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Summary  

 Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA  

damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by  

removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp  

synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII  

domain raises an important question regarding the significance of this bifunctional protein. In  

this report, we demonstrate its ability to hydrolyze R-loops in E. coli exposed to UV stress.  

MS_RHII-RSD gene expression was upregulated under UV stress and this gene deleted strain  

showed increased R-loop accumulation as compared to the wild type. The domains in isolation  

are known to be inactive and the full length protein is required for its function. Domain inter- 

dependence studies using active site mutants reveal the necessity of a hexamer form with high  

alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in  

R-loop hydrolysis, but in this study the RNase HII domain containing protein showed the  

activity. The prospective of this differential RNase HII activity is discussed. This is the first  

report to implicate a (p)ppGpp synthetase protein in R-loop induced stress response.   

Introduction  

Bacteria encounter a variety of nutritional and environmental stresses, they invest their  

energy cautiously to survive in hostile condition and one of the responses is termed as stringent  

response. The stringent response is signaled by the synthesis of hyperphosphorylated guanosine  

nucleotides, guanosine penta phosphate (pppGpp) and guanosine tetra phosphate (ppGpp),  

collectively named as (p)ppGpp (Cashel & Gallant, 1969, Avarbock et al., 2000, Chatterji &  

Ojha, 2001). These alarmones exhibit pleiotropic effect on many cellular processes such as  
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transcription, translation, replication, virulence, differentiation and persistence via diverse 

pathways (Srivatsan & Wang, 2008).  

In Gram negative bacteria, (p)ppGpp is synthesized by monofunctional RelA and 

hydrolyzed by bifunctional SpoT, which also has weak (p)ppGpp synthetic activity (Xiao et al., 

1991). On the contrary, in Gram positive bacteria, (p)ppGpp is synthesized and hydrolyzed by a 

single bifunctional enzyme Rel (Avarbock et al., 1999, Avarbock et al., 2000, Hogg et al., 2004). 

Apart from these classical long, multidomain RelA-SpoT (RSHs), some short RSH homolog  

have been identified in prokaryotes and eukaryotes. They are mostly single domain, 

monofunctional proteins either with Short Alarmone Synthetase (SAS) or Short Alarmone 

Hydrolase (SAH) activity (Sun et al., 2010, Atkinson et al., 2011). SAS enzymes have different 

functions in microorganisms like Bacillus subtilis, Streptococcus mutans, etc. (Hauryliuk et al., 

2015). Weiss & Stallings, (2013) observed that Rv 1366, a SAS in M. tuberculosis, does not 

affect its physiology and virulence. The role played by SAS proteins in mycobacteria remains a 

mystery. 

 An elevated level of (p)ppGpp in M. smegmatis under nutrient deprived conditions was 

first reported by Ojha et al (Ojha et al., 2000).  In M. smegmatis, (p)ppGpp synthesis is regulated 

by relMsm, comprising of (p)ppGpp synthesis (RSD) and hydrolysis (HD) domains (Jain et al., 

2006). The ∆relMsm of M. smegmatis was expected to have a (p)ppGpp null phenotype. However, 

we showed previously that the strain was still capable of synthesizing (p)ppGpp in vivo, and the 

second (p)ppGpp synthetase was named as MS_RHII-RSD (Murdeshwar & Chatterji, 2012). 

MSMEG_5849 codes for the bifunctional protein MS_RHII-RSD, which has a C-terminal RSD 

domain similar to other SAS but is different from them due to the presence of a N-terminal 

RNase HII (Ribonuclease HII) domain. We previously showed that it is capable of (p)ppGpp 
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synthesis as well as degrading RNA-DNA hybrids (Murdeshwar and Chatterji, 2012). No other 

such protein, which couples RNase H activity with stringent response, is reported in literature. 

Hence, this work was motivated to address the question - why is there a RNase HII domain 

coupled with (p)ppGpp synthetic machinery? 

RNase Hs are endogenous enzymes which cleave the RNA moiety from RNA:DNA 

hybrids (Stein & Hausen, 1969). These widespread enzymes have profound role in many basic 

functions including replication, transcription, gene expression and DNA repair (Kogoma & 

Foster, 1983, Drolet, 2006).  They are classified into two major groups, Type 1 and Type 2, on 

the basis of amino acid sequence conservation. Type 1 comprises of prokaryotic RNase HI, 

eukaryotic RNase HI and RNase H domain of reverse transcriptase. Type 2 contains prokaryotic 

RNase HII, eukaryotic H2 and prokaryotic RNase HIII (Ohtani et al., 1999).  

