
Distinguishing Copies from Originals in Software Clones

Jens Krinke, Nicolas Gold, Yue Jia
King’s College London

Centre for Research on Evolution, Search and
Testing (CREST)

{jens.krinke,nicolas.gold,yue.jia}@kcl.ac.uk

David Binkley
Loyola University Maryland

Baltimore, MD, USA
binkley@cs.loyola.edu

ABSTRACT
Cloning is widespread in today’s systems where automated assis-
tance is required to locate cloned code. Although the evolution of
clones has been studied for many years, no attempt has been made
so far to automatically distinguish the original source code leading
to cloned copies. This paper presents an approach to classify the
clones of a clone pair based on the version information available
in version control systems. This automatic classification attempts
to distinguish the original from the copy. It allows for the fact that
the clones may be modified and thus consist of lines coming from
different versions. An evaluation, based on two case studies, shows
that when comments are ignored and a small tolerance is accepted,
for the majority of clone pairs the proposed approach can automat-
ically distinguish between the original and the copy.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software config-
uration management; D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries

General Terms
Algorithms

Keywords
Clone detection, mining software archives, software evolution

1. INTRODUCTION
The duplication of code is a common practice to make software

development faster, to enable “experimental” development with-
out impacting the original code, or to enable independent evolu-
tion [7]. Since these practices involve both duplication and modifi-
cation, they are collectively called code cloning and the duplicated
code is called a code clone. A clone group consists of code clones
that are clones of each other (sometimes this is also called a clone
class). During the software development life cycle, code cloning
is an easy and inexpensive (in both effort and money) way to reuse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC2010 May 8, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-980-0/10/05 ...$10.00.

existing code. However, such practices can complicate software
maintenance so it has been suggested that too much cloned code is
a risk, albeit the practice itself is not generally harmful [16]. Be-
cause of these problems, many approaches to detecting cloned code
have been developed [2, 3, 8, 15, 18–20, 24, 26]. While methods to
identify clones automatically and efficiently are to some extent un-
derstood, it is still disputable whether the presence of clones is a
risk. To better understand why and how code is cloned, recent em-
pirical studies of cloned code have focused mainly on examining
the evolution of clones, such as whether cloned code is more stable
or changed consistently [1, 10, 12, 17, 21, 22, 27].

A lot of research has been done on finding and identifying soft-
ware clones, but without additional information it is impossible to
distinguish the original from the copy. Most of the above men-
tioned previous empirical studies used version control systems to
extract limited information about the discovered clones; for exam-
ple, when a clone appears in some previous version. However, so
far there has been no general approach proposed to distinguish orig-
inals from copies except for a study done by German et al. [11] who
tracked when clones appeared in the version history to identify the
clone of a pair that appeared first. This paper presents an approach
that uses line-by-line version information available from version
control systems to distinguish the original from the copied code
clone in a clone pair.

Most version control systems have a ‘blame’ command which
shows author and version information for each line in a file. This
information, which includes the version when the line was added or
last modified, can be used as a line age: if all lines in one clone have
older versions than the lines in the other clone of a clone pair, then
the clone with the older lines may be the original and the other may
be the copy (assuming that the clone with the oldest lines existed
first). However, usually, it is not that simple because the original
and the copy may have been modified in turn after the copy was
created.

This paper makes the following contributions:

• A language-independent approach to identify the clones in
one version of a program and distinguish the original from its
copy in every clone pair by mapping the version information,
retrieved from a version control system, to each line of the
clones.

• Two initial case studies evaluating the approach show that
when comments are ignored and a small tolerance is accepted,
the majority of clone pairs can be automatically separated
into the original and the copied clone.

The following section presents background on clones and clone
detection and the retrieval of version information. Section 3 then
presents the approach to distinguishing copied clones from original

c©ACM, 2010. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version will be published in the Proceedings 4th International Workshop on Software Clones, 2010 in Cape Town, South
Africa.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1854954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

clones. This is then evaluated in Section 4. Related work is dis-
cussed in Section 5 and the last section discusses future work and
concludes.

