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Abstract. It has been observed that in many real-world large scale
problems only few variables have a major impact on the function value:
While there are many inputs to the function, there are just few degrees of
freedom. We refer to such functions as having a low intrinsic dimension.
In this paper we devise an Estimation of Distribution Algorithm (EDA)
for continuous optimisation that exploits intrinsic dimension without
knowing the influential subspace of the input space, or its dimension,
by employing the idea of random embedding. While the idea is applica-
ble to any optimiser, EDA is known to be remarkably successful in low
dimensional problems but prone to the curse of dimensionality in larger
problems because its model building step requires large population sizes.
Our method, Random Embedding in Estimation of Distribution Algo-
rithm (REMEDA) remedies this weakness and is able to optimise very
large dimensional problems as long as their intrinsic dimension is low.

Keywords: Estimation of Distribution Algorithm, Black-box Optimiza-
tion, Intrinsic dimension.

1 Introduction

Optimisation over a high dimensional search space is challenging. However, it
has been noted that in certain classes of functions most decision variables have
a limited impact on the objective function. Examples include hyperparameter
optimisation for neural and deep belief networks [1], automatic configuration of
state-of-the algorithms for solving NP-hard problems [8], optimisation problems
in robotics [14], and others [3]. In other words, these problems have low intrinsic
dimensionality. In the numerical analysis literature [3] the influential parameter
subspace has been termed as the ‘active subspace’, and methods have been de-
veloped to estimate this subspace. Fortunately, for optimisation, estimating the
influential subspace is not required: In [14] it was shown that a sufficiently large
random subspace contains an optimum with probability 1, and this was used to
dramatically improve the efficiency of Bayesian optimisation by exploiting the
low intrinsic dimensionality of problems.



In this paper we further develop the random embedding technique, and in-
troduce it to evolutionary search, by employing it to scale up Estimation of
Distribution Algorithms (EDA) for problems with low intrinsic dimension. Al-
though the underlying theoretical considerations are applicable to any optimi-
sation method, our focus on EDA is due to it being one of the most successful
methods in low dimensional problems [11] and most unsuccessful or expensive
in high dimensions [5, 9, 12].

Definition. A function f : RD → R has intrinsic dimension di, with
di < D, if there exists a di dimensional subspace Υ such that ∀x ∈ RD, f(x) =
f(ProjΥ (x)).
In the above, ProjΥ (x) denotes the orthogonal projection, i.e. ProjΥ (x) = ΦΦTx,
where Φ ∈ RD×di has columns holding a linear basis of Υ .

The following result in [14] shows that, for such functions, a global optimum
exists in a randomly chosen linear subspace – hence a low dimensional search is
sufficient.

Theorem 1 ( [14]). Assume we are given a function f : RD → R with intrinsic
dimension di < d and a random matrix R ∈ RD×d with independent entries
sampled from a standard Gaussian. Then, with probability 1, for any x ∈ RD,
there exists a y ∈ Rd such that f(x) = f(Ry).

Given some box constraints on the original problem, the authors [14] develop
an upper bound on the search box required for the low dimensional search.
However, their proof only applies to the case when d = di, and in practice they
recommend a smaller search box and use a slightly larger d. Recall, in practice
we have no knowledge of the value of di. However, on synthetic problems the
experimental results do appear to be better when d is slightly larger than di.

In the next section we derive a bound on the search box that holds true
for d > di, and show that the required box size that guarantees to contain
a global optimum is indeed smaller when d is larger. Secondly, we devise an
EDA optimisation algorithm that implements these ideas employing a random
Gaussian embedding.

2 REMEDA: Random embedding EDA

In this section we present our REMEDA algorithm and explain how it exploits
the intrinsic dimensionality of problems. Instead of optimising in the high dimen-
sional space, REMEDA will do a random embedding, using the random matrix
R ∈ RD×d, d << D with i.i.d. entries drawn from a standard Gaussian, and
then optimises the function g(y) = f(Ry), y ∈ Rd in the lower dimensional
space.

