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In a companion paper, we have presented the combined asteroseismic-spectroscopic dataset obtained from CoRoT
lightcurves and APOGEE infra-red spectra for 678 solar-like oscillating red giants in two fields of the Galactic disc
(CoRoGEE). We have measured chemical abundance patterns, distances, and ages of these field stars which are spread
over a large radial range of the Milky Way’s disc. Here we show how to simulate this dataset using a chemodynamical
Galaxy model. We also demonstrate how the observation procedure influences the accuracy of our estimated ages.

1 Introduction

Galactic models make predictions for the distribution of
stars and gas in the multi-dimensional space consisting of
time, kinematics and chemical composition. Therefore, one
of the basic problems of Galactic Archaeology — the sci-
ence of inferring the current state and the history of the
Milky Way from present-day observations (e.g., [Freeman &
Bland-Hawthorn|[2002} |Pagel|[1997) — is dimensionality re-
duction. For a given dataset, we are looking for the most ro-
bust and telling statistical relations to constrain these mod-
els.

Asteroseismology of red giants delivers new promising
constraints to Milky Way models since it provides masses
and ages of distant field stars with unprecedented preci-
sion (e.g., Miglio et al.|[2013). The present work and an
accompanying series of papers (Chiappini et al.[|[2015; An-
ders et al., subm. to A&A) explore the power of aster-
oseismic constraints in Galactic Archaeology: we present
one of the first attempts to combine stellar physics, aster-
oseismology, statistics, and spectroscopy — to learn about
the chemo-dynamical history of our Galaxy. Specifically,
we combine data from the infrared spectroscopic stellar
survey APOGEE (Majewski et al|2015) with asteroseis-
mic data from the CoRoT mission (Baglin et al.[2006). In

* mailto: fanders@aip.de
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Table1 Summary of the available CoRoGEE data.
CoRoT-APOGEE stars 690
with “good” spectroscopic parameters 678
& “good” asteroseismic parameters 664
& |log gaspcap — 10g gseismol < 0.5 617
Converged stellar parameters & distances 606
Field LRa01 (outer disc) 282
Field LRcO1 (inner disc) 326

this paper, we describe how we simulated mock CoRoT-
APOGEE (CoRoGEE) observations of the chemodynami-
cal N-body Galaxy model of Minchev, Chiappini, & Martig
(20132014, MCM).

2 The dataset

We have assembled a comprehensive dataset (stellar param-
eters, elemental abundances, kinematics) of more than 600
solar-like oscillating red giant stars which have been ob-
served by both CoRoT and APOGEE (CoRoGEE). Table
1 gives an overview of the dataset; Fig. [I] shows the dis-
tribution of our stars in Galactocentric cylindrical coordi-
nates. The details of our analysis are provided in Anders et
al. (A&A, subm.).

Copyright line will be provided by the publisher
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Location of the APOGEE samples with seismic and spectroscopic observations in Galactocentric cylindrical coordinates. The

K2 mission and its spectroscopic follow-up campaigns are presently adding several new sightlines to this picture (yellow rays).

Using an updated version of the Bayesian stellar pa-
rameter estimation code PARAM (da Silva et al.[|2006), we
have determined the radii, masses, ages, and distances of the
CoRoGEE stars by comparing the measured spectroscopic
effective temperatures, metallicities, and asteroseismically
determined Av and vp,x With stellar evolutionary models.
We achieve typical precicions of ~ 3% in radius, ~ 9% in
mass, and ~ 25% in age. By combining our stellar radii
measurements with multi-wavelength photometry, we also
derive very precise distances (precise to ~ 2%) and extinc-

tions. The details are described in [Rodrigues et al| (2014).

The first result obtained with the CoRoT-APOGEE
dataset was the discovery of a population of disc stars which
do not follow the relation between the [a/Fe] abundance ra-
tio and age predicted by canonical chemical evolution mod-
els of the Galactic disc. In [Chiappini et al| (2015)), we dis-
cuss several scenarios that can be invoked to explain the
existence of these objects, and the fact that these stars are
much more prevalent in the inner CoRoT field. No conclu-
sive explanation has been presented so far, but possible solu-
tions involve stellar mimicry (old stars disguised as younger
ones because of close-binary evolution or
stellar mergers), abundance anomalies in star-forming bub-
bles, and a peculiar chemical evolution near the corotation
radius of the Galactic bar.