RNase H enzymes are involved in the removal of specific structures called R-loops.  R-

loops have triple stranded nucleic acid structure and are formed when the nascent RNA strand 

hybridizes with the complementary template strand leading to the displacement of the non- 

template DNA strand (Gowrishankar et al., 2013). Existence of R-loops in vivo was first 

demonstrated by Crouch and colleagues (Drolet et al., 1995). In bacteria, the replisome complex 

moves faster than the transcription complex along the same DNA template and they can collide 

with each other. These replication-transcription conflicts lead to the stalling of RNA polymerase 

and hence arrest the replication fork movement (Dutta et al., 2011, Merrikh et al., 2011, Alzu et 

al., 2012). As a consequence, stable R-loops are formed behind the stalled RNA polymerase. 

Alternatively, the negative supercoiling of DNA leads to co-transcriptional R-loop formation in 

bacteria and hence replicative stress (Drolet, 2006, Poveda et al., 2010, Stirling et al., 2012). R-

loops are considered as beneficial in regulating gene expression by governing transcription. They 
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are also deleterious to genome integrity as they impede replication fork progression and may 

cause DNA damage (Skourti-Stathaki & Proudfoot, 2014, Gan et al., 2011). Therefore, the 

organisms need to maintain a physiological R-loop balance. RNA:DNA hybrids are stable and 

their removal is an energy - consuming mechanism (Roberts & Crothers, 1992). Hence, 

organisms possess various factors to remove persistent R-loops and one of the best characterized 

are RNase H enzymes (Aguilera & Garcia-Muse, 2012).  

(p)ppGpp is known to modulate RNA polymerase by  binding next to the active 

site to destabilize open transcription complexes in gram-negative bacteria (Cashel et 

al., 1996, Paul et al., 2004, Ross et al., 2013). Trautinger et al. showed that ppGpp 

decreases accumulation of stalled transcription complexes and thereby it resolves 

replication-transcription conflicts (Trautinger et al., 2005). E. coli RNAP crystal 

structure studies, cross-linking and mass spectrometric analysis revealed multiple 

(p)ppGpp binding sites (Zuo et al. 2013, Syal and Chatterji, 2015, Rose et al., 2016).  

However, there is no evidence for the binding of ppGpp to RNAP in gram positive 

bacteria. B. subtilis RNAP has no ppGpp binding motifs but it uses an indirect 

mechanism by altering the GTP homeostasis to mount stringent response. GTP is one 

of the initiating nucleotides in B. subtilis and increase in (p)ppGpp synthesis reduces 

GTP pool thereby modulating the rRNA promoter activity (Krasny and Gourse 2004, 

Hauryliuk et al., 2015). Regulation of promoters by (p)ppGpp has been shown in 

Mycobacteria as well though the mechanism remains unknown (Tare et al., 2013). 

One may speculate that since R-loops are important in replication-transcription conflicts 

leading to replication stress, this stress can be efficiently managed by two mechanisms; R-loop 

removal by RNase H and destabilization of stalled RNA polymerase by (p)ppGpp synthesis. 
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MS_RHII-RSD possesses both these important activities (RNase HII and (p)ppGpp synthetase) 

in a single polypeptide. Therefore, we believe that the protein may be involved in withstanding 

replication stress by removing R-loops in M. smegmatis. As this protein also synthesizes 

(p)ppGpp, we speculate that it destabilizes the hindered RNA polymerase via an indirect 

mechanism. Such proposition gains further value due to the long term survival of mycobacteria 

under stringent conditions. 

In this study, we have characterized MS_RHII-RSD for its function by various 

approaches. The results showed that MS_RHII-RSD efficiently hydrolyses preformed R-loops. 

Under UV stress, ms_rhII-rsd expression was found to be significantly upregulated and R-loop 

accumulation was high in the ∆ms_rhII-rsd. The expression of the RNase HII and (p)ppGpp 

synthetase domains in tandem on the same polypeptide chain is necessary for both activities. The 

domains in isolation are not functional in vitro or in trans complementation experiments 

(Murdeshwar & Chatterji, 2012). Therefore, the interdependence of the RHII and RSD domains 

was explored and the results showed that the hexameric form and high alpha helicity of the full 

length protein are essential for its function.  

