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Abstract 

25-hydroxyvitamin D (25D) circulates bound primarily to serum vitamin D binding protein (DBP), 

with DBP showing higher binding affinity for 25D3 than 25D2. We therefore hypothesized that 

vitamin D2 (D2) promotes higher serum levels of unbound 25D (free 25D), with different 

functional responses, relative to vitamin D3 (D3). Week 3 (wk3) C56BL/6 mice were placed on 

diets containing either D2 or D3 alone (both 1000 IU/kg). At wk8 and wk16 D2 mice had only 

25D2 in circulation (26.6±1.9 and 33.3±4.4 ng/ml), and D3 mice had only 25D3 (28.3±2.0 and 

31.7±2.1 ng/ml). At wk 8 (44.5±6.4 vs. 62.4±11.6 pg/ml, p<0.05), and wk16 (78.4±12.6 vs. 

95.5±11.6) D2 mice had lower serum 1,25-dihydroxyvitamin D (1,25(OH)2D) relative to D3 mice. 

By contrast, measured free 25D was significantly higher in D2 mice at wk8 (16.8±0.65 vs. 

8.4±0.63 pg/ml, p<0.001) and wk16 (17.4±0.43 vs. 8.4±0.44, p<0.001). Two-way ANOVA of 

bone histomorphometry showed that wk8 D2 mice had significantly higher osteoclast 

surface/bone surface, eroded surface/bone surface, and mineral apposition rate compared to 

D3 mice. Osteoblast surface/bone surface was higher in wk8 D2 females but not wk8 D2 males. 

At wk16, D2 mice had significantly higher bone volume/total volume and trabecular number 

compared to D3 mice. Differences in bone phenotype were observed despite D2 mice reaching 

similar serum 25D levels and lower 1,25D levels compared to D3 mice. These data indicate that 

25D2 binds less well to DBP than 25D3, with resulting higher levels of free 25D promoting 

differential effects on bone in mice exposed to D2 alone. 

 

Word count: 250 (250 max) 
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Introduction 

In recent years there has been considerable debate concerning the role of vitamin D in human 

health.  A key feature of this has been the definition of ‘optimal’ levels of vitamin D, and the 

potential impact of vitamin D-deficiency on human disease (1). At present the vitamin D ‘status’ 

of any given individual is determined by the total serum concentration of pro-hormone 25-

hydroxyvitamin D (25D)(2).  However, this parameter remains controversial with target levels for 

circulating 25D varying considerably depending on the population and clinical endpoint being 

studied(3,4). It is also unclear how total serum 25D levels relate to physiological or disease 

responses given that 25D is an inactive form of vitamin D that must be metabolized to active 

1,25-dihydroxyvitamin D (1,25D) to initiate transcriptional responses via the nuclear vitamin D 

receptor (VDR). This may be particularly important for the many non-classical, extra-skeletal 

effects of 1,25D that have been reported in recent years (5-8), where conversion of 25D to 

1,25D and subsequent VDR signaling may take place in a tissue-specific manner (9). 

 

In serum, vitamin D metabolites are bound primarily to the serum vitamin D binding (DBP) 

(10,11). This association is central to the reabsorption of 25D in the proximal nephron and its 

subsequent metabolism to active 1,25D (1,25D) via the enzyme 1α-hydroxylase (CYP27B1) 

(12,13), but binding to DBP does not appear to underpin the entry of 25D into many other 

tissues.  Instead, for most extra-renal tissues the general assumption is that vitamin D 

metabolites are biologically active when they are free of serum binding, even though this 

fraction may be very small (11,14).  This is likely to be crucial to vitamin D physiology because 

of the widespread extra-renal expression of CYP27B1 (15), where localized synthesis of 1,25D 

and associated VDR responses may be highly dependent on the tissue availability of 25D that is 

not bound to DBP (16). The so-called ‘free-hormone hypothesis’ (17,18) has questioned the 

validity of total serum 25D measurement as an accurate marker of vitamin D function (19), and 

revived interest in DBP as a pivotal component of vitamin D physiology.  
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Genome-wide association studies have underlined the link between DBP genotype, circulating 

levels of DBP and serum 25D status (20). However, studies of Dbp knockout mice showed that 

although these mice had almost undetectable serum levels of total 25D, the mice were 

phenotypically normal when raised on a normal vitamin D diet (21). A potential explanation for 

this is that despite lower circulating levels of total 25D, Dbp-/- mice have similar serum 

concentrations of free 25D relative to wild type mice.  With this observation in mind, we 

developed an alternative strategy for comparing the relative importance of total vs free serum 

25D based on the differential binding affinity of vitamin D metabolites for DBP. Previous studies 

have shown that relative to 25D3, 25D2 has a lower binding affinity for DBP (22-24).  This 

appears to be a key factor in the decreased serum half-life of 25D2 compared to 25D3 (25), and 

the increasing reluctance to use vitamin D2 for supplementation studies (26). To further 

characterize the relative impact of these two forms of 25D on physiological responses in vivo, 

we utilized mouse models where animals were raised from weaning on diets containing 

exclusively vitamin D2 or vitamin D3.  

