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Abstract: Fabricating high-quality graphene with simple methods has aroused considerable 

interests in recent years. In this paper, graphite was dispersed in esterified bio-oil (EBO) as a 

lubricant for steel/gray cast iron friction pairs, and the shear-induced transformation from graphite 

to graphene was observed. The tribological behavior during this process, including the influence of 

the normal load and sliding velocity, were investigated. The products formed after sliding were 

confirmed by laser particle size analyzer, Raman spectroscopy and scanning electron microscopy 

(SEM). The micro-topographies and elemental content of the worn surfaces were measured by SEM 

and energy-dispersive X-ray spectrometry (EDX). The results showed that friction induces 

exfoliation accounting for the transformation from graphite into graphene, and the frictional 

conditions have great influence on the products. It was also found that high load and low sliding 

velocity facilitate the formation of high-quality single-layer graphene during the sliding process, 

and high load and low sliding velocity also contributed to obtaining excellent tribological 
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performance for friction pairs. Friction-induced transformation shows a new potential for graphene 

preparation.  

Keywords: Friction-induced transformation; Graphite; Graphene; Esterified Bio-oil  

 

1. Introduction 

Graphene, a two dimensional layer carbon with sp2-bonded carbon, is of considerable interest 

[1-6] because of its excellent conductivity, high mechanical strength and controllable permittivity, 

and has many potential applications to energy storage [7], micro-electronics [8], lubrication [9], etc 

[10]. Many preparation methods have been proposed, including mechanical exfoliation [11], 

epitaxial growth [12], chemical vapor deposition [13], and reduction of graphene oxide (GO) [14]. 

Although there has been much progresses in fabricating graphene, the cost and quality of the 

graphene [15, 16] still remains an issue.  

Graphite has been used as lubricants additives for more than one hundred years [17]. In the 

past, most attentions have been paid on the macroscopic lubricating applications[18-20]. Recently, 

the friction and wear mechanisms of graphite have been studied and proposed that the interlamellar 

binding forces of graphite were slight and made graphite slippery [21], which resulted in a low 

friction coefficient and low wear of friction pairs. Unfortunately, few literatures have systematically 

investigated the debris of the graphite after sliding, though the debris could also influent the 

tribological behavior. Theoretically, graphite could exfoliate its layers during sliding [22] and form 

multi-layer carbon, and also could form single-layer graphene under certain condition. Additionally, 

it has been proved that graphite as lubricating additives is environmental dependent [23]. Therefore, 

the dispersed media are very important for graphite during sliding.  

To date, a relatively small amount of work has explored friction-induced products formation 
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from graphite dispersed in a medium. In this work, we chose esterified bio-oil (EBO) as a medium 

for graphite. EBO, synthesized by converting the acids to esters in the bio-oil has shown good 

potential for reducing the corrosive behavior of the crude bio-oils [24-26]. However, the lubricity of 

EBO still needs to be further improved to be used as a fuel. In our previous work, we found that 

MoS2 and graphene had a very good synergetic lubricating effect when dispersed in EBO and could 

enhance its lubricity significantly [26]. Therefore, using graphite as lubricating additives for EBO 

not only enables it possible to improve the friction and wear behavior of EBO, but also makes us to 

know more about the friction-induced exfoliation of graphite. The tribological conditions, including 

the normal load and sliding speed here investigated to explore their effects during the sliding. The 

corresponding tribological mechanisms were also explored. 

 

2. Experimental details 

2.1 Materials 

Flake graphite (purity 99%) was purchased from Qingdao Haida Graphite Co. Ltd., (Qingdao, 

China), and was used directly, without further purification. Its size ranges from 124 to 1408 μm and 

mean particle size is ~500μm (Fig. 1a). A typical micrograph edges of the graphite plates is shown 

in the inset of Fig. 1a, indicating a multiple-layer structure of carbon. The Raman spectrum (Fig. 1b) 

shows the D (~1354 cm-1), G (~1580 cm-1) and 2D (~2713 cm-1) bands of graphite. The D peak 

results from the breathing mode of the sp2-C atoms, which is induced by structural disorder defects 

[27]. The ratio intensity, ID/IG = 0.154, suggesting a low degree of graphic disorder of the graphite. 