Results 

MS_RHII-RSD hydrolyzes preformed R-loops  

To determine if MS_RHII-RSD has R-loop hydrolysis activity, initially R-loop was 

synthesized in vitro based on a previous observation that they are generated when a G- rich RNA 

strand is transcribed from a C-rich template DNA strand (Yu et al., 2003, Skourti-Stathaki & 

Proudfoot, 2014).  Also, Toriumi et al. showed that an AGGAG repeat is adequate for R-loop 

formation (Toriumi et al., 2013). Landgraf et al. reported that RNA as short as 50 nucleotide can 

form R-loops in 70% formamide (Landgraf et al., 1995). In this study, a simple miniature model 
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of traditional in vitro R-loop formation was used (Fig. 1). Two single stranded DNA 

oligonucleotides (named as D1 and D2) containing 80 nucleotides each were custom synthesized 

such that they were complementary to each other except for a 30 nucleotide region in the middle. 

The non-complementary region of D1 (template strand) was designed with TCCTC repeats. 

These two DNA oligonucleotides D1 and D2 were annealed to form double stranded DNA (D1-

D2) (Fig. 2A). Then, RNA oligo (R3) of 20 nucleotide length containing AGGAG repeats was 

added to the annealed ds DNA under suitable conditions to form R-loop in vitro as described 

previously (Landgraf et al., 1995). The R-loop formation was favored due to the 

complementarity of R3 with D1 and the non-complementary region in the D1-D2 hybrid. 

Electrophoretic mobility shift is a convenient way of visualizing R-loop formation (Daniels & 

Lieber, 1995, Yu et al., 2003). Here, R-loop formation was confirmed by a mobility shift of 20 

bases from the 80 bp ds DNA in a 2% agarose gel (Fig. 2A) and also by immunoblotting with 

anti RNA:DNA hybrid antibody (S9.6) (Fig. 2B).  

The R-loop removal activity of MS_RHII-RSD was assayed by incubating the preformed 

R-loop and the purified recombinant protein in a reaction mixture at 37°C for 1 hour. In agarose 

gel electrophoresis, a band was observed with a lower mobility shift of 20 bases compared to the 

R-loop substrate. This band corresponds to ds DNA product obtained after R-loop hydrolysis 

indicating that MS_RHII-RSD protein efficiently hydrolyzes R-loops in vitro. In the positive 

control reaction with E. coli RNase HI, some residual unhydrolyzed R-loops could be seen along 

with the hydrolyzed ds DNA product but not in reactions with MS_RHII-RSD (Fig. 2A). RNase 

HII inactivated mutant described in later sections was used as a negative control (last lane of Fig. 

2A) to rule out the possibility of nuclease contamination during the protein preparation. 
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MS_RHII-RSD removes R-loops in RNase H-deficient E. coli  

A possible role for MS_RHII-RSD could be to rescue M. smegmatis from replication 

stress caused due to R-loop formation. In an earlier study, UV irradiation was used to induce 

replication stress by double stranded break formation in DNA (Yajima et al., 2009). In yet 

another study, an enhanced R-loop formation was shown at UV-C damage sites when RNase H 

was silenced in human dermal fibroblast culture (Tresini et al., 2015). We used UV irradiation to 

induce R-loop formation in E. coli GJ12055 strain which is deficient in conventional RNase HI 

and RNase HII enzymes. This is a temperature-sensitive strain (ts), which can grow well at 30°C 

but not at 42°C unless it is provided a functional rnhA gene from RNase H-expressing plasmids 

such as pSK 760 (Kanaya & Crouch, 1983).  Normalized mid- log phase cultures of E. coli 

GJ12055 parent strain as well as pSK760 and MS_RHII-RSD complemented strains were UV-

irradiated for 30 minutes and the optical density at 600 nm (OD600) was measured immediately 

after UV exposure and every hour thereafter till 10 hours. A growth defect was observed in all 

three strains till 2 hours post UV exposure. Subsequently, the complemented strains slowly 

started recovering whereas E. coli GJ12055 parent strain did not recover even after 6 hours (Fig. 

3A). Genomic DNA samples isolated from the cells at three different time points (0, 1 and 4 

hours) after UV treatment were subjected to immunoblotting using the anti RNA:DNA hybrid 

specific S9.6 primary antibody (Fig. 3B). R-loop intensity was found to be high in the DNA from 

cells harvested at 0
th

 and 1
st
 hour after UV exposure. The growth retardation combined with 

increased R-loop detection in the initial hours post UV treatment indicated that the cells were 

under UV-induced replication stress and accumulated R-loops in vivo. The decrease in the R-

loop level, 4 hours after UV exposure and the growth recovery of the pSK 760 and MS_RHII-
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RSD complemented strains suggested that one of the reasons for the rescue of growth defect may 

be the hydrolysis of R-loops by RnhA and MS_RHII-RSD.  