2. BACKGROUND
This section presents the framework in which code clones, groups

of code clones, and changes to code clones are defined. This is fol-
lowed by a description of how version information is retrieved from
version control systems and how it is mapped onto the source code
lines.

2.1 Code Clones
Code clones are usually described as source code ranges (or frag-

ments) that are identical or very similar. They are grouped into
clone groups (sometime called clone classes) which are sets of
identical or very similar code clones. A code clone c = (s, l, f)
is the source code range starting at line s with the following l lines
of code in file f , thus the last line of the code clone is s + l− 1. A
clone group G = {c1, . . . , cn} is a set of n code clones c1, . . . , cn,
where each of the code clones is a clone of the others. A group con-
sisting of two clones is a clone pair. The clone pairs of a group are
generated by pairing all clones of a group.

For the purpose of this study, the effects of split or fragmented
code clones are ignored. Such clones would consist of multiple
source code ranges in the same file. An example of such a code
clone is a source code range that is copied and additional source
code subsequently inserted into the copied code.

The code clones do not have to be disjoint: it is possible for
two code clones c1 = (s1, l1, f) and c2 = (s2, l2, f) to share a
common source range (min(s1 + l1, s2 + l2) > max(s1, s2)).

2.2 Version Information
Most current version control systems can track changes to a file

line-by-line to show for each line the version when the line was last
changed. CVS has an “annotate” command and subversion names
the command “blame” because it shows the version and the author
(‘to be blamed’). These commands give crude information about
the origins of the code based on when it was last changed and who
made that change.

Usually, the blame command retrieves the version information
for the current version or for a specific version for one file or a list
of files. In the following, the existence of a function V(f, n), which
retrieves the version (age) of source code line n from source file f
of the current version of the program is assumed. This function
can be used to retrieve the version of each source line in a clone
c = (s, l, f) present in the current version of the program.

3. CLASSIFICATION OF CLONES
Based on the framework to describe clones and the version of a

source code line, this section presents a simple approach that uses
the version information to classify clone pairs and to distinguish
copies from originals.

The version information can be used to classify a clone pair
c1, c2 with c1 = (s1, l1, f1) and c2 = (s2, l2, f2) into specific
patterns. First, it is assumed that both clones have the same length
(l1 = l2). How to classify pairs with different lengths will be ad-
dressed later. The patterns are

Identical. A clone pair is identical if all corresponding lines in c1

and c2 have the same version:

∀i=0...l1−1V(f1, s1 + i) = V(f2, s2 + i)

Copied. A clone pair is copied if the versions of all lines in c1 are
either larger or smaller than the corresponding lines’ versions
in c2:

∀i=0...l1−1V(f1, s1 + i) < V(f2, s2 + i)

or

∀i=0...l1−1V(f1, s1 + i) > V(f2, s2 + i)

If the first condition holds, c1 is most likely the original and
c2 is most likely the copy. If the second condition holds, it is
the other way round.

Unclassifiable. A clone pair is unclassifiable if it is neither identi-
cal nor copied.

This classification is coarse-grained and can be extended to take
into account if all lines in a clone have the same version or if they
come from different versions. In the later case, the clone has been
modified at least once after its creation. Thus, the classification
becomes

Identical with a single version (IS). To this class belong all iden-
tical clone pairs where all lines are from the same version:

∀i=1...l1−1V(f1, s1) = V(f1, s1 + i)

Identical with multiple version (IM). All identical clone pairs that
are not identical with a single version belong to this class.

Copied, single version to single version (CS2S). To this class be-
long all copied clone pairs where all lines in a clone are from
the same version:

∀i=1...l1−1 V(f1, s1) = V(f1, s1 + i) ∧
V(f2, s2) = V(f2, s2 + i)

This class contains all copied clones where the original and
the copy are not modified after their creation.

