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Abstract—Migrating to microservices (microservitization) en-
ables optimising the autonomy, replaceability, decentralised
governance and traceability of software architectures. Despite
the hype for microservitization , the state of the art still lacks
consensus on the definition of microservices, their properties
and their modelling techniques. This paper summarises views
of microservices from informal literature to reflect on the foun-
dational context of this paradigm shift. A strong foundational
context can advance our understanding of microservitization
and help guide software architects in addressing its design
problems. One such design problem is finalising the optimal
level of granularity of a microservice architecture. Related
design trade-offs include: balancing the size and number
of microservices in an architecture and balancing the non-
functional requirement satisfaction levels of the individual
microservices as well as their satisfaction for the overall system.
We propose how self-adaptivity can assist in addressing these
design trade-offs and discuss some of the challenges such a self-
adaptive solution. We use a hypothetical online movie streaming
system to motivate these design trade-offs. A solution roadmap
is presented in terms of the phases of a feedback control loop.

Keywords-microservices; trade-offs; non-functional require-
ments; granularity; self-adaptativity; decision-making

I. INTRODUCTION

Several industries have recently migrated to or consider
migrating to microservices [1] (microservitization). Serviti-
zation is a shift towards utility-based engineering for soft-
ware products into services that are continuously motivated
by adding long-term value to the system users [2]. We
therefore view microservitization as a form of servitization
where services/components are transform into microservices
— a more fine-grained and autonomic form of services — to
add long-term value to the architecture. Microservitization
is also an example of a paradigm shift since it involves
a dramatic change to the way software is designed and
developed within a firm [3]. Microservitization is appli-
cable to “brownfield” (i.e., existing systems migrating to
microservices) and “greenfield” (i.e., building new systems)
development [1].

Microservitization involves isolating business functional-
ities into microservices that interact through standardised
interfaces. Isolating business functionalities aims at optimis-
ing the autonomy and replaceability of the service(s). It can
also facilitate autonomous management (i.e., decentralised

governance) of the service(s). Therefore the paradigm shift
can promote better traceability, accountability and auditing
for the service(s) and their provision in the event of failure.
These qualities are examples of potential value to be added
to the software architecture through microservitization by
enhancing its flexibility to cope with operation, maintenance
and evolution uncertainties. Ultimately, this can also relate
to improved maintenance costs and cost-effective quality of
service (QoS) provision to system users.

Despite the hype and the business push towards mi-
croservitization [1], there is a lack of academic consensus
regarding the definition and properties of the paradigm shift
and corresponding design patterns for microservices [4].
One of the motivations of this paper is to bridge this gap
by digesting the various informal views from industry on
defining microservices to aid in understanding the design
problems faced by software architects when migrating to
microservices.

Among these problems is finalising the level of granular-
ity of a microservice too early. “Splitting too soon can make
things very difficult to reason about. It will likely happen
that you (the software architect) will learn in the process.
[1].” This problem is of significance both in brownfield
and greenfield development [1] since it affects the choice
of concrete realisations (and thereby microservice vendors)
when instantiating a system’s abstract architecture.

II. MOTIVATING EXAMPLE AND CONTRIBUTION
DEFINITION

We use the context of greenfield development here as
an example to motivate two aspects (or trade-offs) of the
granularity problem. We use a hypothetical online movie
streaming subscription-based system for illustration. The
Promise requirements data repository [5] was used to derive
the functional and non-functional requirements of this sys-
tem. This repository provides indicative requirements from
different application domains. We will use the following
indicative functional requirements (FRs):

• FR1: System shall allow users to view reviews of
selected movies by other users.

• FR2: System shall allow users to add their own movie
review for a selected movie.



• FR3: System shall allow the administrator to approve
a review posted by a user.

Figure 1. Segment of the abstract architecture for online movie streaming
subscription-based system provided by the architect

At design time, we assume the initial abstract architecture
of the system is as shown in Figure 1. Each modular bound-
ary ultimately maps to a single microservice.The questions
that arise when encapsulating the three FRs above within
modular boundaries are:

1) Would too much communication complexity be in-
troduced if movie reviews are encapsulated within a
separate modular boundary?

2) Is the functionality isolation enhanced by separating
reviews into a separate modular boundary worth the
investment?

3) How does encapsulating the reviews affect the non-
functional requirement (NFR) satisfaction of the overall
system (global NFR)?