The ability of MS_RHII-RSD to hydrolyze R-loops was tested both at 30°C (permissive 

temperature) and 42°C (non-permissive temperature). However, we did not observe any growth 

defect at 30°C after UV stress (Fig. S1) and also no signal for R-loops could be detected by 

immunoblotting except the positive control. This could be due to the lower sensitivity of the 

strain to UV stress at 30°C.  This statement is supported by an earlier study in which the ts E. 

coli with mutated single-stranded DNA binding protein showed higher UV sensitivity at non-

permissive temperature (Lieberman and Witkin, 1981). RNase H mutants are known to be 

thermosensitive (Itaya et al., 1999) with increased R-loop formation attributed as one of the 

reasons.   

MS_RHII-RSD expression is elevated in M. smegmatis under UV stress likely to remove  

R-loops 

Apart from MS_RHII-RSD, M. smegmatis genome contains three other RNase H 

enzymes, rnhA gene encoding RNase HI (Dawes et al., 1995), rnhB  encoding RNase HII 

(Minias et al., 2015b), and rnhC encoding RNase HI-acid phosphatase fusion protein (Jacewicz 

& Shuman, 2015). M. smegmatis rnhA, rnhB, and rnhC are enzymatically active and cleave the 

RNA strand in RNA:DNA hybrids. Though there are three other active endogenous RNase H 

enzymes, the special requirement for the fourth RNase H in M. smegmatis was examined using 

quantitative real time-reverse transcriptase PCR (qRT-PCR) and also by comparing the UV-

induced R-loop accumulation in wild type and ∆ms_rhII-rsd strains. Mid-log phase cultures of 

M. smegmatis wild type and ∆ms_rhII-rsd were UV-irradiated for 30 minutes and OD600 was 
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measured immediately and 1 hour after UV exposure, then at 4 hours intervals till 16 hours. The 

OD of the mid-log phase cultures of strains not exposed to UV was also measured as a control. A 

growth defect was observed in the UV-treated cultures till 4 hours post UV exposure after which 

they started recovering (Fig. S2). The expression levels of all four RNase H genes, encoding 

MSMEG_5562, MSMEG_2442, MSMEG_4305 and MSMEG_5849, 4 hours after UV exposure 

were analyzed using qRT-PCR. Specific set of primers used in this experiment are listed in 

Table. 1. It was observed that the expression levels of MSMEG_5562 (rnhA) and MSMEG_2442 

(rnhB) were not affected much and MSMEG_4305 was downregulated significantly. However, 

MS_RHII-RSD (MSMEG_5849) expression was found to be significantly upregulated (Fig. 4A).  

 UV-induced R-loop accumulation in wild type and ∆ms_rhII-rsd strain was compared 

using immunoblotting with anti RNA:DNA antibody (S9.6). Genomic DNA isolated from UV- 

exposed and untreated mid log phase cultures at three different time points (0, 1 and 4 hours) 

were used for this blot. R-loop intensity was found to be higher in the DNA samples of 

∆ms_rhII-rsd harvested at 1
st 

and 4
th

 hour after UV exposure when compared to that of wild type 

(Fig. 4B). The significant upregulation of MS_RHII-RSD and the accumulation of R-loop in 

∆ms_rhII-rsd strain under UV stress indicated that MS_RHII-RSD plays a major role in UV-

induced replication stress.  

Inactivation of RHII domain does not affect RSD domain activity in MS_RHII-RSD  

Since the domains in separation are not functional (Murdeshwar & Chatterji, 2012), we 

designed experiments to analyse the level of their interdependence. For this purpose, we 

inactivated one domain and studied its effect on the other domain. Multiple sequence alignment 

of the N-terminal domain of MS_RHII-RSD, initially annotated as DUF 429 shows that it is 

homologous to RNase HII enzymes from other bacteria (Murdeshwar & Chatterji, 2012). It has 
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been shown earlier that D, E, D, D are the four acidic conserved residues necessary for RNase H  

function (Tadokoro & Kanaya, 2009) and the RHII domain of the MS_RHII-RSD has the  

corresponding conserved D, D, D, E (D11, D39, D60 and E86) amino acids which were mutated  

individually to alanine using site-directed mutagenesis. However, none of these four point  

mutations led to the complete inactivation of RNase H activity (Data not shown). Hence, towards  

obtaining a completely inactive RHII domain in the full length protein, all the four residues D11,  

D39, D60 and E86 were sequentially mutated to alanine in the same construct of pET21b- 

MS_RHII-RSD. The full length protein containing all these four mutated residues was named as  

RHII-mutant. The RHII-mutant was overexpressed in E. coli BL21(DE3) and purified to  

homogeneity using nickel affinity chromatography (Fig. S3).  