 

Materials and Methods 

Cell culture. Studies in vitro were carried out using the MG63 human osteoblast cell line 

(ATCC, Manassas, VA) cultured in DMEM medium with 10% fetal bovine serum and incubated 

at 37oC. For dose response to 25D2/D3 studies, cells were incubated in 2% human serum (HS) 

or 10% bovine serum albumin (BSA) for 6 hrs. After treatment, media was removed and TRIzol 

was added to extract RNA, cDNA was generated by Super Script III Reverse Transcriptase with 

random primers according to suggested manufacturer procedures. RT-PCR was used to amplify 

cDNA and quantify genes of interest. Cycle threshold values were determined by instrument 

software for genes of interest and were subtracted by the cycle threshold values of 18S rRNA to 

yield Ct values. Data is expressed as Ct relative to vehicle treated cultures. 
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Mice. 3-week old male and female C57BL/6 mice were obtained from Jackson Laboratories 

(Sacramento, CA) and placed on the AIN-76A diet supplemented with either 1000 IU/kg vitamin 

D2 (D2) or vitamin D3 (D3) (Research Diets, Inc., New Brunswick, NJ), until euthanasia at wk8 

or wk16 of age. Protocols were approved by the Office of Animal Research Oversight at 

University of California, Los Angeles (University of California, Los Angeles Chancellor’s Animal 

Research Committee (ARC), 2013-113-01). For each time point, 8 male and 8 female mice 

were allocated to D2 and D3 mice, with sample size based on previous studies of vitamin D-

sufficient and deficient mice (27). Each animal was an experimental unit, but mice were housed 

four animals per cage and entry into the study was staggered so that only eight mice were 

sacrificed on any given week. For serum vitamin D metabolites, bone histomorphometry and 

spleen immune cell and gene expression studies, samples were analyzed blind. The primary 

outcome of this approach was to assess total and free serum concentrations of 25D2 and 25D3, 

with secondary outcomes being changes in bone and spleen markers. 

 

Mice were housed within the CHS B-Floor mouse only barrier Specific Pathogen-Free facility at 

UCLA that utilizes static micro-isolator and ventilated racks with beta chip and/or corn cob 

bedding material for mouse cages. All operations staff were dedicated to this facility only.  Mice 

received D2- or D3-specific chow, and filtered tap water was provided via water 

bottles.  Investigators had direct access to the mice, and all manipulations were carried out in a 

cage change station. Investigators provided fresh diet on a twice-weekly basis (Monday and 

Friday). Vivarium staff changed water and bedding weekly and, along with investigators, 

observed mice for general health and well-being. Automatic light cycles (12 light/12 dark) are 

installed in all animal holding rooms along with 24/7 room environment monitoring devices. 
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Analysis of mouse serum. Serum concentrations of 25D2, and 25D3 were analyzed by Liquid 

Chromatography-Tandem Mass Spectrometry methods at Heartland Assays (Ames, IA). Serum 

concentrations of 1,25D were assessed by Radioimmunoassay (Heartland Assays). Serum free 

25D was quantified by immunoassay at Future Diagnostics (Wijchen, Netherlands). This assay 

has 77% cross-reactivity with 25D2. PTH 1-84 was measured by ELISA (Immutopics 

International, San Clemente, CA).  Serum DBP was measured using a mouse DBP serum 

quantikine ELISA kit (R&D Systems, Minneapolis, MN 55413), according to manufacturer’s 

instructions. 

 

Gene expression assays. Mouse kidney and spleen RNA was isolated by Trizol extraction and 

cDNA synthesized with Super Script III Reverse Transcriptase according to manufacturer 

protocols (Invitrogen Thermo Fisher Scientific, Grand Island, NY) with random primers. qRT-

PCR analysis was performed on an MX-3005P instrument (Agilent, Santa Clara, CA) utilizing 

TaqMan system reagents.  Specific probe/primer sets were as follows (all Invitrogen Thermo 

Fisher Scientific, Grand Island, NY): Human osteocalcin (BGLAP, Hs01587814_g1), mouse 25-

hydroxyvitamin D-1α-hydroxylase (Cyp27b1) (Mm01165918_g1); mouse vitamin D-24-

hydroxylase (Cyp24a1) (Mm00487244_m1); mouse vitamin D receptor (Vdr) 

(Mm00437297_m1); CD11b (Mm00434455_m1); CD14 (Mm00438094_g1); Receptor activator 

of nuclear factor kappa-B ligand (RANKL) (Mm00441906_m1). Eukaryotic 18S rRNA 

(probe/primer 4319413E) was used as an internal calibrator housekeeping gene. Reactions 

were carried out as described previously (27). 

 

Bone histomorphometry. Static and dynamic histomorphometry was carried out on 8 and 16 

week old mice. Mice were injected intra-peritoneal in the afternoon with (12 mg/ml) calcein 

(Sigma-Aldrich, St. Louis, MO) at 20 mg/kg bodyweight 7- and 2-days prior to euthanasia as 

recommended by the UCLA Bone Histomorphometry Core Laboratory. Right femurs were 
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collected from each animal, fixed in 70% ethanol, dehydrated with xylene, and embedded in 

methyl methacrylate. Longitudinal sections (5 μm) of femur were prepared on a Microm 

microtome (Richard-Allan Scientific, Kalamazoo, MI), and stained with toluidine blue. Static 

parameters of bone formation and resorption were measured in a defined area between 181 μm 

and 725 μm from the growth plate using an OsteoMeasure morphometry system (Osteometrics, 

Atlanta, GA). Dynamic histomorphometry, mineralizing surface per bone surface and mineral 

apposition rate were measured in unstained sections under ultraviolet light, using a B-2A set 

long pass filter consisting of an excitation filter ranging from 450 to 490 nm, a barrier filter at 515 

nm, and a dichroic mirror at 500 nm. Bone formation rate (BFR) was a calculated parameter. 