4) Would encapsulating the reviews into a new modular
boundary affect the NFR satisfaction of the individual
(local) modular boundaries interacting with it (namely
Browser, User and Administrator)?

The questions above present two trade-offs that need to
be considered when finalising the level of granularity of a
microservice.
The former two questions represent a trade-off which we
refer to as the size versus number of microservices [4]
trade-off. Intuitively, the more microservices introduced into
the architecture, the higher the level of isolation between the
business functionalities. This comes at the price of increased
network link communications and perhaps increased object
distribution complexity. Addressing this trade-off systemati-
cally is essential for assessing the extent to which “splitting”
is beneficial regarding the potential value of microservitiza-
tion (as defined above).

The latter two questions represent another trade-off which
we refer to as the local versus global NFR satisfaction

trade-off. The third question is concerned with the provision
of QoS to system users, which is ultimately a reflection
of global NFR satisfaction. That is, the microservitization
exercise can not be done without keeping human and bene-
ficiaries of the services in the loop. For example, a user of
the movie streaming system will only be concerned with the
results of his/her request returning within 5 seconds of issu-
ing it. This requirement is a global NFR for the system. He
will not be concerned with the graphics function within an
implementation of the Browser modular boundary returning
within 1 second of its execution. This latter requirement is
a local NFR. It is these local NFRs that interact together
to satisfy the global NFRs of the system however. This
interaction takes different forms depending on the number
of microservices and the pattern in which they interact.
Addressing this trade-off systematically means more cost-
effective QoS provision to the users of the system on the
long term.

The optimal balancing point for both trade-offs highly
depends on the current scenario in which the system is
operating (i.e., its current environment) [6]. For example,
for a steadily large volume of requests for reviews on
a particular movie, directing those requests to a separate
Review modular boundary is reasonable to avoid the Browser
becoming a bottleneck for the whole system. This level
of granularity can be perceived as the optimal one for
the current environment. On the other hand, if there is a
persistent outage in a network link connecting the Browser
and the User, then merging the 2 modular boundaries can
help reduce the latency submitting a request for a movie
review. In this scenario, a coarser rather than finer level of
granularity can be perceived as the optimal one. Therefore,
the argument here is that aggressive isolation of business
functionalities is not necessarily ideal for all scenarios of
the environment.

Furthermore, the definition of the optimal balancing point
depends on the relative NFR preferences as elicited from
the system’s stakeholders and the relative criticality of the
local and global NFRs. For example, a choosing the coarse
level of granularity in the example above is only deemed the
optimal balancing point if the system stakeholders actually
consider reducing the latency of the request (a global NFR)
critical compared to the cost of implementing this coarse
grained architecture. In particular this cost can be negative
implications on local NFRs (e.g., the return time of a specific
function within a microservice will increase). Therefore,
only if the global NFR of reducing request latency is critical
to the stakeholders compared to other (possibly conflicting)
global and local NFRs will this coarse level of granularity
be deemed optimal.

The link between the local/global NFR satisfaction trade-
off and the microservice size/number trade-off can be in-
ferred from the discussion above. We argue that determining
the optimal level of granularity for a microservice architec-



ture entails addressing the microservice size/number trade-
off. Deciding between functionally equivalent architectures
each having different numbers and sizes of microservices
(i.e.,different levels of granularity of microservices) requires
knowledge of the implications of each candidate architecture
on NFR satisfaction. In particular, it requires knowledge of
how adjusting the size of an individual microservice affects
its NFR satisfaction and how that adjustment of size affects
the NFR satisfaction of the overall system.

The contributions of this paper are thereby three-fold:

• We review and reflect on the definition, properties, and
modelling techniques of microservices as presented in
informal literature (Section III).

• In Section IV, we formulate the problem of addressing
the design trade-offs and introduce our solution pro-
posal.

• A self-adaptive solution is then outlined at a high level
in Section V. The movie streaming system is used
as a running example to illustrate the applicability of
existing techniques in the literature for each phase.
The envisioned challenges and possible future research
directions towards the proposed solution are then dis-
cussed in Section VI.