3 CoRoGEE mock samples from a
chemo-dynamical model

The direct interpretation of astronomical survey data is of-
ten hampered by non-trivial selection effects. As pointed out
in, e.g., Binney & Sanders| (2013)), the comparison of sur-
vey catalogues with a Galactic model is much easier when
a mock observation of the model is created.

In this Section we describe how to select a CoORoGEE-
like sample from an N-body simulation, using the example

MCM Simulation final snapshot
(Minchev et al. 2013, 2014)

‘/\

Sample mock particles
from the RZ distribution

CoR0GEE Catalogue

Full MCM-Galaxia mock simulation
(Piffl 2013, Sharma et al. 2011)

\J

Apply 3D dust extinction
(Green et al. 2015)

Incl. red-giant age bias ‘

CoROGEE Selection function:
Select mock stars
from the (J-Ks) - H diagram
\/ \J
Simulate observable errors Simulate observational errors
{Age, d, [Mg/Fe], [Fe/H] } { Teff, log g, [2/H] }

Y

\ Run PARAM
w

Fig.2  Scheme illustrating how our two versions of the
CoRoGEE mock observations were obtained from the
MCM model.

of the MCM model (Minchev et al|2013] 2014). We have

chosen two different paths to simulating the observations:
a straightforward “simple” mock, and a more sophisticated
one which uses a mock observation tool based
on the Galaxia stellar population synthesis code

let al.|2011). The procedures leading to the two versions of
mock observations are sketched in Fig. 2]

3.1 Sophisticated mock

The original Galaxia population synthesis code

2011) uses the analytic Besangon Milky Way model
(Robin et al]2003) and creates synthetic Galactic stellar

Copyright line will be provided by the publisher
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Fig.3  Star counts in the MCM Galaxy mock. Left: Density distribution of all simulated MCM stars (magnitude limit
Hy = 13.0) in (1, b; top left) and (Xgyu1, YGa; bottom left). Middle and right: H magnitude and (J — Kj) star counts in the
two CoRoT fields, comparing 2MASS (red histograms; |Cutri et al.2003) and the MCM mock Galaxy (grey histograms).
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Fig.4 H vs. J— K colour-magnitude diagram (CMD) for the two CoRoGEE fields. The colour in each CMD box shows
the selection fraction (NcoroGer/Namass) in this box. We used the same boxes to simulate the CoRoGEE selection function
for the “sophisticated MCM mock”.
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populations in a given part of the sky. Additionally, it allows
the user to include a stellar halo from an N-body simulation,
i.e. a model in which the kinematic distribution functions
are not analytic any more, but are taken from the mass par-
ticle distributions of the input simulation. Piffl (2013ﬂ gen-
eralised this idea and first used the MCM model as an input
for the Galaxia code in the context of a simulated RAVE sur-
vey. By spawning mock stars from the MCM mass particles
(each star inherits its age and chemical properties from the
parent particle) he showed that the model could recover re-
alistic correlations between the kinematics and the chemical
abundances of the stars, while it was not possible to obtain
an absolute match with star counts and global kinematic pa-
rameters of the Milky Way. Here, we use the same code to
simulate a CoRoGEE-like sample from the MCM galaxy.

We first simulated a complete synthetic photometric all-
sky survey from the solar positiorﬂ up to a limiting magni-
tude of Hy = 13 from the MCM galaxy using the modified
Galaxia code (Piffl[2013). This translates the 9.5 - 10° input
N-body particles into 7.8 - 107 mock stars (see density maps
in Fig. [3). We then calculated observed magnitudes for the
mock stars in the CoRoT fields using the new PanSTARRS-
1 3D extinction map of |Green et al. (2015)F] The result-
ing colour and magnitude distributions up to the magnitude
limit of CoORoGEE (H = 12.2) are also shown in Fig.
As expected, the absolute star counts are not well matched
by the MCM-Galaxia model, but the relative distributions in
the colour-magnitude diagram (CMD) are reproduced (see
Piffl||2013| for a discussion). In the next step, we applied
the effective CoRoGEE selection function (assuming that
it only depends on H and J — K;) by randomly selecting the
observed number of stars from small boxes in the CMD (see
Fig. E])E]We further simulated Gaussian observational errors
in the spectroscopic stellar parameters T, log g, [Z/H] and
magnitudes, and then ran the Bayesian parameter estimation
code PARAM (Rodrigues et al.|2014) to recover measured
masses, radii, and ages.