The terminology and units used are those recommended by the Histomorphometry 

Nomenclature Committee of the American Society for Bone and Mineral Research (28). 

 

Micro computed tomography (µCT) analyses. Following euthanasia, left femurs were 

harvested, the attached soft tissues carefully removed, and the bones were fixed in 10% 

buffered formalin phosphate and then stored in 70% ethanol at 4°C. Micro–computed 

tomography scans (µCT; Skyscan 1172, Aartselaar, Belgium) were acquired at 55 kVp and 

72 µA at a resolution of 12 µm. Volumetric analysis was performed using the Skyscan software. 

For trabecular bone analyses, 200 slices per femur were measured, covering a total of 2.4 mm 

from the proximal growth plate to the shaft distally. The analysis of the secondary spongiosa 

begins at 0.048 mm below the most distal point of the primary spongiosa, which was defined as 

directly distal to the most distal portion of the growth plate. Nomenclature for the bone 

morphology parameters is as described (29). 

 

Statistical analysis. Data for serum vitamin D metabolites, serum PTH, as well as tissue gene 

expression data were analyzed by student’s t-test on Excel (Microsoft, Redmond, WA). Bone 

histomorphometry parameters were analyzed by Two-way ANOVA on Prizm 5 (GraphPad, La 
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Jolla, CA). Tables of data were presented as mean values ± standard error of the mean (SEM) 

and error bars in graphs were standard deviation (SD) or SEM as indicated in figure legends.  

 

Results 

Differential potency of 25D2 and 25D3 in vitro  

Consistent with previous studies of human monocytes (16), analysis of MG63 osteoblastic cells 

in vitro showed that these cells were more sensitive to 25D (25D2 or 25D3) when cultured in the 

medium lacking serum (2% human serum, 2% HS) (Figure 1). Furthermore, MG63 cells 

cultured in 2% HS showed greater sensitivity to 25D2 relative to 25D3 when measuring 

induction of the mRNA for osteocalcin (OC) (Figure 1A). However, both 25D2 and 25D3 were 

equally effective in stimulating OC mRNA when MG63 cells were cultured in serum-free medium 

(Figure 1B). These data supported the over-arching hypothesis that 25D2 has greater biological 

potency in the presence of serum proteins such as DBP.  

  

Serum free 25D is elevated in mice raised on vitamin D2 diet relative to vitamin D3 

To assess possible variations in functionality of 25D2 and 25D3 in vivo, further studies were 

carried out using mice raised on diets containing either vitamin D2 (D2) or vitamin D3 (D3) only. 

These diets had no detrimental effect on mice at 8 or 16 wks of age, and each group of animals 

exhibited circulating 25D that was exclusively 25D2 or 25D3, with corresponding serum 1,25D2 

or 1,25D3. In D2 mice, serum concentrations of 25D2 (26.56 ± 1.88 ng/ml at 8 wks and 33.25 ± 

4.38 ng/ml at 16 wks) were similar to serum concentrations of 25D3 in D3 mice (28.27 ± 2.01 

ng/ml at 8 wks and 31.72 ± 2.06 ng/ml at 16 wks) (Figure 2A). For both D2 and D3 mice, serum 

concentrations of 25D2 or 25D3 were significantly higher at 16 wks of age compared to 8 wks.  

In a similar fashion, serum concentrations of 1,25D2 and 1,25D3 were higher in wk 16 mice 

compared to wk 8 mice. However, in both age groups serum concentrations of 1,25D3 in D3 

mice (62.38 ± 11.59 pg/ml at 8 wks and 95.53 ± 11.59 pg/ml at 16 wks), were significantly 
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higher than serum 1,25D2 in D2 mice (44.49 ± 6.45 pg/ml at 8 wks and 78.42 ± 12.61 pg/ml at 

16 wks) (Figure 2B). Measurement of DBP concentrations for week 8 serum samples showed 

no significant difference between D2 and D3 mice (Figure 2C). Despite this, free 25D levels 

were higher in D2 mice relative to D3 mice (16.75 ± 0.65 pg/ml vs 8.40 ± 0.63 pg/ml at 8 wks 

and 17.38 ± 0.43 ng/ml vs 8.43 ± 0.44 pg/ml at 16 wks) (Figure 2C). 

 

Differences in kidney gene expression in D2 versus D3 mice 

Analysis of kidney tissue showed no significant effect of D2 or D3 diets on expression of mRNA 

for the vitamin D receptor (Vdr), 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), or vitamin D-

24-hydroxylase (Cyp24a1) in male or female mice at either wk8 or wk16 of age (Figure 3). 