Copied, multiple version to single version (CM2S). To this class
belong all copied clone pairs where all lines in the copy are
from the same version (and that are not copied, single ver-
sion to single version). Assume that c1 is the original and c2

the copy (if not, swap the pair).

∀i=1...l1−1V(f2, s2) = V(f2, s2 + i)

This class contains all copied clones where the copy is not
modified after its creation (but the original is).

Copied, single version to multiple version (CS2M). To this class
belong all copied clone pairs where all lines in the original
are from the same version (and that are not copied, single
version to single version). Assume that c1 is the original and
c2 the copy (if not, swap the pair).

∀i=1...l1−1V(f1, s1) = V(f1, s1 + i)

This class contains all copied clones where the original is not
modified after its creation (but the copy is).

Copied, multiple version to multiple version (CM2M). This class
contains all copied pairs that do not belong to one of the pre-
vious three classes.

The above classification can only be applied to clones of equal
length and does not allow for small differences of a few lines. In the
following an extension is introduced that allows some tolerance. To
do this, a limited number of source lines in the clones of a pair may
be removed.

The clones of a clone pair c1, c2 with c1 = (s1, l1, f1) and
c2 = (s2, l2, f2) are said to be classifiable with a tolerance of t
if after removing t source lines the resulting pair can be classified
according to the above classification. The removal of the same line
in c1 and c2 will count as one removal.

This can be efficiently implemented by computing a modified
Levenshtein distance: for each clone c = (s, l, f), the list of ver-
sions R = v1, ..., vl with vi = V (f, s + i− 1) is generated. Then
three distances are computed for the version lists R1 and R2 of
clone pair c1, c2:

1. d= is the normal Levenshtein distance between R1 and R2.

2. d≤ is the Levenshtein distance between R1 and R2 where
two versions are considered to be equal if the version of R1

is less than or equal to the version in R2.

3. d≥ is the Levenshtein distance between R1 and R2 where
two versions are considered to be equal if the version of R1

is greater than or equal to the version in R2.

The distances can now be used to do the classification with a toler-
ance t:

Identical. A clone pair is identical with tolerance t if the distance
d= between the version lists of its clones is below the toler-
ance (d= ≤ t).

Copied. A clone pair is copied with tolerance t if the distance d≤
or the distance d≥ between the version lists of its clones is
below the tolerance (d≤ ≤ t ∨ d≥ ≤ t).

Unclassifiable. A clone pair is unclassifiable with tolerance t if it
is neither identical nor copied with tolerance t.

The above classification is the same as the initial one when the
tolerance is set to zero.

4. CASE STUDY
The classification presented above will be evaluated in this sec-

tion to validate if it allows an automatic distinction between the
original and the copy in a clone pair. The approach was imple-
mented in a tool that uses Simian1 to identify the clones in a system
and then applies the classification based on the version information
available from the system’s subversion repository.

4.1 ArgoUML
In a first case study, the tool was applied to ArgoUML2, which

is a UML modeling tool that includes support for standard UML
diagrams. This system is often used in case studies for clone de-
tection (for example in the studies by Kim et al. [17], Aversano et
al. [1], Krinke [21], and Thummalapenta et al. [27]). It is written
in Java and its version archive is available via subversion. It has
been checked out from its subversion repository at version 17737
(January 2010). Simian (version 2.2.24) was used to identify the
clones in all Java files in ArgoUML. Simian has been used with the
default settings except that the minimal size of a clone was set to
10 lines. In this initial study, lines that only consist of whitespace
are ignored. Table 1 shows a summary of the results.
1http://www.redhillconsulting.com.au/
products/simian
2http://argouml.tigris.org