EBO was fabricated from crude Spirulina algae bio-oil via catalytic esterification [24]. The 

main components were oxygen-containing organics. More details of its chemical components and 

physical properties can be found in our previous work [24].  
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2.2 Tribological tests 

The apparatus has used to measure friction and wear is shown in Fig. 2. The cylinder upper 

friction pair friction pair was made from AISI 304 stainless steel with the outside diameter of 32mm 

and inside diameter of 22mm. Six grooves distributed symmetrically on the cylinder. The lower 

friction pair was a round disk with diameter of 40mm and was made from gray cast iron HT 150 

(ASTM-A48 No. 25A). The surface roughness Ra of the friction interface of cylinder and disk were 

0.58 and 0.61 μm, respectively.  

In a typical test, 1.0 g graphite was dissolved in 50 mL of EBO. After ultrasonic dispersion for 

20 min, the suspension was placed in the oil reservoir of the tribometer. The samples were tested 

under loads of 100, 150, and 200N, and using sliding speeds of 0.1, 0.2, and 0.3 m/s. Each test was 

repeated twice. The wear rate was calculated from the difference between the weight of lower 

friction pair per sliding distance before and after sliding.   

After the friction experiments, the liquid products were analyzed with Agilent Cary 5000 UV–

Vis–NIR spectrophotometer over the range 200 to 1000 nm. The liquid was filtered and the solid 

power and the friction pairs were washed with acetone, and dried at 40◦C in vacuum drying oven.  

 

2.3 Characterization 

The diameter of the solid particles before and after sliding were tested using a Malvern 

MS-2000 laser particle-size analyzer. Raman spectra of the solid particles before and after sliding 

were measured using a Horiba Jobin Yvon LabRam HR Evolution Raman spectrometer using a 

emitting 532 nm radiation. The microstructure of the solid particles and the rubbed surfaces were 

analyzed with an JEOL JSM-6490LV scanning electron microscopy (SEM), and analyzed using 
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energy dispersive X-ray spectrometry (EDX).  

 

3. Results and discussion 

3.1 Influence of load 

The successful fabricating of graphene is confirmed by UV–vis spectroscopy ( Fig. 3 ). From 

the figure, it can be seen that the absorption intensity increased after sliding. This suggests that 

more graphite sheets are present in the solvent, due to exfoliation of graphite during sliding [28]. 

Furthermore, graphite displays a peak maximum at ~225 nm with a shoulder at ~237 nm, while 

after sliding peaks redshifts slightly to 227 and 253 nm, respectively. This may be caused by the 

formation of auxochromic groups such as –OH owing to the friction oxidation [29]; and also 

indicated that the electronic conjugation of graphene sheets is restored after the tribo-reaction [30].  

Fig.4 shows the particle size distribution and Raman spectra of the lubricant graphite sliding 

under different loads. As shown in Fig.4a, the particle size of the products decreased with 

increasing load, indicating higher load contributed to the exfoliation of graphite. Raman spectra are 

considered as a very effective technology to investigate the layer of the graphene [31]. It can be 

seen from Fig. 4b that the D, G and 2D bands of the products were detected, and the ID/IG ratio 

decreased with increasing load, suggesting higher loads helped to reduce the defects of the graphene. 

Meanwhile, all the 2D peaks ( inset of Fig.4b ) is obviously different from the graphite in Fig.1b 

and can be resolved into four components, 2D1B, 2D1A, 2D2A, 2D2B; two of them are higher than the 

other two; the intensity of 2D band is close to that of G band, indicating that the main products are 

bilayer graphene [32].  

Micrographs of the particles in the lubricant after sliding under different loads are shown in 

Fig. 5. There is a clear exfoliation of the graphene sheets seen in Fig. 5a. The graphene sheets in Fig. 
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5a, b and c hold their original laminated structure from graphite, with diameters between ~4 to ~20 

μm, which are similar with the results reported by Lin et al [33]. In addition, with an increase in 

load, the graphene had much smoother surface and smaller particle size. These trends were in 

accord with the particle size distribution in Fig.4a. The detailed diameters in Fig. 5 are different 

from those in Fig. 4a because of the different analysis method. Only several particles can be 

observed in SEM images, while the total statistical results can be obtained by using laser 

particle-size analyzer. 