III. REFLECTION ON THE STATE OF THE ART AND
PRACTICE IN MICROSERVICES

Due to the recency of the research area, there is a
multitude of ways in which microservices have been defined
and modelled. Clear understanding of the paradigm shift, its
motivations, and implications are prerequisites for advancing
microservitization. We have reviewed the state of art and
practice to capture the different ways in which microservices
can be defined and modelled.
In [7], microservices are defined as an architectural style
which promotes developing an application “as a suite of
small services, each running in its own process and com-
municating with lightweight mechanisms [7]”. In [8], this
definition is slightly complemented to focus on the “weight”
of a microservice rather than its size. In particular, a mi-
croservice has to be lightweight enough to be replaceable,
rather than having to invest in maintaining it. A more com-
pact definition of the microservices is “small, autonomous
services that work together [9, p.2].” Autonomy is the ability
“to change independently of each other, and be deployed
by themselves without requiring consumers to change [9,
p.3].” A healthy implication of autonomy is decentralised
governance of the system [7]. Teams are fully responsible for
a specific microservice(s), making responsibility for design
decisions more traceable. The responsibility spans designing,
building, testing, deploying and providing support for that
service(s) [1]. They have full choice of the technology used
to implement a microservice(s), as long as the interface
facing the user is standardised.

We therefore view microservices as autonomic, repleace-
able and deployable artefacts of microservitization that
encapsulate fine-grained business functionalities presented
to system users through standardised interfaces. The
autonomy of these artefacts allows for governing them
in a decentralised manner and tracing their changes.
It is suggested in [1], [8] to model microservices in an event-
driven manner. An “event” is formulated as the delta that has
occurred in the service due to a change in the environment.
An event bus captures events occurring in upstream services,
then the downstream services can capture them later. This
allows each downstream service to only capture events that
it is interested in from a stream of events [4], allowing for
autonomy and decentralised governance. Furthermore, the
implementation of the event bus is independent from the
services capturing events from it, allowing for replaceability.
Microservices can also be reasoned about in terms of domain
models. In [10], a domain model is made up of bounded
contexts, each encapsulating a subset of business function-
alities. This subset is further broken into more fine-grained
modular boundaries. It is these modular boundaries which
are candidates to be mapped to individual microservices.
The internals of bounded contexts and modular boundaries
do not need to be exposed to the rest of the system, allowing
for autonomy, replaceability and decentralised governance.
The literature reveals only a subtle distinction between the
service-oriented architectural style (SOAs) and microser-
vices. However, this distinction needs to be made more
explicit to highlight the uniqueness of microservices. The
uniqueness comes from: 1) the potential of microservices
as autonomous fine-grained computational units and, 2) the
enhanced flexibility of their underlying style. Therefore,
microservices can be thought of as “enriched”and more
modularised services. Classic dynamic service selection and
composition in SOAs mostly focuses on dynamic restruc-
turing of services while ensuring the overall functionality of
the system. However, existing approaches do not question
the granularity problem — whether the service provision is
at the optimal level of granularity or not. We aim to exploit
that distinction by addressing the microservice size/number
trade-off and the local/global NFR satisfaction trade-off
systematically.

IV. PROBLEM FORMULATION

Among the crucial and non-trivial decision problems
(DPs) that constitute addressing the size/number and the
local/global NFRs satisfaction trade-offs are the following:

1) DP1: A solution which manages these trade-offs has to
determine (given the current environment scenario and
the stakeholders’ definition of “optimality” regarding
the trade-offs of concern):
• When does decomposing a microservice into more

fine-grained ones achieve the required optimality for
both trade-offs?



• When does merging several fine-grained microser-
vices into a coarse-grained one achieve the required
optimality for both trade-offs?

• When should the current level of granularity be kept
without further merging or decomposition?

2) DP2: The chosen architecture still has to guarantee
the functional requirements of the system, regardless
the level of granularity of the microservices in that
architecture.

3) DP3: Much of the uncertainties that relate to the choice
of the optimal architecture and the knowledge that
relates to the expected behaviour of the system [11],
[12] can not be fully captured at design time.