Consistent with this, mean ± SD serum concentrations of PTH for D2 (193.16 ± 10.04 pg/ml 

females and 139.95 ± 7.24 pg/ml males) and D3 (195.69 ± 6.76 pg/ml females and 157.00 ± 

5.32 pg/ml males) in wk8 mice showed no significant differences. Both male and female mice 

showed higher expression of Vdr (lower ΔCt) at wk16 of age compared to wk8 (Figure 3A). At 8 

wks of age, D2 and D3 male mice showed lower expression of Cyp27b1 (higher ΔCt) relative to 

their female counterparts (Figure 3B),  and wk16 female D3 mice showed higher expression 

(lower ΔCt) of Cyp24a1 relative to wk8 female D3 mice (Figure 3C).  

 

Differences in spleen gene expression and immune cell composition in D2 versus D3 

mice 

To determine possible differential effects of D2 and D3 diets on extra-renal actions of 25D, 

analysis of mRNA expression was also carried out for spleen tissue. Data in Figure 4A indicate 

that male mice showed no significant change in expression for the genes Cyp27b1, CD11b, 

CD14 and RANKL.  However, wk8 female D2 mice showed significantly increased expression of 

Cyp27b1, CD11b, and RANKL, and significantly lower expression of CD14. Further analysis of 

spleen tissue from wk8 female mice by flow cytometry showed that differential effects of D2 and 
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D3 were restricted to less abundant splenic cell populations such as natural killer (NK) cells and 

monocyte/macrophages (Figure 4B).  In spleens from D2 females the percentage of NK cells 

(3.45 ± 0.36 vs 5.25 ± 0.31 % of CD45+ cells) was lower, and the percentage of 

monocytes/macrophages was higher (3.31 ± 0.28 vs 2.40 ± 0.13 % of CD45+ cells) relative to 

D3 females. Further analysis of the spleen monocyte population using CD11b/F4/80 markers 

showed a significantly higher proportion of CD11b-negative monocytes (10.62 ± 3.85 vs 3.10 ± 

1.24) in D3 mice relative to D2 mice, but CD11b-positive monocytes were unaffected by diet. 

  

Variations in bone structure and cell composition in D2 versus D3 mice 

Histomorphometric analysis of femurs from D2 and D3 mice showed changes in bone structure 

that were sex, diet, and time-related. Example histomorphometric analyses for femur bone from 

wk16 female mice on D2 or D3 diets are shown in Figure 5. Quantitative analysis of bone 

structure markers was carried out for femur sections from multiple mice using defined regions of 

interest (Figure 5 inset box) with resulting data shown in Table 1. Statistically significant 

differences in bone structure and turnover markers for wk8 mice were primarily due to sex, with 

male mice showing higher bone volume (BV/TV), trabecular number (Tb.N), trabecular 

thickness (Tb.Th), mineralized bone surface (MS/BS), osteoid surface (OS/BS), mineral 

apposition rate (MAR), and bone formation rate (BFR/BS), while trabecular spacing (Tb.Sp) was 

lower in males relative to females. Interestingly, at this time point, 2-way ANOVA showed that 

the eroded bone surface (ES/BS) and MAR were significantly affected by D2 vs D3 diet. At 

wk16, all bone structure and turnover parameters were statistically different in male vs females 

irrespective of diet. However, there was a significant diet effect in that BV/TV, Tb.N, and Tb.Th 

were significantly higher in D2 vs D3 mice, with Tb.Sp being lower in D2 mice. Further analysis 

of bone structure by µCT in wk16 mice confirmed the differential effects of D2 and D3 on BV/TV, 

Tb.N, and Tp.sp with these effects predominating in male mice (Figure 6). 
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Histomorphometric analyses for bone bone-resorbing osteoclasts (Oc) and bone-forming 

osteoblasts (Ob) was also carried out, as illustrated by the example femurs from wk8 female 

mice in shown in Figure 7. Quantitative analysis of these data using femur sections from wk8 

and wk16 mice is shown in Table 2. In wk8 mice the primary factor influencing these markers 

was diet, with osteoclast number (N.Oc), osteoclasts per bone perimeter (N.Oc/B.Pm), number 

of osteoclasts per trabecular area (N.Oc/T.Ar), osteoclast surface per bone surface (Oc.S/BS), 

number of osteoblasts (N.Ob), number of osteoblasts per bone perimeter (N.Ob/B.Pm), number 

of osteoblasts per trabecular area (N.Ob/T.Ar), osteoblast surface per bone surface (Ob.S/BS) 

being significantly affected by D2 vs D3 diet. In wk8 females all of the osteoclast and osteoblast 

markers were higher in D2 mice relative to D3. In wk8 males osteoclast markers were also 

higher in D2 mice but there was no significant effect on osteoblast markers in the D2 mice 

(Mann-Whitney P=0.33). At wk16 D2 vs D3 diet had no significant effect on osteoclast and 

osteoblast markers but, in common with wk8 mice, sex of the animal was associated with 

variations in some makers, with N.Oc/B.Pm, Oc.S/BS, N.Ob, N.Ob/B.Pm, N.Ob/T.Ar, Ob.S/BS 

being higher in males vs females.    