Fig. 6 presents the friction coefficient and wear rate of the stationary sample lubricated with 

EBO and graphite dispersed in EBO under different loads. Shown in Fig.6a is the friction 

coefficient of EBO with graphite (0.083), which was much lower than that of pure EBO (0.116) 

both under load of 100N, and it decreased by more than 28%, indicating that graphite had a 

beneficial lubricating role. Furthermore, the EBO with graphite had a shorter run-in period than 

pure EBO. This may be due to the exfoliation of graphite making small graphene sheets fill in the 

furrows and quickly forming a tribo-film on the rubbing surfaces [34]. The run-in period also 

decreased with increasing load. In addition, the steady stage friction coefficient for EBO with 

graphite decreased from 0.076 to 0.059 with an increase in load from 100 to 200N. This may 

because higher load leads to a larger plastic deformation of the stationary sample, increasing real 

contact area, which makes more graphene sheets fill in or adsorb on the rubbing surfaces, and then 

decreases the contact stress of the friction pairs [35], finally, the coefficient of friction decreases.  

From the Fig.6 b, it can be seen that the wear rate of the stationary sample lubricated by EBO 

with graphite decreased by more than 44%, comparing to that lubricated by pure EBO. The wear 

rate almost linearly decreased from 0.0068 to 0.0037 mg/m with an increase in load from 100 to 

200 N when lubricated with EBO with graphite. Moreover, another result that higher load made for 
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less wear might because under higher load, more graphene sheets remained on the rubbing surfaces, 

alleviating the material remove rate.  

Fig. 7 shows the micrographs of worn surfaces of the stationary sample that had been 

lubricated with EBO and EBO with graphite under different loads. The surfaces lubricated by EBO 

alone showed clear delamination wear [36]. While with adding of graphite, wear was reduced and 

the surface exhibited some spalling pits on the surfaces under a load of 100N. Adhesive material 

and furrows occurred when the load has increased to 150N. The surfaces became much smoother 

with only some light furrows under a load of 200 N, indicating a mild wear. According to these 

micrographs and tribological data above, these four wear types of Fig.7 may belong to delamination 

wear, spalling wear, adhesive wear and mild wear, respectively. That is, the graphite as EBO 

additives could prevent the rubbed surfaces from delamination and further reduce wear under higher 

loads. Higher loads, much smoother of worn surfaces, which agreed very well with less wear rate 

under higher loads in Fig. 6. 

Fig.8 displays the EDX results of the worn surfaces of the stationary sample lubricated with 

EBO and EBO with graphite under different loads. It can be seen that, for pure EBO lubrication 

(Fig.8a), the carbon and oxygen on the worn surfaces could come from EBO decomposition [24], 

while the chromium might originate from the transfer from the AISI 304 stainless steel counterface 

[37]. The rubbed surfaces lubricated with EBO with graphite (Fig.8b) had higher contents of carbon 

and oxygen than that lubricated by the pure EBO (Fig.8a), indicating that during the frictional 

process, the graphite can be exfoliated into graphene, and then some of graphene can be reacted 

onto the worn surfaces to form the complex tribo-film [38]. Furthermore, this tribo-reaction 

increased at higher loads (Fig8b-d) since large amounts of carbon were detected. That is, 

friction-induced exfoliation makes graphite transform into graphene, and then adsorbed or reacted 
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on the rubbing surfaces. Moreover, higher loads makes more graphene and thicker tribo-film, 

decreasing the friction coefficient and wear rate and also confirming the inference for the results in 

Fig. 6. Therefore, in the following section, a higher load of 250N was chosen for investigating the 

influence of sliding speed. 

 

3.2 Influence of sliding speed 

Fig.9 shows the UV–vis spectra of graphite dispersed in EBO before and after sliding at 

different speeds. After friction, both of the peak maximum and shoulder red shifted to higher 

wavelength, 232 and 253nm, respectively, indicating that the electronic conjugation within the 

graphene increased after friction [30]. Moreover, the absorbance increased with increasing sliding 

speed, indicating that higher sliding speed is helpful for formation of more auxochromic groups 

including hydroxyl groups due to the enhance of the tribo-oxidation reaction [39].  