 The purified RHII-mutant was characterized for its activity in vitro as well as in vivo as  

described previously (Murdeshwar & Chatterji, 2012) . An in vitro fluorescence assay (Watkins  

& Baker, 2010) was performed in which a 12-mer of 5′-Fluorescein-labeled-poly  

ribooligonucleotide (rA) annealed to 3′-dabsyl-labeled-poly deoxyribooligonucleotide (dT) was  

used as a substrate. In the annealed hybrid (AH), the dabsyl moiety quenches the fluorescence.  

The increase in fluorescence due to hydrolysis of the RNA:DNA hybrid by RNase H was  

monitored. The increase in fluorescence intensity as compared to that of AH indicates the  

successful hydrolysis of the RNA:DNA hybrid by the wild type MS_RHII-RSD protein. No  

increase in the fluorescence intensity was observed with RHII-mutant (Fig. 5A) revealing the  

complete loss of RNase H activity.    

 In vivo RNase H activity of the RHII domain mutant was characterized using E .coli  

GJ12055 based complementation assay (Itaya & Kondo, 1991). It was observed that at 42°C,     

E. coli GJ12055 cultures complemented with RHII-mutant construct did not survive but those  
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complemented with wild type MS_RHII-RSD construct and plasmid pSK760 containing  

functional rnhA gene (Kanaya & Crouch, 1983) grew well (Fig. 5B). This proved that the above  

mutations inactivated the RHII domain function of the full length MS_RHII-RSD protein leading  

to the loss in RNase H activity.  

To analyse the mutation effect of RHII domain on RSD activity in full length MS_RHII- 

RSD, (p)ppGpp synthesis was assayed. Purified MS_RHII-RSD and RHII-mutant were  

incubated with GTP in the presence of [ϒ
32

P]-ATP. It was observed from thin layer  

chromatography (TLC) analysis that the RHII-mutant has a (p)ppGpp synthesis activity similar  

to that of the wild type protein (Fig. 5C). The RNase H activity of the RHII-mutant, on the other  

hand was completely lost.  

RSD domain inactivation does not affect RHII domain function   

Similar to other bacterial Rel and SAS proteins, the RSD domain of MS_RHII-RSD has  

an acidic chord of conserved DDRD motif in the active site (Sajish et al., 2009). Based on this, 4  

different mutant constructs were made in which D356, D357, R358 and D359 were mutated  

individually to alanine in full length MS_RHII-RSD and termed as RSD-mutants. The mutated  

proteins were purified to homogeneity using nickel affinity chromatography (Fig. S3). It was  

found that even single site mutations in the DDRD region affected its (p)ppGpp synthesis  

activity (Fig. 6A). These RSD-mutants were further characterized for RNase H activity.  

However, the RNase H activity of RSD-mutants was not affected in vitro (Fig. 6B) and in vivo  

(Fig. 6C).   

Therefore, one may conclude that the functional inactivation of one domain does not  

affect the activity of the other domain. However the domains are nonfunctional when separated  

and expressed independently. This led us to think that there could be a certain degree of  
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structural interdependence between the RHII domain and RSD domain. Such a proposition was 

explored further based on oligomerization studies with full length protein and its domain mutant 

variants. 

Hexameric form of MS_RHII-RSD is essential for its function 

In our previous study, it was shown that the N-terminal RHII domain is monomeric and 

C-terminal RSD domain is tetrameric in nature. The full length active protein is, however, 

hexamer in solution (Murdeshwar & Chatterji, 2012). We checked the oligomeric status of all 

mutant variants using gel filtration chromatography followed by native PAGE. The wild type 

protein and its mutants were purified by nickel affinity followed by gel filtration 

chromatography. The analysis showed that MS_RHII-RSD and all the mutant variants remain in 

hexameric form in solution. The gel filtration profile for MS_RHII-RSD wild type, RHII-mutant 

and one of the RSD- mutants, D356A is shown (Fig. S4A). This is further confirmed by native-

PAGE analysis of the peak elution fractions of the proteins after gel filtration (Fig. S4B). Native-

PAGE marker, Ferritin (440 kDa, pI 4.8) and bovine serum albumin (BSA, 66 kDa, pI 5.2) were 

used as the corresponding molecular mass standards. The band corresponding to MS_RHII-RSD 

and mutant proteins was observed between 440 kDa (Ferritin) and 242 kDa (marker) and this in 

accordance with the mass estimated from gel filtration (Fig. S4A) indicated the presence of a 

hexamer form for all proteins.  