 

Discussion 

The aim of the current study was to further analyze the impact of DBP on vitamin D 

bioavailability and physiology by generating an in vivo model where concentrations of free 

serum 25D were uncoupled from serum concentrations of total 25D. Previous studies have 

shown that Dbp knockout mice exhibit very low serum 25D and 1,25D due to elevated renal 

clearance of 25D and decreased conversion to 1,25D in proximal tubules (21).  Despite this, 

they do not have an abnormal skeletal phenotype unless raised on a vitamin D-deficient diet 

(21).  This has been attributed to the fact that although Dbp KO mice have low circulating levels 

of 25D and 1,25D, the bioactivity of these metabolites remains normal (30). Previous in vitro 

data from our group have shown that DBP acts to attenuate cellular responses to vitamin D 
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metabolites, with monocytes cultured in serum from Dbp knockout mice showing more sensitive 

responses to 25D and 1,25D (16). Other studies have reported increased sensitivity to 1,25D in 

osteoblastic cells cultured in medium containing serum from Dbp knockout mice (30). Here we 

showed enhanced sensitivity to 25D2 relative to 25D3 in human osteoblastic MG63 cells, but 

only in the presence of serum containing DBP. These data supported the central hypothesis of 

the current study that 25D2 binds to DBP with lower affinity than 25D3, and therefore exhibits 

greater bioavailability in the presence of DBP-containing serum. This was further endorsed by 

analysis of serum free 25D concentrations in D2 and D3 mice, where free 25D was significantly 

higher in D2 vs D3 mice, despite both groups of animals having similar concentrations of total 

25D and DBP at each time point.  

 

Both the D2 and D3 forms of vitamin D are commonly used in human supplementation studies, 

but the relative efficacy of the two isoforms continues to be the subject of widespread debate. A 

recent systematic review and meta-analysis indicated that vitamin D3 was more effective in 

raising serum concentrations of 25D relative to vitamin D2 (31). Other studies have reported 

similar enhancement of serum 25D levels with vitamin D2 or vitamin D3 supplementation, but 

better maintenance of the resulting elevated serum 25D was achieved with vitamin D3 (32). A 

potential explanation for data from both of these studies is that the lower binding affinity of DBP 

for 25D2 relative to 25D3 (22-24) may impair availability of the 25D2-DBP complex for megalin-

mediated glomerular reabsorption (12). This was not supported by data in the current study, 

where there was no significant difference in serum total 25D concentrations for D2 versus D3 

mice at wk8 or wk16. However, there was a trend towards higher serum concentrations of 

1,25D in D3 mice (although this was only statistically significant in wk8 male mice), suggesting a 

greater conversion rate of 25D3 to 1,25D3, relative to the rate of conversion of 25D2 to 1,25D2. 

Previous studies have shown that there is no preferential metabolism of 25D2 to 1,25D2 vs 
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25D3 to 1,25D3 (33) although, in contrast to the current study, this particular analysis involved 

human subjects with a combination of D2 and D3 circulating metabolites.  

 

The elevation of serum 1,25D in wk16 D3 mice relative to D2 mice may occur through better 

recovery of substrate for the proximal tubule 1α-hydroxylase enzyme via megalin-mediated 

glomerular reabsorption of the 25D3-DBP complex (12). The difference does not appear to be 

due to differential kidney expression of the enzyme 1α-hydroxylase, as analysis of renal mRNA 

for Cyp27b1 showed no difference between D2 and D3 mice. In a similar fashion, expression of 

renal mRNA for Cyp24a1 was not significantly different between D2 and D3 mice, suggesting 

that 25D2 and 25D3 were not subject to different levels of catabolism. Interestingly, in both D2 

and D3 mice, serum concentrations of 1,25D were significantly higher in wk16 versus wk8 mice. 

The mechanism for this is unclear and does not appear to be due to any age-related changes in 

renal Cyp27b1 and/or Cyp24a1 expression.       

 

The relative impact of 25D2 and 25D3 on serum concentrations of free 25D has been studied 

previously in human subjects supplemented with oral vitamin D2 or vitamin D3 at 1,000 IU/day 

for 3 months (34). In this instance, the subjects receiving vitamin D3 showed higher circulating 

levels of 25D and 1,25D at the end of the study, consistent with the data presented here for D3 

versus D2 mice. In contrast to mouse data in the current study, human subjects supplemented 

with vitamin D2 showed lower levels of free or bioavailable (non-DBP bound) 25D relative to 

those supplemented with vitamin D3, although this effect was lost when data were adjusted for 

supplementation compliance (34).  Other than species, the major difference between these two 

studies is that the mice described here received exclusively either D2 or D3 from weaning, and 

consequently their circulating 25D was made up entirely of either 25D2 or 25D3. In humans 

supplemented with D2 a significant proportion of 25D is made up of endogenously synthesized 

25D3 obtained from cutaneous synthesis of vitamin D3 and vitamin D3 from food fortification. It 
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was also notable that the human cohort study outlined above (34) involved elderly hip fracture 

patients, who were assessed only for changes in serum calcium relative to free 25D. We did not 

measure serum calcium in the D2 or D3 mice. However, there was no significant difference in 

serum PTH levels between these mice suggesting that differences in free 25D (at least at the 

levels found in these mice) is not a significant component of vitamin D-mediated regulation of 

parathyroid function and calcium homeostasis.  