Fig. 10 displays the particle size distribution and Raman spectra of the graphite particles in the 

liquid after sliding at different sliding speed. As can be seen from the Fig. 10a, the particle size 

decreased and distribution became narrower with an increase in sliding speed. This may because 

higher speeds are easy to exfoliate the graphite into smaller pieces. From Fig.10b, it can be seen that 

the typical single-layer graphene can be obtained at speed of 0.1m/s, since that the intensity of 

single 2D peak is two times of that of G peak [32]. Main components of the products are bilayer 

graphene and few-layer graphene with some graphite at speed of 0.2 and 0.3 m/s, respectively, 

because the intensity of 2D band is ~0.9 and ~0.6 times of G band [40] at speed of 0.2 and 0.3 m/s. 

The D band peaks disappeared at the sliding velocity of 0.1 and 0.2m/s, but occurred again at 

0.3m/s, indicating high-quality single-layer graphene could be obtained [32] at low sliding speed of 

0.1m/s, but the defect increased on the carbon layer of the products at higher speed.  
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Fig. 11 displays the micrographs of the particles in the fluid after sliding at different sliding 

speeds. As shown, large slice structures with wrinkles of the graphene remained at low sliding 

speeds, while higher sliding speed led to exfoliate the products into small pieces. These image 

results agree with the Raman spectra in Fig. 10b.  

The friction and wear behavior of the contacts lubricated with graphite dispersed in EBO at 

different sliding speeds are shown in Fig. 12. Fig. 12a shows that, at the run-in and initial stage, 

with an increase in sliding speed, the friction coefficient decreased accordingly. However, at 

follow-up stage, the friction coefficient under high sliding speed (0.3m/s) is higher than that under 

low sliding speed (0.1m/s). This might because high sliding speed contributed to the formation of 

the tribo-film at initial stage, but also will destroy the tribo-film by lasting friction at follow-up 

stage [35]. Fig. 12b shows that the wear rate increased slightly with an increase of sliding speed. 

This can be explained by the fact that at high sliding speed, the graphite and graphene remain on the 

rubbing surfaces for shorter time than those under lower sliding speed [26], and also under the high 

sliding speed the friction pairs will much easier to destroy the tribo-film on the rubbing surfaces on 

the counterparts.  

Fig. 13 shows micrographs of worn surfaces of stationary sample lubricated with graphite 

dispersed in EBO at different sliding speeds. It can be noted that there were some thin and dense 

furrows on the worn surfaces at low speed (Fig.13a), suggesting it had only slight wear. The surface 

roughness increased and wear furrows became wider with an increase in sliding speed (Fig.13b, c), 

indicating the wear types belong to a mild wear and severe wear, respectively [41].  

Fig. 14 shows the EDX results of the worn surfaces of stationary sample lubricated with 

graphite dispersed in EBO at different sliding speeds. As shown in the figures, the relative contents 

of carbon and oxygen decreased with an increase in sliding speed, indicating tribo-film became 
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thinner under high sliding speed. The element chromium resulted from the upper friction pair owing 

to the material transfer during sliding [42]. The element Fe from substrate can also be detected. 

Besides, the element silicon was found on the worn surfaces at high sliding speed, which came from 

inside of the substrate of gray cast iron, confirming the high sliding speed may destroy the 

tribo-film and is harmful to the formation of single-layer graphene.  

 

3.3 Tribological mechanisms 

According to all the experimental results above, an schematic explanation of the tribological 

mechanisms is shown in Fig. 15. As shown, under sliding conditions, the suspended graphite was 

transformed into multi-/single- layer graphene, and formed a thin tribo-film on the rubbed surfaces, 

which decreases the friction and wear. With an increase in load, the shear effects enhanced and 

smaller graphene particles size of the graphene were obtained, which led to a thick tribo-film on the 

surfaces, resulting in a lower friction and wear. When the sliding speed changed, the products 

altered accordingly. On one hand, at high speed, small graphene particle were formed. At initial 

stage, it was easy to form a thick tribo-film on the surface, resulting in a low friction coefficient at 

this stage. However, during sliding, the tribo-film was destroyed at higher sliding speeds, and then 

the friction and wear of the samples increased. On the other hand, at lower speeds, although the 

tribo-film was not very thick, but it maintained on the surfaces for a longer time than those under 

high speed friction, which resulted in a lower friction and wear at the end of the friction.  

