provider.
Encryption At Transit: Shows if the communication links
between an agent and a Cloud provider are encrypted.
Password Protected Files: Demonstrates if a file is protected
by a separate password.
File Versioning: Indicates if a SP keeps records of different
versions of a file.
Encryption Keys Concealed: Illustrates if a provider allow
agents to use their own encryption keys to improve their
privacy from the SP itself.
Auto Synch: Illustrates if local files are automatically updated
on Cloud storage.
Secure Key Management: Shows if the encryption keys are
stored securely by SPs.
Credential Recovery: Designates if a user can obtain its
forgotten username and password.
Share Data: Shows if an agent wants to share data with third
parties.
Audit Logs: Illustrates if a storage provider records the
operations of agents.
Proxy Support: Shows if a SP allows the connection of
proxies.
Different Key Per File: Demonstrates if an agent requires a
(dedicated) unique key for the encryption of a file.
Permanent Deletion: Signifies if a storage provider perma-
nently deletes files upon request or if they are instead archived
on SP data-centers.
Data-center Location: Demonstrates the hosted location of
the data-centers of a Cloud storage provider.
Certification: Illustrates the standards and regulations (e.g.
ISO 27001) required for each asset.
Cost: Reflects the amount of money that an agent is willing
to pay for storing an asset.

Both agents and SPs need to specify their values for each
of the above attributes. The values used by agents and SPs
when forming their bids and asks are (except from the data-
center location and certification): (i) “yes” which indicates that
the certain feature is offered (in ask) or needed (bid), (ii)
“no” which indicates that this feature is not offered/needed
and (iii) “irrelevant” which demonstrates that an agent is not
concerned with this attribute and consequently should not
be considered when selecting services. The valuations used
for the remaining attributes are: Data-center Location {“ir-
relevant”, “Asia”, “EU”, “USA”, “North America”, “Russia”,
“Oceania”}; and Certification {“ISO 27001”, “Safe Harbor”,
“FERPA”, “HIPPA”}. Finally, agents need to specify the price
that are willing to pay for acquiring services and the impor-
tance (weights) of each attribute (except cost) for them by
assigning a number between 1(low) and 3 (high).

B. Cloud Storage Scenario

For the purposes of this scenario we have considered the
following Cloud storage providers: CloudMe [8], Cubby [9],
DropBox [10], GoogleDrive [11], Mega [12], OneDrive [13],

Figure 2. Illustrates the information enclosed in a bid

SpiderOak [14], YandexDisk [15] and BearDataShare [16].
For each of our selected storage services we have derived
a security specification (ask) reflecting the security attributes
previously described in this section. The derived security
information for the selected providers is summarized in Table
I. The extracted data is based on the free plans (except
SpiderOak, $7/month) offered by the aforementioned providers
in real life.

To illustrate the workings of our framework in the area of
Cloud storage services, we consider the following scenario:
We operate in a market utilizing the selected storage providers
and 50 agents. Due to limited resources a number of agents
are not be able to acquire resources. One of the agents, i.e.
AgentX maintains a medical form that necessitate a Cloud
storage service that utilizes low security, as it does not contain
any sensitive medical data (not filled). To perform this, AgentX
forms a bid to reflect the current requirements of his asset. The
agent selects the preset, low security policy which inquires
the selection of a storage that only provides: encryption at
transit, file synchronization and credential recovery, where
all remaining attributes are set to “no”. The low security
policy aims to discover a service that can host AgentX’s
file in a fairly secure environment, while warranting low
costs and minimal resource overhead. Additionally, AgentX
selects the implicit discovery mode as he is not concerned
if his security requirements are exactly met. The bid is then
forwarded to the auctioneer. Upon bid reception, the auctioneer
eliminates unsuitable asks in terms of storage size (functional
requirement). As the storage size offered by the considered
services exceed the file size of AgentX’s form, no services
are eliminated. Thereafter, for each service, a security utility
score is calculated (with the assistance of Equ. 1). The results
illustrate that OneDrive meets all AgentX’s requirements,
thus acquiring the highest utility score of 160, followed by
CloudMe, SpiderOak, GoogleDrive at 155, DropBox at 150,