Since all the domain mutant variants retained one activity in hexameric form, a question 

comes to mind whether the oligomeric form is necessary for them to be functional. Conversion 

of hexamer to lower oligomeric form can be attempted after identifying the mode of interaction 

in the hexamer. To understand the interaction type, initially, native hexameric MS_RHII-RSD 

was treated with increasing concentrations of Sodium Dodecyl Sulphate (SDS) and Beta –
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Mercaptoethanol (β-ME) separately, and analyzed using native PAGE for the disruption of 

hexameric form. SDS concentration even as low as 0.05 % showed the disruption of hexamer 

into lower oligomers (Fig. S4C). It was observed from native PAGE analysis that with 0.2% SDS 

treatment for 30 minutes, the hexamer was completely converted to dimer and monomer forms. 

However, β-ME-treated samples remained as hexamer, even at high β-ME concentrations (Fig. 

S4D). These results indicated that the hexamer is formed by non-covalent interactions as it is 

well known that β-ME treatment breaks the covalent interactions by reducing the disulfide 

bonds. Iodoacetamide labeling and mass spectral analysis further confirmed that both the 

cysteine residues in MS_RHII-RSD are free.  (Table. S1).  

The RNase H and (p)ppGpp synthesis activity of the lower oligomeric populations of full 

length MS_RHII-RSD were analyzed by in vitro fluorescence assay and  (p)ppGpp synthetase 

assay. Expectedly, 0.2 % SDS treated MS_RHII-RSD was inactive in both the assays (Fig. 7). E. 

coli RNase HI (Cerritelli & Crouch, 2009) and N-terminal variant of RelMsm (Rel-NTD) (Jain et 

al., 2006) are known to be active as monomers and served as the positive control for RNase H 

assay and (p)ppGpp synthesis assay, respectively. Both retained activity in the presence of 0.2 % 

SDS. To rule out the possibility of protein unfolding by SDS, we performed a CD analysis with 

MS_RHII-RSD treated with 0.2 % SDS and it showed a clear alpha helical pattern (Fig. S5). 

(p)ppGpp synthesis assay was also carried out with 0.05 % SDS treated MS-RHII-RSD which is 

the minimum SDS concentration tested for inhibiting oligomerization (Fig. S4C). Even at this 

SDS concentration, MS-RHII-RSD lost its (p)ppGpp synthetic activity (Fig.S6). According to 

the previous reports, the unfolding and aggregation of the protein generally starts at 

concentration near or above critical micellar concentration (CMC) and lower SDS concentration 

promotes helicity in several proteins such as BSA, HSA, Ubiquitin etc., (Moriyama & Takeda, 
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1999; Xu & Keiderling, 2004; Singh et al., 2008; Shaw et al., 2012; Qadeer et al., 2014).  We 

have calculated the CMC for our reaction condition which is 0.07 % based on the 

thermodynamics of SDS reported by Makowska et al., (2015). Since 0.05% SDS is below the 

critical micellar concentration (CMC) in the reaction condition used in the assay, and the control 

proteins, E. coli RNase HII and Rel – NTD variant showed activity at 0.2 % and 0.05 % SDS, it 

is clear that the protein activity is not affected due to SDS. These results indicated that the 

hexamer form of the full length protein is essential for RNase HII as well as (p)ppGpp synthesis 

activity. In contrast to the individual domains in separation, the mutant variants retain the 

hexamer form and therefore the activity of non-mutated domain is preserved.  

High alpha helical nature of full length MS_RHII-RSD favors its biological activity 

Secondary structure of the MS_RHII-RSD, RHII-mutant and RSD-mutants was further 

analyzed by circular dichroism (CD) spectroscopy. These proteins were found to be alpha helical 

in nature as calculated by K2D2 server (Table. S2). The individual RHII and RSD domains, on 

the other hand, had reduced alpha helicity (Fig. S7).  

Discussion 

The discovery of MS_RHII-RSD in M. smegmatis raises an important question as to the 

requirement of a second (p)ppGpp synthetase in the microorganism, especially due to the unique 

presence of an RNase HII domain. In our previous study, we had hypothesized a possible role for 

the protein in R-loop removal. Here, we provide evidence for the involvement of MS_RHII-RSD 

in R-loop induced stress response in M. smegmatis. Taking hints from previous studies, we 

synthesized a miniature R-loop in vitro and observed that MS_RHII-RSD is indeed capable of 

hydrolyzing R-loops. By using a RNase H-deficient ts E. coli strain, we were able to observe that 

MS_RHII-RSD removes the R-loops formed after UV stress. Our argument is further 
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strengthened by the observation that ∆ms_rhII-rsd accumulates R-loops to a much larger extent 

after UV stress than the wild type.  