 

Although male and female D2 mice showed similar levels of total serum free 25D irrespective of 

age, the differential effects of 25D2 versus 25D3 were age and sex-dependent. The selection of 

week 8 and week 16 ages for assessment of bone phenotype was intended to capture data 

from the C57BL/6 mice at different stages of bone development: 1) at a young adult stage 

(week 8) when BV/TV is  toward its peak; 2) at a mature adult state (week 16) when BV/TV 

begins to decline (35). At wk8, 25D2 was associated with enhanced osteoclastic and 

osteoblastic activity, but this effect was most pronounced in female mice. Temporal variations in 

bone development for male and female mice have been reported previously (35), and these 

observations may explain the differential effects of D2 and D3 demonstrated in the current 

study. Specifically, it is possible that osteoclast/osteoblast effects of free 25D are strongest in 

younger mice during active skeletal development, with these effects being lost later in life. This 

would also explain the stronger impact of D2 versus D3 in female mice, where changes in 

parameters of skeletal development tend to be slower than in male counterparts. In this setting 

greater bioavailability of 25D2 may promote stronger effects in females relative to 25D3 

because of generally higher bone cell activity at females at this age point. As bone remodeling 

is the net effect of the activities of bone forming and bone resorbing cells, differences in bone 

structure will take longer to develop, and this may explain the significant differences in markers 

such as BV/TV, Tb.N and Tb. Sp for D2 versus D3 at week 16, but not at week 8.  
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Variable responses to 25D2 and 25D3 may not be restricted to the skeleton, as female D2 mice 

also exhibited differential effects on spleen gene expression and immune cell composition.  

Previous reports have shown that the spleen serves as a reservoir for monocyte/macrophage-

lineage osteoclast precursors (OCP), which are generated and transferred to bone in response 

to diverse stimuli including vitamin D (36). Data presented here showed that D2 diet was 

associated with higher mRNA expression levels of monocyte/macrophage specific markers 

CD11b and RANKL, and also changes in the total monocyte population within spleen. Although 

further experiments must be completed in order to determine the specific cell subpopulations 

affected by D2 treatment, the results suggest a link between altered osteoblast/osteoclast 

markers in vitamin D2 vs D3 mice and the increase in OCP markers in the spleen. Therefore, 

the spleen may be a target tissue for the enhanced levels of free 25D observed in D2 mice. 

Further in vivo studies using stimulated murine models will help elucidate whether these 

changes are more pronounced following immune challenge.  

 

Studies in human subjects have reported better correlation with serum free 25D relative to total 

serum 25D for bone mineral density in healthy subjects (37), and serum markers of mineral 

homeostasis in renal dialysis patients (38). However, these data have not been consistent and 

recent data for bone density and mineral metabolism markers in healthy adults suggested that 

analysis of free 25D does not significantly improve correlations relative to conventional 

measurement of total serum (39). This may be due, in part, to existing strategies for calculating 

free or bioavailable 25D based on measurement of serum DBP levels, where discrepancies 

between ELISA analyses using monoclonal versus polyclonal antibodies have been described, 

particularly in the context of racial variations in DBP phenotype (40). The advent of new assays 

for direct measurement of free 25D (41), as documented in the current study, has enabled a 

clearer appraisal of the functional impact of this form of vitamin D. To date, measurement or 

estimation of free serum 25D concentrations has been primarily focused on parameters 
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associated with classical skeletal actions of vitamin D.  Although the data presented here 

support a role for free 25D in defining some parameters of skeletal function, it seems likely that 

extra-skeletal tissues will also be important targets for free 25D. Previous studies in vitro (16,42) 

and spleen analyses reported here suggest that cells from the immune system may be strongly 

influenced by 25D that is not bound to DBP. As such, it will be interesting in future studies to 

determine whether, relative to vitamin D3, vitamin D2 supports enhanced immunomodulatory 

actions, either in the form of enhanced antibacterial or anti-inflammatory actions.  Finally, it will 

be important in future studies to determine the extent to which variations in DBP binding affinity 

influence vitamin D metabolites other than 25D. This includes 1,25D, where variations in 

synthesis of the active form of vitamin D may play a key role in mediating both skeletal and 

extra-skeletal responses. 
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Legends to figures 

Figure 1. Effects of 25D2 or 25D3 on osteocalcin mRNA in osteoblastic cells. MG63 cells 

were treated with 25D2 (o) or D3 (●) (0-200 nM) in medium containing: A. 2% human serum 

(HS); B. 10% BSA for 6 hrs.  Data show increased mRNA for the osteoblastic marker gene 

osteocalcin (OCN). Values are mean ± SD, n= 4 cell preparations. *** = P<0.001. 

 

Figure 2.  Vitamin D metabolites in mice raised on diets containing vitamin D2 or vitamin 

D3 only. Serum concentrations of: A) total 25-hydroxyvitamin D (25D) (either 25D2 or 25D3); B) 

1,25-dihydroxyvitamin D (1,25D) (either 1,25D2 or 1,25D3); C) serum vitamin D binding protein 

(DBP); D) free 25D in male or female mice raised on vitamin D2 (D2)- or vitamin D3 (D3)-only 

diets from wk 3 of age until either 8 wks or 16 wks of age. N = 3 for each male/female group. * = 

statistically different from equivalent 8 wk old mice, p<0.05, *** = statistically different from 

equivalent 8 wk old mice, p<0.001. ### = statistically different from D3 equivalent, p<0.001. n.d. = 

not done. 