Table 1: Classification Results
141 Identical

61 " with a single version
80 " with multiple versions

251 Copied
30 " single version to single version

107 " multiple version to single version
0 " single version to multiple version

114 " multiple version to multiple version
169 Unclassifiable

Table 2: Results ignoring Whitespace and Comments
154 Identical

61 " with a single version
93 " with multiple versions

306 Copied
37 " single version to single version

130 " multiple version to single version
2 " single version to multiple version

137 " multiple version to multiple version
101 Unclassifiable

Figure 1 shows an example of a clone pair that has been classi-
fied as copied. The clones of the clone pair consist of 11 identi-
cal source code lines. The version numbers of the first clone are
all larger than or equal to the version numbers of the correspond-
ing lines in the second clone and thus, the approach classified it
as ‘copied, multiple version to multiple version’. The second clone
(the original) has most of the lines dating back to version 8533 (one
even back to 8186). The corresponding lines in the first clone are
dating back to version 15147, suggesting that the original has been
cloned at that version. Moreover, the lines 1, 5, 7, and 11 are dating
back to version 15154 in both clones. This suggests that there was
a consistent change to both clones in that version.

A further manual inspection revealed that many clone pairs could
not be classified because they differed only in comment lines. There-
fore, in addition to whitespace, lines containing (only) comments
were also ignored. Table 2 shows the results with a zero tolerance:
The number of clone pairs that can be classified as copied has in-
creased significantly. It can be seen that in the majority of cases
(306 out of 561), these clone pairs can be automatically separated
into original and copy. In 267 cases, the original was modified be-
fore it was copied (the pairs have been classified as ‘copied, multi-
ple version to single/multiple version(s)’. 154 clone pairs had the
same version for all corresponding lines (classified as identical). 61
of them had the same version for all lines; thus they came in to ex-
istence at the same time and were not subsequently modified. The
other 93 pairs were modified after their creation but in a coherent
way so that both clones contain the same versions.

Without additional information, the clone pairs classified as iden-
tical cannot be distinguished if one is the copy of the other or the
pair was created as a pair of clones at the same time intentionally.

The approach was not able to classify 101 pairs, because the
versions in both clones did not match. In most cases, only a few
lines do not match. Such lines have been changed by different au-
thors in different versions. A manual inspection revealed that in
some cases, the copy or the original had additional lines only con-
taining closing brackets (“}”) that were not present in the other
clone. Thus, the original and the copy had different block struc-
tures. Whether this is a code smell is left for further investigation.

ModeContract.java:92,102

1: 15154 int startOffset = layer.getNodeIndex(startY);
2: 15147 int endOffset;
3: 15147 if (startY > endY) {
4: 15147 endOffset = startOffset;
5: 15154 startOffset = layer.getNodeIndex(endY);
6: 15147 } else {
7: 15154 endOffset = layer.getNodeIndex(endY);
8: 15147 }
9: 15147 int diff = endOffset - startOffset;

10: 15147 if (diff > 0) {
11: 15154 layer.contractDiagram(startOffset, diff);

ModeChangeHeight.java:95,105

1: 15154 int startOffset = layer.getNodeIndex(startY);
2: 8186 int endOffset;
3: 8533 if (startY > endY) {
4: 8533 endOffset = startOffset;
5: 15154 startOffset = layer.getNodeIndex(endY);
6: 8533 } else {
7: 15154 endOffset = layer.getNodeIndex(endY);
8: 8533 }
9: 8533 int diff = endOffset - startOffset;

10: 8533 if (diff > 0) {
11: 15154 layer.contractDiagram(startOffset, diff);

Figure 1: An Example of a Clone Pair classified as Copied

Table 3: Results with Tolerance (ignoring Whitespace and
Comments)
t : 1 t : 2 t : 3 Classification
173 187 198 Identical

61 61 61 " with a single version
112 126 137 " with multiple versions
320 323 326 Copied

37 37 37 " single version to single version
130 132 132 " multiple version to single version

1 2 2 " single version to multiple version
152 152 155 " multiple version to multiple version

68 51 37 Unclassifiable

For larger clones, it is often the case that the clones consist of
multiple methods that are changed in different ways. If each method
is considered as a separate clone, the clone pairs would often be
classifiable.