Moreover, in qRT-PCR analysis, a significant upregulation of ms_rhII-rsd gene was 

observed when M. smegmatis wild type was exposed to UV for 30 minutes. However, this 

contradicts our earlier preliminary observation in which the western blot analysis showed a 

constitutive expression of this protein when the organism was exposed to UV for 20 minutes 

(Murdeshwar & Chatterji, 2012). This discrepancy is perhaps due to the increased UV exposure 

(30 min) in the present experiment and hence the increase in gene expression. Therefore, we 

performed a western blot analysis to check the protein expression level in the same UV stress 

condition followed in qRT-PCR analysis (i.e., 4 hours after 30 minutes UV exposure). The 

densitometry of the western blot band intensity showed 33 % increase in the protein level in the 

strains with UV stress than without UV stress (Fig. S8). Hence both the gene and protein 

expression levels are raised when the strain was exposed to UV for 30 min.  

R-loops can be formed due to several reasons and have a major role in replication – 

transcription conflicts. These conflicts lead to stalled arrays of RNA polymerase and are 

detrimental to replication fork movement. Furthermore, the exposed single-stranded DNA is 

prone to mutagenesis. Due to deleterious effects on genome integrity, it becomes crucial for any 

organism to remove R-loops. (p)ppGpp mediates stringent response, plays a key role in 

replication arrest, transcription regulation and DNA supercoiling. It is known to resolve 

replication – transcription conflicts by destabilizing the stalled RNA polymerase. The presence 

of the RHII and RSD domains together in MS_RHII-RSD hints at a possible link between R-

loop removal and stringent response in M. smegmatis.  
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Conflicts between replication and transcription arise more often in highly transcribed  

genes such as those of rRNA (Merrikh et al., 2011). (p)ppGpp is a known regulator of rRNA  

genes expression and therefore the presence of a R-loop removal activity in the (p)ppGpp  

synthetase may be beneficial in such cases. Inhibition of translation due to nutrient starvation and  

antibiotic stress leads to increased RNA polymerase backtracking and therefore R-loop  

formation (Dutta et al., 2011). Since stringent response is involved in both stress conditions, it is  

tempting to speculate the involvement of MS_RHII-RSD in both circumstances.   

 As per our knowledge, this is the first report in which a prokaryotic RNase HII domain  

containing bifunctional protein is shown to hydrolyze R-loops. So far Type 1 RNase H has been  

more commonly implicated than Type 2 RNase H to remove R-loops. There are many previous  

reports which discuss the role of RNase HI in R-loop removal. To list a few, Drolet et al.  

reported that over production of RNase HI using pSK 760 plasmid in Topoisomerase I deficient  

mutant partially complements the R-loop linked serious growth defect (Drolet et al., 1995). Dutta  

et al. showed that R-loops are implicated in RNA polymerase backtracking and it is reversed  

upon RNase HI overexpression (Dutta et al., 2011). However, there are a few contradicting  

reports where the only RNase HII/HIII can substitute the function of RNase HI (Zhang et al.,  

1997, Itaya et al., 1999, Ohtani et al., 1999). Based on the defined substrate specificity of the  

RNase HII enzymes, they can only cleave single misincorporated ribonucleotide in ds DNA and  

remove Okazaki fragments from the lagging strand DNA (Murante et al., 1998), whereas,  

RNases HI require minimum four consecutive ribonucleotide for substrate recognition and hence  

cannot remove single ribonucleotide. However, Eder et al. showed that human RNase H1 is able  

to act on substrates containing a single RNA residue, which is a proof for the differential  

substrate preference of the RNase H enzymes from different sources (Eder et al., 1993).   
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R-loops are formed naturally during the initiation of DNA replication in mitochondrial  

DNA, bacterial plasmids, the bacteriophages ColE1 and T4, and in immunoglobulin (Ig) class- 

switch recombination (CSR) (reviewed by Santos-Pereira & Aguilera, 2015). Hence, it can be  

seen from extensive literature that even if the organism lacks RNase HI, the R-loops are expected  

to be present, where the other RNase HII and HIII tend to take care of the R-loop related defects.  