 

Figure 3.  Effect of vitamin D2 or vitamin D3 on kidney gene expression in mice. 

Expression of mRNA for the vitamin D receptor (Vdr), 25-hydroxyvitamin D-1α-hydroxylase 

(Cyp27b1), and 24-hydroxylase (Cyp24a1) in kidneys from male or female mice raised on 

vitamin D2 (D2)- or vitamin D3 (D3)-only diets from wk 3 of age until either 8 wks or 16 wks of 

age. N = 6 separate animals. * = statistically different from equivalent 8 wk old mice, p<0.05, *** 

= statistically different from equivalent 8 wk old mice, p<0.001. ΔΔ = statistically different from 

equivalent female mice, p<0.01.  

 

Figure 4.  Effect of vitamin D2 or vitamin D3 on spleen gene expression and immune cell 

composition in week 8 female mice. Female mice raised on vitamin D2 (D2)- or vitamin D3 

(D3)-only diets from wk 3 of age until either 8 wks or 16 wks of age were assessed for: A. 
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Expression of mRNA for 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), CD11b, CD14, and 

RANK ligand (RANKL). Values are shown as fold-change in mRNA for each gene in D2 mice 

relative to D3 mice (D3 mice = 1); B. Immune cell composition based on % of cells expressing 

the immune cell surface antigens CD4 (helper T cells), CD8 (cytotoxic T cells), B220 (B cells), 

NK1.1 (natural killer cells), and F4/80 and CD11b (monocytes). N = 6 separate animals. * = 

statistically different from equivalent D3 mice, p<0.05, *** = statistically different from D3 mice, 

p<0.001.  

 

Figure 5.  Bone structure in female mice on vitamin D2 and vitamin D diets at week 16 of 

age. Example images from bone histomorphometric analysis (x40 magnification) of toluidine 

blue stained femurs from wk16 female mice fed vitamin D3 (D2) or vitamin D3 (D3) diets. Black 

box indicates region of interest for quantitative analysis. 

 

Figure 6.  Analysis of bone structure by µCT. A) Example µCT scans for wk 16 male mice on 

vitamin D2 (D2) or vitamin D3 (D3) diets. B) Quantification of bone volume (BV/TV), trabecular 

thickness (Tb.Th), trabecular number (Tb.N), and trabecular spacing (Tb.Sp) in femurs from 

wk16 male and female mice. Data are mean (bar) of n=3 left femurs. * = statistically different (t-

test) from D3 mice, p < 0.05, ** p < 0.01.  

Figure 7.  Osteoclast and osteoblast markers in female mice on vitamin D2 and vitamin D 

diets at week 8 of age. Example images from bone histomorphometric analysis (x 200 

magnification) of toluidine blue stained femurs from wk8 female mice fed vitamin D2 (D2) and 

vitamin D3 (D3) diets. 
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Table 1.  Effect of vitamin D2 or vitamin D3 on indexes of bone structure and turnover in mice 

 
Age/sex/diet 

N BV/TV 
(%) 

Tb.N 
(n/mm2) 

Tb.Sp 

(m) 

Tb.Th 

(m) 

ES/BS 
(%) 

MS/BS 
(%) 

OS/BS 
(%) 

MAR 

(m/d) 

BFR/BS 

(m3/m2/d) 

Mice 8 weeks           

Female           

   D2 7 8.45 ± 0.61 2.99 ± 0.13 309.72 ± 15.23 28.11 ± 1.16 4.48 ± 0.36 4.99 ± 0.82 6.57 ± 1.70 1.41 ± 0.06 25.14 ± 3.72 

   D3 7 7.13  ± 1.10 2.64 ± 0.24 373.73 ± 39.67 26.26 ± 1.51 1.73 ± 0.37 4.45 ± 0.54 6.78 ± 0.91 1.07 ± 0.13 18.24 ± 4.42 

Male           

   D2 8 12.63 ± 0.94 3.93 ± 0.22 228.13 ± 15.23 31.99 ± 1.11 3.65 ± 0.72 9.64 ± 1.69 3.08 ± 0.83 1.07 ± 0.03 37.75 ± 6.91 

   D3 8 12.58  ± 0.77 4.03 ± 0.10 218.31 ± 7.28 31.23 ± 1.67 2.29 ± 0.35 9.17 ± 0.84 3.37 ± 0.74 0.99 ± 0.05 33.53 ± 3.91 

2-way ANOVA 
p value 

          

   Sex  < 0.0001 < 0.0001 < 0.0001 0.0038 0.7866 0.0003 0.0036 0.0105 0.0103 
   Diet  0.4439 0.4816 0.2238 0.3589 0.0003 0.6516 0.8171 0.0107 0.2804 

   Sex x diet  0.4756 0.2212 0.1014 0.6983 0.1713 0.9761 0.9714 0.0945 0.7929 

Mice 16 weeks           

Female           

   D2 6 6.15 ± 0.29 2.14 ± 0.12 445.79 ± 25.28 28.84 ± 0.77 2.24 ± 0.53 8.84 ± 1.59 2.9 ± 0.50 1.01 ± 0.08 31.73 ± 5.39 

   D3 8 5.05  ± 0.43 1.76 ± 0.12 559.88 ± 47.52 28.67 ± 0.98 2.28 ± 0.32 9.23 ± 1.11 4.23 ± 1.45 0.89 ± 0.06 30.28 ± 3.95 

Male           

   D2 8 14.48  ± 1.50 4.00 ± 0.23 220.62 ± 17.37 35.60 ± 2.01 0.75 ± 0.31 4.01 ± 0.82 0.77 ± 0.31 0.65 ± 0.05 9.80 ± 2.59 

   D3 6 11.05  ± 0.84 3.46 ± 0.18 261.28 ± 15.33 31.82 ± 1.23 1.25 ± 0.14 2.77 ± 0.32 0.53 ± 0.30 0.64 ± 0.04 6.27 ± 0.47 

2-way ANOVA 
p value 

          