5

CloudMe Cubby DropBox GoogleDrive Mega OneDrive SpiderOak YandexDisk BearDataShare
Encryption At Rest yes-no yes yes yes yes no yes no yes

Encryption At Transit yes yes yes yes yes yes yes yes yes
Password Protected Files no yes no no no yes no no no

File Versioning yes yes yes yes yes no yes no yes
Encryption Keys Concealed yes yes no no yes no yes no no

Auto Synch yes-no yes-no yes-no yes-no yes-no yes-no yes yes-no yes
Secure Key Management no yes yes yes yes yes no no yes

Credential Recovery yes yes yes yes no yes no yes no
Share Data yes-no yes-no yes-no yes-no yes-no yes-no yes-no yes-no yes
Audit Logs yes yes yes yes yes yes yes yes yes

Proxy Support yes-no yes-no yes-no yes-no yes-no no yes-no yes-no yes
Different Key Per File yes-no yes-no no no no no no no no
Permanent Deletion yes yes yes* yes yes no no yes no

Data-center Location EU USA USA USA Oceania USA EU Russia EU
Certification HIPAA, Safe

Harbor
HIPAA ISO 27001,

Safe Harbor
ISO 27001,

FERPA,
HIPAA, Safe

Harbor

HIPAA ISO 27001 ISO 27001,
FERPA,
HIPAA

/ ISO 27001

* Indicates that a provider permanently deletes data but within some time.
Table I

SUMMARIZES THE SECURITY ATTRIBUTES (ASK) OF EACH CLOUD STORAGE PROVIDER

YandexDisk at 145, Cubby at 140 and BearDataShare and
Mega at 130 points. For this scenario, we assume that the
service supply of OneDrive exceeds the market demand, thus
no auctioning is necessary for acquiring storage.

Now lets consider that AgentX fills its medical form with
sensitive data and reforms his bid to reflect the new require-
ments at hand. AgentX selects the custom security policy to
inquire tailored security provision. The new bid (Fig. 2) entail
the following explicit requirements: Encryption at rest and
transit; encryption keys concealed from the SP, auto-synch, no
share data, the data must be stored within EU, HIPAA (Health
Insurance Portability and Accountability Act) certification; and
the cost that AgentX is willing to pay for storage is $7.

Once the medical form is modified the new bid is forwarded
to the auctioneer. Upon reception, the bid is assessed to
determine which service can better satisfy the new security
requirements. Due to the selection of explicit requirements
only two storage services (i.e. SpiderOak and CloudMe) can
satisfy the exact security requirements of AgentX. Despite the
discovery of two suitable services, we assume that SpiderOak
maintained limited resources due to a high volume of service
requests. Thus, auctioning is initiated to determine which
agents shall acquire service. Due to the low price offered by
AgentX ($7), it was not feasible to compete with the prices
(randomly generated between $3-$20 with normal distribution)
submitted by rival agents (average price of $12), thus Spi-
derOak was not able to accommodate AgentX’s bid. Thus,
our system selected the next available provider; CloudMe,
where the auctioning process was repeated. As the average
price submitted by rival agents was $5, AgentX’s bid was
considered by CloudMe for service. In case where, no perfect
match existed, our framework would ask the agent to store his
file locally in order not to violate his security requirements.

V. TEST AND EVALUATION

A. Experimental Setup

All the tests were conducted based on our engineered Cloud
storage prototype system. To carry out our experiments we
have used the HP ProLiant ML350p Gen8 Tower Server as our
test-bed. ProLiant ML350p utilizes the Intel Xeon E5-2620 v2
CPU (6 core, 2.1 GHz, 15MB, 80W) and 128 GB of RAM. To
conduct our tests we have deployed the following entities: (i)
an auctioneer, (ii) interfaces to the nine selected Cloud storage

providers and (iii) 50 agents, each maintaining 20 assets/files
that need to be stored online (total of 1000 assets). The small
number of agents and assets can be attributed to the complex
and time consuming procedure of setting them up. To automate
the operation of agents we have written a script that randomly
generates a number of security policies and dummy text files
that agents use as their bids and assets respectively.