Table 3 shows the results with tolerances t = 1...3. For tolerance
t = 1, it can be seen that 33 additional clone pairs have now been
classified (reducing the clone pairs that have not been classified
by a third). However, 19 additional clone pairs have now been
classified as identical and only 14 additional clone pairs could be
classified as copied. Note that by allowing a tolerance, a clone pair
that was classified as copied before may now have been classified
as identical.

By further increasing the tolerance to t = 2, 17 additional clone
pairs can be classified (as shown in the second column of Table 3).
However, only three additional classifications as copied appear while
the number of identical classifications increased by 14. An increase
to t = 3 adds three more classifications as copied but 11 classifi-
cation as identical. This suggests that an even further increased

t:0 t:1 t:2 t:3

Copied

Unclassifiable

Identical

306 320 323 326

101 68 51 37

154 173 187 198

0

150

300

450

600

t:0 t:1 t:2 t:3

Copied Unclassifiable Identical

Figure 2: Classifications with increasing Tolerance

tolerance will not significantly change the ability to automatically
classify clone pairs as copied. Figure 2 shows the trend of the three
main categories for increasing tolerance. The chart makes is clear
that an increased tolerance mainly affects the number of clone pairs
classified as identical and to a lesser extent the number of clone
pairs classified as copied.

An example where a clone pair is almost identical is shown in
Figure 3 where ignored lines have no line number. Only lines 12
and 13 have different versions in both clones. Here it seems that
the author has created the two clones at the same time (both clones
differ with respect to their comments) and modified them incoher-
ently in the next version. By looking closely at the information
available in the subversion repository, it becomes clear that the file
“EvaluateExpression.java” has been created in version 15296 and
the author has only fixed the programming style in version 15297.

EvaluateExpression.java:775,793

1: 15297 if (node.getPathName() != null) {
-: 15297 // TODO support other name kinds
2: 15296 node.getPathName().apply(this);
-: 15297
3: 15296 feature = node.getPathName().toString().trim();
4: 15296 }
5: 15297 if (node.getTimeExpression() != null) {
-: 15296 // XXX hypothesis: no time expression (inv)
6: 15296 node.getTimeExpression().apply(this);
7: 15296 }
8: 15297 if (node.getQualifiers() != null) {
-: 15296 // TODO understand qualifiers
9: 15296 node.getQualifiers().apply(this);

10: 15296 }
11: 15297 if (node.getFeatureCallParameters() != null) {
12: 15297 val = null;
13: 15296 node.getFeatureCallParameters().apply(this);
-: 15297

14: 15924 parameters = (List) val;

EvaluateExpression.java:440,456

1: 15297 if (node.getPathName() != null) {
-: 15297 // TODO support other name kinds
2: 15296 node.getPathName().apply(this);
3: 15296 feature = node.getPathName().toString().trim();
4: 15296 }
5: 15297 if (node.getTimeExpression() != null) {
-: 15296 // hypotheses no time expression (only invariants)
6: 15296 node.getTimeExpression().apply(this);
7: 15296 }
8: 15297 if (node.getQualifiers() != null) {
-: 15296 // XXX: hypotheses no qualifiers (I don’t know)
9: 15296 node.getQualifiers().apply(this);

10: 15296 }
11: 15297 if (node.getFeatureCallParameters() != null) {
12: 15296 val = null;
13: 15297 node.getFeatureCallParameters().apply(this);
14: 15924 parameters = (List) val;

Figure 3: Example of a Clone Pair that could not be classified automatically

Table 4: Classification Results for Apache
t : 0 t : 1 t : 2 Classification

37 51 54 Identical
21 21 21 " with a single version
16 30 33 " with multiple versions
96 113 119 Copied
16 16 16 " single version to single version
25 25 25 " multiple version to single version

0 0 1 " single version to multiple version
55 72 77 " multiple version to multiple version
80 49 40 Unclassifiable

Table 5: Results for Apache (ignoring Whitespace and Com-
ments)
t : 0 t : 1 t : 2 Classification

38 54 60 Identical
21 21 21 " with a single version
17 33 39 " with multiple versions

103 118 124 Copied
15 15 23 " single version to single version
27 27 27 " multiple version to single version

0 0 1 " single version to multiple version
61 76 73 " multiple version to multiple version
72 41 29 Unclassifiable

However, while this clone pair cannot be classified with zero
tolerance, it is wrongly classified as copied with a tolerance of one.
Only with a tolerance of two it is correctly classified as identical.
This shows that an increased tolerance can increase the number of
false positives.