3.2 Simple mock

A simpler way to simulate a CoRoGEE sample from the
MCM simulation is to randomly select the most represen-
tative MCM particles from their distribution in configura-
tion space. However, when we put the Sun at the correct
distance to the Galactic center, the number of available par-
ticles is too small to yield enough mock stars in the two
CoRoT fields. Therefore, we smoothed over the azimuthal
angle in the Galactocentric cylindrical frame, and drew the
mock stars directly from the observed distribution in the
RGa — Zga plane. Because red giant stars do not sample

1 https://publishup.uni-potsdam.de/files/6790/piffl_
diss.pdf

2 We assume RGalo = 8.3 kpc, in line with recent estimates (see e.g.,
Bland-Hawthorn & Gerhard|2016)

3 http://argonaut. skymaps.info/

4 The justification for this approximation of the CoORoGEE selection is
given in Anders et al. (2016, subm. to A&A).

80+
6OF Sophisticated
§3 L MCM mock

9 — I :

Rel. Age error

2 140 20 40 60 80

True Age [Gyr]

Fig.5 Relative PARAM age errors “2%M=Te for the so-
phisticated version of the MCM-CoRoGEE mock as a func-
tion of the true age of the parent N-body particle. The sim-
ulated stars in LRa01 and LRcO1 are shown in blue and red,
respectively. The black symbols correspond to the median
age error in each age bin indicated on the x-axis. The vari-
ous lines correspond to a one-to-one relation, 20% and 50%
deviation, and the age boundary at 13.7 Gyr.

all ages evenly, we simulated this red-giant age bias by as-
suming that a red giant of age 7 is picked with a probability
o (1 +1Gyn™7f]

Finally, we added typical observational errors in age,
distance, and metallicity. While the distance and metallic-
ity uncertainties could be assumed to be small and Gaussian
(~ 2% and 0.04 dex, respectively), the statistical age er-
rors are not straightforward to simulate. We therefore opted
for the following data-driven approach: we use the sophisti-
cated mock to estimate the age errors. For each star, a ran-
dom age error was added according to the relative error dis-
tribution shown in Fig.[5]

3.3 Simulated age distributions

Fig.[5]shows how well our method is able to recover stellar
ages, using the sophisticated MCM mock described above.
It is evident that our individual age estimates should be used
with caution, in particular for measured ages > 4 Gyr. How-
ever, we confirm that a small measured age does correspond
to a true small age in almost all cases, thus strengthening the
conclusions of |Chiappini et al.| (2015). More details about
statistical and systematic uncertainties involved in our age
determinations are presented in Anders et al. (2016).

In Fig.[6 we take a first look at the simulated “true” age
distributions in the two CoRoT fields (grey histograms), the
effect of adding age errors on this distribution (black his-
tograms), and compare these with the measured age distri-
butions of the real data (filled histograms).

3 From population synthesis modelling with TRILEGAL, we find that
this bias depends very weakly on the position in the Galaxy. It is also con-
sistent with the age bias that Casagrande et al.|(2016) determined for the
Kepler field with different methods (their Fig. 12d).

Copyright line will be provided by the publisher
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Fig.6  Simulated and recovered age distributions for the
two CoRoGEE fields LRa0O1 (top) and LRcO1 (bottom).

While the simulated age distributions of the sophisti-
cated mock match the data surprisingly well in LRcO1, we
see striking differences in the relative number of old stars
in LRa01. Conversely, the simple mock performs better for
LRa01, while it overpredicts the number of old stars in
LRcO1. We suggest that this may be related to a) a more
complex selection function, or b) a stronger age bias to-
wards the inner Milky Way.

4 Summary

In our companion paper (Anders et al. 2016), we demon-
strate, in line with previous works, that combining seismol-
ogy and spectroscopy brings us one step further in obtaining
meaningful ages of field stars. We also show that our sample
can be used to formulate new chemodynamical constraints
on the evolution of the Milky Way disc over a large range in
Galactocentric distance and ages.

The simulations presented in this paper have shown that
some notes of caution are due: we demonstrated that the ab-
solute age scale of our isochrone ages is prone to systematic
shifts. We also remind the data user to be very careful when
interpreting small subsets of the data, and to refrain from
interpreting single data points.

In follow-up works we will explore the individual-
element abundance space opened by APOGEE and pro-
vide a detailed comparison with a (semi-)cosmological
chemodynamical N-body simulation, using mock observa-
tion tools. One of the key questions of Galactic Archaeol-
ogy which our sample should help to answer is constraining

the migration efficiency in the Galactic disc as a function of
time and position.
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