The psuedo-code of REMEDA is given in algorithm 1. It takes the population
size N , box constraints for a D-dimensional problem, and the internal working
dimension d << D. As in basic EDA, the REMEDA algorithm then proceeds
by initially generating a population of individuals uniformly randomly. However,
these individuals are generated in the d-dimensional space, within some suitable



box constraints in this space that are determined from the given D-dimensional
box. The details of how this is done will follow shortly. The algorithm then
evaluates the fitness of these individuals with the use of a random embedding
matrix R ∈ RD×d that transforms the d-dimensional points into the original
D-dimensional space of decision variables. The matrix R has entries drawn i.i.d.
from a standard Gaussian distribution, as in Theorem 1. Based on the fitness
values obtained, the fittest individuals are selected using a selection method, such
as truncation selection. The maximum likelihood estimates (MLE) of the mean
µ ∈ Rd and the covariance Σ ∈ Rd×d of the promising solutions are computed
from the set of selected fittest individuals, and these are used to generate the
new generation by sampling from a multivariate Gaussian distribution. The new
population is formed by replacing the old individuals by the new ones. We also
use elitism, whereby the best individual of the previous generation is kept.

Algorithm 1 The Pseudocode of REMEDA with Population size N and in-
trinsic dimensionality of the problems, di

Inputs: N , D, d, Box
(1) Set the search box boundaries in the low-dimensional space Rd (cf. Theorem 2

& text)
(2) Set P ← Generate N points uniformly randomly within the box in Rd to give

an initial population
(3) Set R← Generate a random embedding matrix, R ∈ RD×d.
Do

(4) Evaluate the fitness of yi as f(Ryi), i = 1...N
(5) Select best individuals P sel from P based on their fitness values
(6) Calculate the mean µ and covariance Σ of P sel

(7) Use the µ and Σ to sample new population, Pnew

(8) P ← Pnew

Until Termination criteria are met
Output: P

We have not yet specified how to determine the d-dimensional box constraints
that correspond to the given D-dimensional ones. Given some box constraints
in RD, the following theorem gives the required box constraints for the search
in Rd.

Theorem 2. Let f : RD → R be a function with intrinsic dimension di <
d < D that we want to optimise subject to the box constraint χ ⊂ RD, where
χ is centered around 0. Denote the intrinsic subspace by Υ , and let Φ be a
D × di matrix whose columns form an orthonormal basis for Υ . Denote by
x∗t ∈ Υ ∩ χ an optimiser of f inside Υ . Let R be a D × d random matrix
with independent standard Gaussian entries. Then there exists an optimiser
y∗ ∈ Rd such that f(Ry∗) = f(x∗t ) w.p. 1, and for any choice of ε ∈ (0, 1),

if d > (
√
di +

√
2 ln(1/ε))2, then ||y∗||2 ≤ ||x∗

t ||2√
d−
√
di−
√

2 ln( 1
ε )

with probability at

least 1− ε.



Proof. The existence of y∗ is guaranteed by Theorem 1, and global optimisers
outside the subspace Υ are irrelevant since the function takes all its range of
values in Υ . So our focus is to upper bound the length of y∗.

From the proof of Theorem 1 in [14] we know that ∃y∗ ∈ Rd s.t.

ΦΦTRy∗ = x∗t (1)

Hence,
||x∗t || = ||ΦΦTRy∗|| ≥ smin(ΦΦTR)||y∗|| (2)

where we use the Rayleigh quotient inequality, and smin(·) denotes the smallest
singular value.