B. Experimental Results

1) Dependability: This experiment aims to demonstrate the
success/failure rate in matching bids with asks. All the bids
(1000 bids in total) submitted for auctioning were created
based on the explicit method. All the values used for the
formulation of the bids were randomly generated.

The obtained results demonstrated that 700 bids were suc-
cessfully matched to Cloud storage services, where 300 left
unmatched. More specifically, 250 bids were not matched due
to unmet security requirements (security violations), where the
remaining failed due to scarce resources. Despite the mediocre
(i.e. 70%) success rate in service selection by our framework,
the results are still encouraging as we have not considered
any implicit bids, which would have significantly increase our
success rate. Furthermore, the majority of our failed service
selection attempts can be attributed to the large number of
parameters comprising a bid (i.e. 16), which allow for an
enormous number of possible permutations between these
attributes and consequently the number of different expected
bids. As there is only a small number of asks in the market and
a very large number of possible bids, there is a high probability
that some explicit bids will not be matched to providers.

2) Static Security VS Adaptive Security: Contemporary
service selection frameworks are inflexible as they are not
concerned with the runtime security requirements of individual
assets; instead they promote “one service for all”, which
imposes higher costs (monetary and operational) and unmet se-
curity goals. To demonstrate the above assertion we have tested
if the selection and utilization of a single Cloud storage can
meet the security requirements of all of the assets maintained
by an agent. More specifically, the goal of this experiment
is to determine the effects of static security provision on
the satisfaction of asset security requirements, in terms of
insufficient or excessive security provision. If an asset retrieves
insufficient security, its security is at stake, whereas if an asset

6

acquires excessive security it is likely that the costs (both
monetary and operational) are unnecessarily high.

To perform this test we stored 20 assets in DropBox. For
each asset we have randomly generated and associated a
bid illustrating the asset’s runtime security requirements. We
have then compared the bid of each asset to the security
specification (ask) of DropBox to determine if it met the
exact security requirements of the assets. Based on the results
we have labeled bids as: “satisfied”, “excessive security” and
“insufficient security”. The results illustrated that the majority
of the assets did not met their security goals as only six bids
were satisfied, where five bids obtained unnecessary security
provision and nine acquired insufficient security. Contrary,
the test performed with our framework, satisfied the security
requirements and cost constraints of all assets as they were
treated as separate entities. We were able to observe that six
bids required provision from DropBox, five bids were matched
with OneDrive, three with CloudMe and the remaining six
with Mega.

3) Market VS Non-Market Service Allocation: This exper-
iment illustrates the limitations of non-market service alloca-
tion mechanisms and the added value of introducing market-
inspired allocation methodologies when selecting and allocat-
ing services. More specifically, our experiments demonstrate
the following limitations: (i) absence of monetary insensitive
for both agents (cheaper prices) and SPs (higher revenues)
and (ii) the over-provisioning or starvation of resource due
to the underestimation or overestimation of service supply
in cases of scarce resources. This rises due to the deficient
prioritization of agent requests based on the criticality of their
security requirements and the prices that are willing to pay to
acquire services. This can enable agents that do not require the
immediate utilization of resources to reserve and waste them,
where refusing provision to agents in need.

To perform these tests we have used SpiderOak and 50
agents (1000 bids) in the presence of scarce resources (only 35
agents / 700 bids could be served). The bid prices submitted by
the deployed agents were randomly generated with a normal
distribution between $1-$30. To determine if the existing
non-market mechanisms can prioritize and provide service to
agents based on the severity of their requests we have labeled
bids based on their significance: 400 bids labeled as “very
significant”, 150 bids as “medium significance”, 350 bids as
“low significance” and 100 bids as “storage for future usage”.
We then asserted which bids obtained service. The order of
bid submission was random to simulate real-life conditions.
Our results illustrated that 300 “very significant” bids, 95 bids
of “medium significance”, 250 “low significance” bids and 65
bids for “storage for future usage” were served. The results
indicate that a big number of (i.e. 100) “very significant” bids
did not receive service, where 65 bids requesting “storage for
future usage” were able to acquire and waste storage resources.
Contrary, the same experiment with the utilization of our
reversed Posted-offer algorithm, was able to cater for 370
“very significant” bids, 130 bids of “medium significance”,
180 “low significance” bids and only 20 bids for “storage
for future usage”. By introducing our auctioning algorithm
the number of “very significant” bids drastically increased,