DP2 motivates developing a solution that addresses the
trade-offs at a more abstract service composition level rather
than that followed by classical contributions on service
composition. This abstraction allows for focussing on the
encapsulation of functionalities rather than the particular
concrete services that will instantiate these functionali-
ties.Abstract services represent units of computation and
their composition through well-defined interfaces [13]. An
abstract service can be operationalised by several alterna-
tive concrete services . Referring to Figure 2, consider a
situation where the software architect produces an abstract
specification of a service-oriented system, S. For S, there
are S’1. . . S’n refined abstract architectures that vary in the
number and size of their microservices. Also, each S’ i varies
in the way it balances between the global and local NFR
satisfaction. It is this refined abstract architecture solution
space (i.e., S’1. . . S’n) that we aim to manage and reason
about to choose the optimal S’i given a current environment
scenario and NFR preferences. Given the choice of S’i, this
refined abstract architecture can then be mapped at runtime
to concrete services from a service registry or marketplace
(i.e., a classic service selection venture starts given the
output of the solution we are proposing).

DP1 and DP3 call for runtime support to continuously
update design-time knowledge. This requires monitoring
the environment surrounding the system and using the
monitored data to update the system’s knowledge to better
cater for uncertainties. This support can be provided by
engineering self-adaptivity [12] as a solution. Therefore,
we argue that inducing a microservices architecture with
the primitives of self-adaptivity is a strong candidate for
addressing these trade-offs. Many of the concerns that drive
the choice of the optimal architecture are of runtime nature
and are merely difficult to anticipate and analyse at design
time. This self-adaptive solution however inevitably takes as
input the architect’s best knowledge at design time of what
the optimal level of granularity of the architecture would
be. The role of the self-adaptive solution is thereafter to
support, refine and update this knowledge at runtime. A self-
adaptive system is made up of an adaptation system which

is responsible for planning any adaptations when need be,
and a managed system which executes these plans [14].

There are several mechanisms which the adaptation sys-
tem can adopt [12], [14]. Underlying most of these mecha-
nisms is the concept of control loops (MAPE-K loop) [12],
[14]. We propose a solution based on the MAPE-K loop to
render a systematic solution that improves over the system
lifetime through accumulating knowledge.

Figure 2. The different conceptual modelling levels for microservices

V. SOLUTION ROADMAP

This section proposes and discusses the suitability of
techniques in the literature to each phase of the MAPE-K
loop.

1) Input to MAPE-K loop: Architectural modelling tech-
niques [15] provide several ways to capture an architect’s
best knowledge of the optimal abstract architecture S
(referring to Figure 2) with different levels of expressive-
ness. This vision will correspond to the managed system
of the self-adaptive solution we are proposing. Iterations
of capturing and elicitation are envisioned here due to
the decentralised governance culture of the microservices
setting.

2) Monitoring: Defining variables to monitor at runtime and
relating them to NFRs is a two-fold process: 1) an NFR
gathering and elicitation phase and 2) linking the NFRs
to variables to be monitored as runtime. Furthermore,
there are 2 types of variables that need be monitored:
variables that reflect the scenario (e.g., client request rate)
and variables that reflect the system’s behaviour in that
scenario (e.g., response time). We envision utility trees
(such as those presented in [16]) as a possible technique
for both phases due to their understandability.
We appreciate however that they lack the exhaustiveness
of other more powerful techniques such as [17] where
utility trees are leveraged with implied scenario detection.

3) Analysis: Several analysis techniques are presented in [11]
to interpret the values of the monitored variables into a



perception of the current scenario surrounding the man-
aged system. The enhanced distribution of functionalities
introduced by microservitization poses a challenge to this
phase. This distribution increases the possibility of wrong
perceptions of the current environment scenario across
the microservices, therefore increasing the likelihood of
triggering faulty adaptation decisions.

4) Planning: Given the interpretation of monitored data from
the analysis phase, the decision to trigger (and plan) an
adaptation is taken in this phase. Deciding to trigger an
adaptation to begin with depends on the relative NFR
preferences captured from stakeholders.
Once a decision is made to trigger an adaptation, the
solution space to address DP1 is a set of functionally
equivalent refined abstract architectures of microservices.
The level of autonomy of the self-adaptive solution that
we are proposing depends on who is responsible for the
formulation of this solution space. If the solution space is
provided as input to the self-adaptive solution then the role
of the self-adaptive solution is less autonomous and more
of a design support for decision making. In particular,
the planning phase would then only be responsible for
choosing the optimal architecture given the solution space
from the software architects. On the other hand, a more au-
tonomous self-adaptive solution is one where it builds the
solution space of refined abstract architectures at runtime
and chooses the optimal one from that space. The field of
artificial intelligence (AI) planning provides techniques to
support an autonomous planning phase through dynamic,
recursive service decompositions techniques governed by
a set of predicates [6]. The first step in [6] is translation
of a composite web service specification to the problem
domain, therefore allowing abstracting away from concrete
specifications to more abstract technology independent
ones (thereby addressing DP2). Manual synthesis of the
solution space governed by workflow patterns [18] is a
possible direction in case a design support for decision
making rather than an autonomous self-adaptive solution
is adopted.
Once the solution space is formed, software repositories
can be mined or economic models can be consulted can be
consulted to predict the NFR satisfaction levels for each
refined abstract architecture and the added value that each
can bring to the system in terms of the properties referred
to in Section I, coming to a decision regarding the optimal
refined abstract architecture (S’i).