Note that ΦΦTR is a di×d random matrix with i.i.d. Gaussian entries. When
d = di it is a square matrix, and a bound on its smallest singular value was
applied in [14]. Instead, for the case d > di we employ the bound of Davidson
& Szarek that applies to rectangular Gaussian matrices [4]. We have for any
ε ∈ (0, 1) for which

√
d−
√
di − ε > 0, that:

||y∗|| ≤ ||x∗t ||√
d−
√
di − ε

(3)

with probability 1− exp(− ε
2

2 ). Now setting exp(−ε2/2) = τ and solving for ε we

get ε =
√

2 ln( 1
τ ). Plugging this back and renaming τ to ε completes the proof.
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Fig. 1: Comparison of our theoretical bound (Remeda), with various values of
d > di versus the bound of [14] (Rembo), which holds when d = di.

In Figure 1 we plotted the bound on the search box from our Theorem 2 for
various values of d > di in comparison with the bound in [14] for d = di. We see
that our result is tighter for nearly all values of d and it explains why a smaller



search box is sufficient when d > di. The single point for Rembo in figure 1 is
for d = di where as the curve for Remeda is for values of d > di.

In practice, of course, we typically have no knowledge of the value of di,
in which case we cannot use theoretical bounds directly to set our search box.
However, we can fix the search box – for instance to

√
d-times the coordinates

if the original box, as suggested in [14], and our Theorem 2 then suggests that
increasing d can eventually make this fixed-size box sufficiently large to contain
the optimiser y∗. This is what we used in the experiments reported.

3 Related Work

Model building in high dimensions is the subject of many recent research efforts,
as high dimensionality limits the usefulness of optimisers in practice. Many ap-
proaches were proposed, here we will limit ourselves to a few of the most relevant
ones.

Among these methods, the Eigendecomposition EDA (ED − EDA) [6] pro-
poses to utilise a repaired version of the full covariance matrix estimate, with the
aim to capture interactions among all decision variables and guide exploration of
the search space. Other methods use limited dependencies. For example, Coop-
erative Co-evolution with Variable Interaction Learning (CCV IL) proposed by
Weicker et al. in [15] is a deterministic method to uncover dependencies between
decision variables, which has later been extended to the CCVIL framework by
Chen et al in [13]. EDA with Model Complexity Control (EDA−MCC) [5] also
employs a deterministic algorithm to split the decision variables into two disjoint
subsets, of which one set contains decision variables with only minor interaction
and the other set contains the strongly dependent variables that are further
grouped randomly, and inter-group dependencies are neglected. Other methods
include Covariance Matrix Adaptation (CMA-ES) [7], separable CMA-ES (sep-
CMA-ES ) [10] and Multilevel Cooperate Co-evolution (MLCC) [16].

There are also methods that apply dimensionality reduction techniques to
reduce the dimension of the problems in order to avail EDA the opportunity to
demonstrate its capabilities. An example of this type of techniques are random
projections [9], [12] and [14]. However, none of these methods have been designed
to take advantage of the intrinsic structure of the problems as our REMEDA
approach does.

4 Experiments

4.1 Test functions and performance measures

We created test functions with intrinsic dimension 5 from existing benchmark
functions, by embedding the di-dimensional versions of these problems into
higher D-dimensions. That is, we add D−5 additional dimensions which do not
impact on the function value, and (optionally) rotate the search space around
the origin in a random direction. Hence, the functions will take D-dimensional



inputs, but only 5 linear combinations of these input variables determine the
function value. The algorithm will have no knowledge of which these directions
are, not even that there are 5, but it has knowledge that the number of im-
portant directions is much less that D. The functions we employed in this way
here are the following: Shifted Ellipse, Shifted Schwefel’s problem 1.2, Shifted
Rotated High Conditional Elliptic function, and Shifted Rosenbrock function.
We also took the Branin function from [14] which has intrinsic dimension 2. The
functions are listed in table 1.

Table 1: Test functions of low intrinsic dimension of 2 or 5. o is the shift vector.