This example also shows that there are some differences in the
comments present in the clones. If comments were not ignored, the
pair would not be classifiable even with higher tolerance.

For the majority of clone pairs in the above case study, the orig-
inal and the copy can be distinguished. The number of clone pairs
classified as copied increases when comments are ignored and a
small tolerance is accepted.

4.2 Apache
In a second case study, the http server Apache3 was analyzed. It

is an open source system written in C. From its subversion archive
version 900584 (January 2010) was retrieved and used for clone
detection with Simian executed on all C files (excluding header
files). Simian was again used with the default settings except that
the minimal size of a clone had been set to 10 lines.

Table 4 shows the results for different tolerances when only white-
space lines are ignored. From 213 clone pairs, only 96 have been
classified as copied with zero tolerance. 37 have been classified as
identical and 80 were unclassifiable. The numbers improve with an
increased tolerance. With t = 2, the unclassified pairs drop to 40,
the pairs classified as copied increase to 119, however, the identical
pairs increase to 54.

Table 5 shows the results for different tolerances when white-
space and comment lines are ignored. With zero tolerance, the
number of pairs classified as copied is up to 103, while 38 pairs
are classified as identical and 72 pairs are not classified. This fur-
ther improves with a tolerance of t = 2: Only 29 pairs are now
unclassifiable and 124 pairs have been classified as copied, while
the pairs classified as identical increases to 60.
3http://httpd.apache.org

The case study for Apache confirms the findings of the first case
study: when comments are ignored and a small tolerance is ac-
cepted, for the majority of clone pairs the original and the copied
clones can be distinguished.

4.3 Threats to Validity
There are some potential threats to validity in the presented study.

First of all, there is no clear definition of a clone. Moreover, a clone
detected by a clone detector may not be a clone in reality (false pos-
itive) or a clone in a system may be missed by a clone detector (false
negative). It is known that clone detectors have a low recall [4], so
the false negatives cause a threat to validity which cannot be esti-
mated. Another potential threat to validity is caused by the use of
a version control system to retrieve version information. Because
subversion (and CVS) detect changes with diff, simple changes in
the amount of whitespace generate new versions. Thus, changing
the layout of a file will likely set many lines to the current version.
Also, because diff does not identify the movement of text or code,
refactorings or restructurings causes deletions and additions.

The experiment is also influenced by the analyzed systems. So
far only two systems have been analyzed. However, they are both
of different application types, are written in different programming
languages, are of sufficient size, and have a long history.

5. RELATED WORK
The presented approach was also used to study how code is copied

and cloned between subprojects of the GNOME Desktop Suite [23].
The case study revealed a complex flow of reused code between the
different subprojects. In particular, it showed that the majority of
larger clones (with a minimal size of 28 lines or higher) exist be-
tween the subprojects and more than 60% of the clone pairs can be
automatically separated into original and copied clone.

German et al. [11] used version information to identify the ver-
sion where a clone has been introduced. For a clone pair between
two systems it was then possible to identify the system where the
cloned code appeared first. In contrast, they did not use the fine
grained information available from blaming, but used clone detec-
tion between the versions to track a clone as a clone pair between
the current and previous versions which is an expensive operation
as it requires many invocations of the clone detector (as opposed to
only a single invocation).