5) Execution: Classic concrete service selection techniques
can be employed in this phase to map the refined ab-
stract architecture to concrete services. Crucially however,
the concrete service selection process can be potentially
simplified by pruning the solution space. For example, if
the chosen S’i suggests only 3 microservices, then only
3 service markets need to be examined instead of 5 or 6
markets. In addition, this phase needs to feedback into the

knowledge base of the adaptation system. This knowledge
update will feed into more informed decision making over
the lifetime of the system (addressing DP3). The key
challenge to this phase is the availability of specialised
service markets to instantiate all of the microservices in
the chosen refined abstract architecture.

6) Knowledge: Probabilistic modelling is an attractive venue
to capture dynamic uncertainty in the beliefs about the
system at runtime. Bayesian probabilities is particularly
attractive since it captures the delta in probability given
some condition, so it can be used to capture updates
in knowledge objectively. The challenge here however
is the effort required to infer the prior and posterior
probabilities of NFR satisfaction needed to capture the
delta in knowledge.

VI. DISCUSSION AND FUTURE WORK

Although Section IV poses interesting research problems,
we appreciate that the trade-offs presented in Section I
can be indicators of other design problems in addition
to finalising granularity. For example, lack of balance in
the local/global NFR satisfaction trade-off or a significant
increase in complexity (as mentioned in DP1) might be
indicators of sub-optimal deployment choices (e.g., choice
of communication protocols and data access dependencies).
Therefore, one of our future work directions is to refine
our understanding of the causal relationship between the
granularity problem and its indicators. We are aiming to
do that by conducting a series of experiments a concrete
system adopting microservitization, in each experiment al-
tering either a deployment choice only or the granularity of
the microservices only and thereafter monitoring the effect
of these alterations on different QoS variables.

Once this relationship is clarified, the longer term research
direction is providing a systematic self-adaptive solution in-
spired by the proposal in Section IV. We appreciate that the
microservitization paradigm shift poses research challenges
to each phase of the MAPE-K loop. For example, defining
and prioritising the variables to be monitored at runtime is
a significant challenge in the granularity problem due to
the extra effort required to prioritise NFRs and variables in
both the local and global architectural levels (as discussed
in Section I).

Motivated by these challenges and others, an initial step
towards a systematic solution is deriving the concrete chal-
lenges to each phase of the MAPE-K based on experimen-
tation with a runnable system (with more concrete FRs) that
adopts microservitization. In particular, we aim to outline
a repeatable solution roadmap in our future work as we
derive the challenges of each phase from a concrete example
system. Once these challenges are reified, we will assess
the suitability of examined techniques in the literature to
addressing these challenges in the microservices setting



through experimentation and monitoring with the concrete
example system.

We also appreciate that integrating a self-adaptive, runtime
solution into a running system raises practicality issues.
Therefore we envision potential in leveraging on symbiotic
simulation approaches [19] to implement the MAPE-K loop.
Data from the monitoring phase is fed into a simulation of
the managed system, where the analysis and planning are
carried out to assess the reliability of the chosen refined
abstract architecture before it is embedded in the running
system.

VII. CONCLUSION

Our contribution has reflected on the informal literature
about microservices, their properties and their modelling
techniques. We have then formulated the problem of finding
the optimal level of granularity during microservitization,
motivating the problem using a a hypothetical online movie
streaming subscription-based system. We break down the
problem into 2 trade-offs: the microservice size/number and
the global/local NFR satisfaction. A self-adaptive runtime
solution to the problem is then proposed and discussed.
Some of the research challenges and practicality issues that
microservitization poses to such a solution are highlighted
along with possible future research directions.
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