PN Name Expression

1 Sphere
∑di
j=1(xj − oj)2

2 Ackley’s 20− 20 exp(−0.2
√

1
di

∑di
j=1((xj − oj) ∗M)2)-

exp( 1
di

∑di
j=1(cos(2π(xj − oj) ∗M))+e

3 Elliptic
∑di
j=1(106)

j−1
di−1 ∗ (xj − oj) ∗M)

4 Rosenbrock
∑di−1
j=1 (100(z2j − zj+1)2 + (zj − 1)2)

z = x− o+ 1

5 Branin (−1.275
x21
π2 + 5x1

π
+ x2 − 6)2

+(10− 5
4π

) cos(x1) + 10

We employ two common performance indicators: (i) The fitness gap achieved
under a fixed budget is the difference between the best fitness achieved and the
true optimum; (ii) The scalability is the budget of function evaluations needed
to reach a pre-defined value to reach.

4.2 Results and Discussion

Experiments on a di = 2 problem In the first set of experiments we consider
the D = 25 dimensional Branin function that has intrinsic dimension di = 2.
Though, we should note that D can be as large in principle, as we like since the
working strategy and the budget usage of REMEDA are independent of D. In
this experiment, we vary the internal working dimension d, and the population
size N , under a fixed budget of 500 function evaluations.

The results are shown in table 2, as obtained from 50 independent repetitions
of each experiment. We can see from table 2 that d = di = 2 is not the best
choice, as the size of the search box is not sufficient at d = di. Also observe
that increasing d beyond 4 drops the performance – this is because searching
in a larger dimensional space is not necessary and is less resource-effective. Fur-
thermore, we see for all d tested, the higher the population sizes, the worse the
performance. This is because a large population unnecessarily uses up the bud-



Table 2: Fitness gap achieved by REMEDA on the Branin function (di = 2
embedded in D = 25), with a total budget of 500 function evaluations.

Pop. size d=2 d=4 d=6

Mean std Mean std Mean std
300 1.4297 2.601 2.4908 3.1013 3.9007 3.0322
150 0.4128 0.6607 1.1701 1.313 2.1368 2.1046
80 0.826 2.9973 0.4193 0.4459 0.8303 0.9331
40 0.6375 2.9073 0.04 0.0969 0.1927 0.3865
30 0.6737 2.4939 0.0336 0.0853 0.1038 0.2615

get when the search only happens in a small dimensional subspace. With these
insights in place, next we carry out a more comprehensive study.

Results and comparisons on problems with di = 5 In this section, we
compare our method with state of the art approaches in heuristic optimisation,
on problems with intrinsic dimension di = 5. The ambient dimension was D =
1000 in these experiments, but as already mentioned this can be much higher
without causing problems as long as di stays low.

We expect that REMEDA should gain advantage from its ability to exploit
intrinsic dimensional property while other methods have not been designed to
make use of such structure. On the other hand, REMEDA needs to find a good
value for its internal dimension d without knowing di (as this information is
normally not available in practice). This will use up part of the budget, but the
hope is that it will pay off by a speedy progress in the search.

We start with d = 1, using convergence as a stopping criterion, and move
up progressively to higher values of d until the fitness reached upon convergence
is no longer improved by the increase of d. Within each value of d tried, we
run REMEDA to convergence, until the relative change in fitness is below a

threshold: f(t)−f(t+1)
f(t) < 10−8, where t is the generation count and f is the

fitness value. When this condition is satisfied, we move on to the next value of
d, and re-initialise the population randomly (although other schemes could also
be investigated). The total number of fitness evaluations used throughout this
process is the total budget that we then provide to the competing algorithms.

The bar chart in the leftmost plot of Figure 2 shows an example of the
fitness gaps achieved at convergence with consecutive values of d. The error
bars show one standard error from 25 independent repetitions. In the rightmost
plot we show the evolution of the best fitness. Superimposed, we also show the
trajectories of competing state of the art methods: EDA-MCC [5], RP-EDA [9],
and tRP-EDA [12]. All use the same budget and same population size. – For
each d tried, we plot their concatenated trajectories in such a way that the next
starts from the end of the current one.