A number of authors have studied the evolution of clones. Kim et
al. [17] investigated the evolution of code clones and defined sev-
eral evolution patterns to classify all possible changes during the
clone evolution. The results suggested that during the evolution of
the code clones, there were fewer consistent changes to the clones
than anticipated. Aversano et al. [1] did a similar empirical study
with a slightly refined framework. Similar to Kim et al., they ana-
lyzed so called co-changes that are changes committed by the same
author, with the same notes, and within 200 seconds (into a CVS
repository). They used a Java-only clone detector that compares
subtrees in the abstract syntax tree. The analyzed systems were
DNSJava and ArgoUML. Aversano et al. state that the majority of
clone classes are always maintained consistently.

A similar framework and experiment was presented by Krinke
[21] to study the evolution of code clones with respect to consistent
and inconsistent changes. The changes were reconstructed from
data stored in a version control system (subversion or CVS). He
found that the number of consistent and inconsistent changes were
similar. In a second study, Krinke [22] investigated whether cloned
or non-cloned code is more stable with respect to the number of
changes applied to cloned and non-cloned code. Again, he recon-
structed the changes from version control systems.

With a similar setup where changes are extracted from version
control systems, Göde [12] presented a model for clone evolution
where he tracked the evolution of individual clones throughout the
history of a program. Thummalapenta [27] uses an automatic ap-
proach to classify the evolution of source code clone fragments
and investigates to what extent clones are consistently changed or
evolve independently. Clone fragments are also tracked individu-
ally and the evolution of clones are classified into patterns.

Previous studies have shown (and suffered from) the fact that
systems often undergo cosmetic changes. This blurs the identi-
fication of whether a clone has been changed. Prause [25] uses
techniques similar to clone detection to identify probable ances-
tors of source code and to locate origins of inserted code. Can-
fora [5, 6] introduces a technique to track the evolution of source
code lines, identifying whether a CVS change is due to line mod-
ifications rather than due to additions and deletions. The tech-
nique compares the sets of lines added and deleted in a change set,
combining the use of Information Retrieval (IR) techniques with
the Levenshtein edit distance. Other approaches use the syntactic
structure of the software to identify the changes. Fluri et al. [9]
introduce change distilling, a tree differencing algorithm for fine-
grained source code change extraction. Their algorithm extracts
changes by finding a match between the nodes of the two compared
abstract syntax trees. Weißgerber and Diehl [28] use a similar ap-
proach to automatically identify refactorings. In addition, they use
clone detection techniques to rank the refactoring candidates. God-
frey and Zou [13] present techniques to apply origin analysis to
detect instances of merging and splitting in source code together
with a set of merge/split patterns.

6. CONCLUSIONS AND FUTURE WORK
This paper presents an approach that uses version information

from version control systems to automatically classify the clones
of a clone pair into the original and the copy. The classification
allows for the fact that the clones may be modified and thus consist
of lines coming from different versions. The classification may
allow small tolerances (i.e., a small number of lines of the clones
may be ignored for the purposes of classification).

The evaluation, based on two case studies, showed that when
comments are ignored and a small tolerance is accepted, the origin
or copied nature of the majority of clone pairs can be automatically
distinguished. A larger evaluation with more case studies will fol-
low in the future to determine whether the approach presented here
is able to distinguish the original from copied clones on a larger
scale. It is also planned to use better origin tracking approaches
like those of Prause [25] or Canfora [5, 6] to enable a more precise
identification of a source code line’s version and a better distinction
between original and copied clones.

The current approach is limited to gap-less clones but can handle
near miss clones [26] by allowing some tolerance. It is planned to
extend it so that it is able to handle gapped clone and to evaluate it
with KClone [14].

In summary, this paper has presented a method for automatically
classifying a clone pair into the original and its copy, using line-age
information derived from a version control system. The method
is shown to be successful when applied to two open-source case
studies.

7. ACKNOWLEDGEMENTS
This work is funded in part by Hewlett Packard and the FOSSol-

ogy Project.

8. REFERENCES
[1] L. Aversano, L. Cerulo, and M. D. Penta. How clones are

maintained: An empirical study. In 11th European
Conference on Software Maintenance and Reengineering
(CSMR), 2007.