 

4. Conclusions 

Graphite was dispersed in EBO and played a beneficial lubricating role between a upper 

rotational and lower stationary steel/gray cast iron pairs. The products were analyzed and the 
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tribological behavior during this process was recorded. The friction and wear mechanisms were 

investigated. Several conclusions can be drawn from this work:  

1. Friction-induced transformation is an effective method to fabricate graphene from graphite. 

High load and low sliding velocity contribute to the formation of high-quality single-layer 

graphene during the sliding process.  

2. Exfoliation induced by sliding makes graphite transform into graphene, and then it 

adsorbed or reacted on the rubbing surfaces to prevent the material from severe wear. In 

addition, higher loads makes more graphene and thicker tribo-film, decreasing the friction 

coefficient and wear rate. The wear types of the friction pairs lubricated by EBO with 

graphite are ascribed to spalling wear, adhesive wear and mild wear, respectively, with the 

increasing loads. 

3. The higher sliding speed helps to form a thicker tribo-film composed of graphene and other 

components on the rubbing surfaces at initial stage, which results in a low friction and wear, 

but at the follow-up stage, the tribo-film is more easier to be destroyed at higher sliding 

speeds, and then the friction and wear of the samples increased. The wear types change 

from slight wear, to mild wear and to severe wear with an increase in sliding velocity.  
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Fig.1 (a) Particle size distribution, micrograph (inset) and (b) Raman spectrum of graphite 
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Fig.2 Illustration of the End-face tribometer 
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Fig.3 UV–vis spectra of graphite dispersed in EBO before and after sliding under different 

load  
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Fig.4 (a) Particle size distribution and (b) Raman spectrum of graphene transformed from 

graphite after sliding under different load 
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Fig.5 Micrographs of graphene transformed from graphite after sliding under different loads: 

(a) 100N, (b) 150N, (c) 200N 
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Fig.6 (a) Friction coefficient and (b) wear rate of stationary sample lubricated with EBO and 

graphite dispersed in EBO under different loads (sliding speed: 0.2m/s, sliding time: 60min) 
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Fig.7 Micrographs of worn surfaces of stationary sample lubricated with EBO (a), and graphite 

dispersed in EBO under different loads: (b) 100N, (c) 150N, and (d) 200N 

 

  

 

23 
 



 

    

    

 

Fig.8 EDX of worn surfaces of stationary sample lubricated with EBO (a), and graphite 

dispersed in EBO under different loads: (b) 100N, (c) 150N, and (d) 200N  
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Fig.9 UV–vis spectra of graphite dispersed in EBO before and after sliding under different 

sliding speed (load: 250N, sliding time: 60min) 
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Fig.10 (a) Particle size distribution and (b) Raman spectrum of graphene transformed from 

graphite after sliding under different sliding speed 
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Fig.11 Micrographs of graphene transformed from graphite after sliding under different sliding 

speed: (a) 0.1m/s, (b) 0.2m/s, (c) 0.3m/s 
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Fig.12 (a) Friction coefficient and (b) wear rate of stationary sample lubricated with graphite 

dispersed in EBO under different sliding speed (load: 250N, sliding time: 60min) 
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Fig.13 Micrographs of worn surfaces of stationary sample lubricated with graphite dispersed in 

EBO under different sliding speed: (a) 0.1m/s, (b) 0.2m/s, and (c) 0.3m/s 
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Fig.14 EDX of worn surfaces of stationary sample lubricated with graphite dispersed in EBO 

under different sliding speeds: (a) 0.1m/s, (b) 0.2m/s, and (c) 0.3m/s 
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Fig. 15 Schematic explanation of tribological mechanisms 

 

Low friction and wear Lower friction and wear 

Low friction and wear Lower friction and wear 

Increase load 

Initial stage 

Follow-up stage 

Initial stage 

Follow-up stage 

 

Stationary pair 

Rotational pair 

Rotation 

Load 

Friction-induced 
transformation 

Note: 

 

Graphite 

Esterified Bio-oil 

Single layer graphene 
Multi-layer graphene 

Tribo-film 

Frictional pairs 

 

Low speed 
High speed 

Alter sliding 
speed 

Low load High load 

31 
 