   Sex  < 0.0001 < 0.0001 < 0.0001 0.0026 0.0051 < 0.0001 0.0236 < 0.0001 < 0.0001 
   Diet  0.0358 0.0170 0.0168 0.1905 0.6971 0.6892 0.6733 0.4706 0.4881 

   Sex x diet  0.2624 0.6579 0.2338 0.2309 0.7868 0.4419 0.4005 0.2565 0.7711 
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 Table 2.  Effect of vitamin D2 or vitamin D3 on osteoclast and osteoblast indexes in mice 

 

 
Age/sex/diet 

N N.Oc/B.Pm 

(n/m) 

N.Oc 
(n) 

N.Oc/T.Ar 
(n/mm2) 

Oc.S/BS 
(%) 

N.Ob/B.Pm 

(n/m) 

N.Ob 
(n) 

N.Ob/T.Ar 
(n/mm2) 

Ob.S/BS 
(%) 

Young mice 
(8 weeks) 

         

Female          

   D2 7 0.72 ± 0.09 8.71 ± 1.06  3.35 ± 0.43  1.84 ± 0.22 9.60 ± 1.65  117.57 ± 19.71  44.45 ± 7.09 13.41 ± 2.02 

   D3 7 0.21 ± 0.03 2.00 ± 0.31 0.80 ± 0.12 0.55 ± 0.10 4.09 ± 0.77 44.29 ± 9.84 18.00 ± 4.11 5.47 ± 1.08 

Male          

   D2 8 0.50 ± 0.08 9.75 ± 1.74 3.09 ± 0.54 1.58 ± 0.29 1.87 ± 0.29 35.37 ± 4.89 11.25 ± 1.56 2.82 ± 0.52 

   D3 8 0.35 ± 0.05 7.13 ± 0.95 2.20 ± 0.29 0.98 ± 0.12 2.72 ± 0.38 54.50 ± 6.54 16.87 ± 2.10 3.69 ± 0.64 

2-way ANOVA 
p value 

         

   Sex  0.6134 0.0151 < 0.0001 0.6908 < 0.0001 0.0033 0.0003 < 0.0001 
   Diet  < 0.0001 0.0005 < 0.0001 < 0.0001 0.0139 0.0223 0.0165 0.0051 
   Sex x diet  0.0133 0.0959 0.0010 0.1043 0.0013 0.0003 0.0005 0.0007 
Mature mice 
(16 weeks) 

         

Female          

   D2 6 0.44 ± 0.11 4.17 ± 0.95 1.42 ± 0.32 1.22 ± 0.31 4.28 ± 0.47 42.33 ± 5.62 14.49 ± 2.08 6.51 ± 0.59 

   D3 8 0.38 ± 0.07 3.00 ± 0.58 1.04 ± 0.20 0.97 ± 0.25 3.95 ± 0.57 30.17 ± 4.03 10.71 ± 1.54 5.45 ± 0.88 

Male          

   D2 8 0.14 ± 0.05 3.50 ± 1.23 1.11 ± 0.38 0.54 ± 0.19 0.48 ± 0.11 9.63 ± 2.15 3.11 ± 0.70 0.77 ± 0.17 

   D3 6 0.20 ± 0.03 3.33 ± 0.49 1.07 ± 0.14 0.63 ± 0.08 0.86 ± 0.25 14.00 ± 3.88 4.67 ± 1.37 1.25 ± 0.45 

2-way ANOVA 
p value 

         

   Sex  0.0024 0.8458 0.6115 0.0346 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
   Diet  0.9852 0.4398 0.4598 0.7340 0.9816 0.2891 0.3717 0.5667 

   Sex x diet  0.4052 0.5611 0.5406 0.4462 0.4393 0.0789 0.1075 0.2408 
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Peptide/protein target Antigen sequence (if known)
Name of 

Antibody

Manufacturer, catalog #, 

and/or name of individual 

providing the antibody

Species raised in; monoclonal or 

polyclonal
Dilution used

CD45 30-F11 BD Biosciences 550994 Rat monoclonal 1/100

CD4 RM4-5 BD Biosciences 553048 Rat monoclonal 1/100

CD8a 53-6.7 BD Biosciences 553035 Rat monoclonal 1/100

B220 RA3-6B2 BD Biosciences 558108 Rat monoclonal 1/100

NK1.1 PK136 BD Biosciences 553164 Mouse monoclonal 1/250

CD11b M1/70 BD Biosciences 553311 Rat monoclonal 1/100

CD3 17A2 BD Biosciences 555274 Rat monoclonal 1/250

F4/80 BM8 eBioscience 11-4801-85 Rat monoclonal 1/100
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