[2] B. S. Baker. On finding duplication and near-duplication in
large software systems. In Second Working Conference on
Reverse Engineering, pages 86–95, 1995.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In International
Conference on Software Maintenance (ICSM), pages
368–378, 1998.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and evaluation of clone detection tools. IEEE
Trans. Softw. Eng., 33(9):577–591, Sept. 2007.

[5] G. Canfora, L. Cerulo, and M. Di Penta. Identifying changed
source code lines from version repositories. In In Fourth
International Workshop on Mining Software Repositories,
MSR, volume 19, 2007.

[6] G. Canfora, L. Cerulo, and M. Di Penta. Tracking your
changes: A language-independent approach. IEEE Software,
26(1):50–57, January 2009.

[7] J. Cordy. Comprehending reality – practical barriers to
industrial adoption of software maintenance automation. In
11th IEEE International Workshop on Program
Comprehension, pages 196–205, 2003.

[8] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code. In
International Conference on Software Maintenance (ICSM),
pages 109–118, 1999.

[9] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change
distilling:tree differencing for fine-grained source code
change extraction. IEEE Transactions on Software
Engineering, 33(11):725–743, November 2007.

[10] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of
code clones and change couplings. In 9th International
Conference of Funtamental Approaches to Software
Engineering (FASE), number 3922 in LNCS, pages 411–425.
Springer, Mar. 2006.

[11] D. M. German, M. Di Penta, Y.-G. Gueheneuc, and
G. Antoniol. Code siblings: Technical and legal implications
of copying code between applications. In 6th IEEE
International Working Conference on Mining Software
Repositories, pages 81–90. IEEE Computer Society, May
2009.

[12] N. Göde. Evolution of type-1 clones. In Ninth IEEE
International Working Conference on Source Code Analysis
and Manipulation, pages 77–86. IEEE Computer Society,
2009.

[13] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE
Transactions on Software Engineering, 31(2):166–181,
February 2005.

[14] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita.
KClone: a proposed approach to fast precise code clone
detection. In Third International Workshop on Detection of
Software Clones (IWSC), 2009.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, July 2002.

[16] C. Kapser and M. W. Godfrey. “Cloning considered harmful”

considered harmful. In 13th Working Conference on Reverse
Engineering (WCRE), pages 19–28, 2006.

[17] M. Kim, V. Sazawal, and D. Notkin. An empirical study of
code clone genealogies. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE), pages 187–196, 2005.

[18] R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. In Eigth International Static
Analysis Symposium (SAS), volume 2126 of LNCS, 2001.

[19] K. Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Fourth
Working Conference on Reverse Engineering, pages 44–54,
1997.

[20] J. Krinke. Identifying similar code with program dependence
graphs. In Proc. Eigth Working Conference on Reverse
Engineering, pages 301–309, 2001.

[21] J. Krinke. A study of consistent and inconsistent changes to
code clones. In 14th Working Conference on Reverse
Engineering (WCRE), Oct. 2007.

[22] J. Krinke. Is cloned code more stable than non-cloned code?
In Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 57–66. IEEE
Computer Society, September 2008.

[23] J. Krinke, N. Gold, Y. Jia, and D. Binkley. Cloning and
copying between gnome projects. In 7th IEEE Working
Conference on Mining Software Repositories, may 2010.

[24] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In International Conference on Software
Maintenance (ICSM), pages 244–254, 1996.

[25] C. R. Prause. Maintaining fine-grained code metadata
regardless of moving, copying and merging. In Ninth IEEE
International Working Conference on Source Code Analysis
and Manipulation, pages 109–118. IEEE Computer Society,
2009.

[26] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of
near-miss intentional clones using flexible pretty-printing
and code normalization. In The 16th IEEE International
Conference on Program Comprehension, pages 172–181.
IEEE Computer Society, 2008.

[27] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta.
An empirical study on the maintenance of source code
clones. Empirical Software Engineering, March 2009.

[28] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06),
pages 231–240. IEEE Computer Society, September 2006.