where the number of “storage for future usage” bids radically
decreased. This test demonstrated that the usage of auctioning
mechanisms in the existence of scarce resources can better
prioritize and more fairly serve bids based on their severity
due to the absence of simplistic allocation methodologies
that are founded on the “first come first served” policy used
by existing service selection methodologies. Furthermore, we
have observed that the revenue of SpiderOak was significantly
increased in the presence of our auctioning mechanism. In
the absence of the allocation mechanism SpiderOak’s storage
was offered for a fixed cost of $7, witnessing a revenue of
$350 (50 agents × $7), where in the presence of the market
mechanism the profit of SpiderOak increased to $398 due to
the competition between agents for acquiring scarce storage
resources. Finally, we have assessed how the profit of agents
is affected in the presence of high supply and low demand
cases in both market and non-market inspired environments.
In the presence of a non-market allocation mechanism the cost
of storage from SpiderOak remained stationary to $7, where
in the presence of our market-inspired allocation mechanism,
the agents were able to obtain service for an average of $5.3,
which illustrates a significantly lowered cost for storage.

VI. CONCLUSION

We have promoted and engineered an asset-driven, security-
aware, service selection framework that leverages market-
inspired methodologies for selecting services that best sat-
isfy the security and cost constraints of assets. We have
demonstrated its applicability on Cloud storage services and
illustrated that market mechanisms are a dependable solution
for securing assets. Potential future work is to determine the
effects of various auction types on our framework.

REFERENCES

[1] J. Malczewski, “On the use of weighted linear combination method in GIS:
common and best practice approaches”, Transactions in GIS, 4(1), 2000, pp. 5-22.

[2] A.C. Squicciarini, B. Carminati and S. Karumanchi, “Privacy aware service
selection of composite web services invited paper”, In Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom), 9th International
Conference Conference on, IEEE, October 2013, pp. 260-268.

[3] H. Mouratidis, S. Islam, C. Kalloniatis and S. Gritzalis, “A framework to support
selection of cloud providers based on security and privacy requirements”, Journal
of Systems and Software, 86(9), 2013, pp. 2276-2293.

[4] E. Costante, F. Paci and N. Zannone, “Privacy-aware web service composition and
ranking”, In Web Services (ICWS), IEEE 20th International Conference on, June
2013, pp. 131-138.

[5] K. Shahedeh, C. Gacek, and P. Popov, "Security-aware selection of Web Services
for Reliable Composition.", 2015.

[6] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility”, Future Gener. Comput. Syst. 25, June 2009, pp. 599-616.

[7] J. Ketcham, S. L. Vernon and W. W. Arlington, "A comparison of posted-offer
and double-auction pricing institutions." The Review of Economic Studies 51.4,
1984, pp. 595-614.

[8] CloudMe, Available at: https://www.cloudme.com, Accessed: 11 Feb. 2016.
[9] Cubby, Available at: https://www.cubby.com, Accessed: 11 Feb. 2016.

[10] DropBox, Available at: https://www.dropbox.com, Accessed: 11 Feb. 2016.
[11] GoogleDrive, Available at: https://www.google.com/intl/en/drive, Accessed: 11

Feb. 2016.
[12] MEGA, Available at: https://mega.nz, Accessed: 11 Feb. 2016.
[13] OneDrive, Available at: https://onedrive.live.com/about/en-gb, Accessed: 11 Feb.

2016.
[14] SpiderOak, Available at: https://spideroak.com, Accessed: 11 Feb. 2016.
[15] Yandex Disk, Available at: https://disk.yandex.com, Accessed: 11 Feb. 2016.
[16] BEAR DataShare, Available at: https://beardatashare.bham.ac.uk, Accessed: 11

Feb. 2016.