From Figure 2 we can see that REMEDA attains a fitness value close to the
optimum efficiently, while the other methods are not able to achieve the same



within the same budget. We also superimposed an idealised version of plain EDA
– that is a plain EDA that receives the di-dimensional version of the problem –
and we see that REMEDA is nearly as good.
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Fig. 2: Finding d (left) and evolution of best fitness (right) for REMEDA, 3
competing methods, and a di-dimensional EDA on the idealised problem. Results
are averaged over 25 independent runs. All methods use the same population size.

Table 3: Comparing REMEDA with other state of the art methods.
Fn REMEDA sep-CMA-ES EDA-MCC tRP-ENS-EDA RP-ENS-EDA

Mean std Mean std Mean std Mean std Mean std
F1 0 0 3.81E+04 2.16E+04 6.41E+04 8.21E+03 37.80 3.17 25.79 2.05
F2 0 0 1.00E+07 7.92E+05 1.99E+06 1.42E+06 1.40E+08 7.99E+06 1.38E+08 6.59E+06
F3 0.18 0.91 4.75E+07 3.47E+06 2.90E+09 2.29E+08 6.81E+08 5.60E+07 2.84E+08 2.62E+07
F6 45.92 216.11 5.44E+06 2.09E+06 3.56E+10 4.93E+09 1.60E+07 1.88E+06 9.64E+06 1.44E+06
F8 14.19 7.89 21.67 0.01 21.34 0.06 21.66 0.01 21.43 0.06

4.3 Scalability experiments

Function evaluation is costly in most practical problems. Here we study what
is the required budget of function evaluations to reach a specified value of the
fitness gap.

Before running these scalability experiments, we carried out some experi-
ments to determine the required population size as a function of the intrinsic
dimension of the problem, so that we can vary the latter and set the popula-
tion size automatically. For this we use a bisection method as in [2]. To find
the population size that results in the lowest number of evaluations required to



reach a pre-determined fitness gap value to reach (VTR), we start from a very
large population size that can solve the problem within a large predetermined
budget and then search for a small population size that cannot solve the prob-
lem anymore. In between these limits we use binary search to find the optimal
population size. We repeated this 25 times and took the average.

We fix the value to reach (VTR) to 10−5, and vary the intrinsic dimensionality
of the problem di ∈ [2, 50]. We count the number of fitness evaluations needed for
our proposed REMEDA to reach the VTR. The same experiment was repeated
for three other choices of VTR: 10−3, 102 and 103 in order to make sure that
the conclusions will not be specific to a particular choice of the VTR. In all
these experiments the maximum fitness evaluations was fixed to 6× 103, so the
algorithm stops when the budget is exhausted.

Figure 3 shows the average number of function evaluations as computed
from the successful runs out of 25 independent repetitions for each problem,
with each intrinsic dimension tested. From the figure, we observe a linear fit on
the scalability measurements.
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Fig. 3: Number of function evaluations taken by successful runs of REMEDA to
reach a pre-specified value to reach (VTR) as the problem intrinsic dimension-
ality is varied in di ∈ [2, 50]. The markers represent averages computed from 25
independent repetitions.

5 Conclusions and Future Work

We proposed random embedding in Estimation of Distribution Algorithm to
scale up EDA by exploiting the intrinsic dimension of problems whereby the
search takes place in a much lower dimensional space than that of the original
problem. Our method is suited for large scale problems that take a large number



of inputs but only depend on a few linear combinations of them. On such prob-
lems we have demonstrated that our method outperforms the best state of the
art algorithms in evolutionary computation. Our technique and its theoretical
basis are applicable in principle to any optimisation method, and in the light
that problems with intrinsic dimension are quite prevalent in real-world appli-
cations, it seems a worthwhile avenue for future work to make use of it more
widely.
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