Prokaryotic RNase HII proteins are homolog of the eukaryotic RNase H2 catalytic subunit,  

which possesses two accessory domains. Since most RNase H2 proteins are implicated in R-loop  

removal (Chon et al., 2013), there are possibilities for bacterial RNase HII also to recognize R- 

loop. MS_RHII-RSD is not a classical RNase HII but has an additional C-terminal RSD domain,  

which may help in R-loop recognition similar to the requirement of two accessory domains for  

eukaryotic RNase H2 activity.   

Multiple types of RNase Hs may exist in a single organism to protect it from various  

stresses leading to a lethal mutation in RNase H gene (Ohtani et al., 1999). In M. smegmatis,  

there are four functional RNase Hs. There are two RNase HI and two RNase HII type of  

proteins. No other organism with four active RNase Hs has been reported so far. The presence of  

three functional RNase Hs in Streptomyces coelicolor is, however, known (Ohtani et al., 2005).  

M. tuberculosis has RNase H domain and (p)ppGpp synthetase domain homologs. It contains no  

classical rnhA gene. However, rnhB gene annotated as Rv2902c and another gene encoding  

Rv2228c as a bifunctional protein with N-terminal RNase HI domain and C-terminal α-ribazole  

phosphatase (CobC) domain have been identified (Watkins & Baker, 2010). Apart from these  

two RNase Hs, a homologue of RHII domain of MS_RHII-RSD, MT0800 has been found in M.  

tuberculosis but it remains to be characterized (Minias et al., 2015a).   
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 In our study, we observed that both RHII and RSD are structurally inter-dependent for 

their functions. In a previous study, it was observed that loss of the C-terminal domain of 

Rv2228c significantly reduces its RNase H activity due to the presence of a very short linker 

region of 10 amino acids between both domains (Watkins & Baker, 2010). Similarly, reason for 

this domain dependence of MS_RHII-RSD appears to be due to the presence of short linker 

region of 16 residues. On the other hand, the bifunctional protein, SCO2299 from S. coelicolor 

has more than 120 linker residues and due to this the N-terminal RNase H and C-terminal acid 

phosphatase activities are independent of each other.  Finally, this remarkable presence of R-loop 

removing RNase HII and (p)ppGpp synthetase  activities in a single protein could be an energy 

conserving mechanism in M. smegmatis to endure replication stress.   

Our study provides novel insights about the significance of the second (p)ppGpp 

synthetase of M. smegmatis in R-loop induced stress response. Based on the obtained results, we 

propose a model to explain the function of MS_RHII-RSD (Fig. 8). Upon UV stress, the levels 

of MS_RHII-RSD increase within the cell. Any R-loops formed are removed by the RNase H 

domain and (p)ppGpp helps to destabilize the RNAP via an unknown mechanism. Recently, 

Kamarthapu et al., have shown direct evidence for role of (p)ppGpp in DNA repair in E. coli and 

we are excited to speculate the same in Mycobacteria although evidence for (p)ppGpp binding to 

RNAP is lacking (Kamarthapu et al., 2016). The ∆ms_rhII-rsd strain is yet to be completely 

characterized and further experiments may lead to more novel observations about this unique 

protein. 

Experimental Procedures 

Strains, growth conditions and media 
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A list of strains and plasmids used in this study is mentioned in Table S3. E. coli strains 

DH5α and BL21 (DE3) were grown in Luria-Bertani (LB) media (HiMedia Laboratories) at 

37°C at 180 rpm. MS_RHII-RSD and RelMsm-NTD were overexpressed using pET-21b plasmids. 

For complementation studies, an E. coli GJ 12055 was used. E. coli GJ 12055 and complemented 

strains were grown at 30°C or 42°C in LB media containing 50 µg ml
-1 

kanamycin (Sigma). All 

E. coli strains harboring pET-21b or pSK760 plasmids were grown in the presence of 100 µg  

ml
-1

 ampicillin (Sigma). All strains were grown on plates containing LB media and 1.5% (w/v) 

agar (HiMedia Laboratories) in the presence of required antibiotics. M. smegmatis wild type 

mc2155 (WT) and ∆ms_rhII-rsd strains were grown in Middlebrook 7H9 broth (MB7H9, Difco) 

containing 2% (w/v) glucose (HiMedia Laboratories) and 0.05 % (v/v) Tween-80 (Sigma), at 

37°C with agitation at 180 rpm. MB7H9 plates contained 1.5% agar and lacked Tween-80. 

Apramycin (Sigma) was used at a concentration of 50 µg ml
-1 

for ∆ms_rhII-rsd. 

Site-directed mutagenesis 

Site-directed mutagenesis was performed using pET-MS_RHII-RSD as the template to 

generate single amino acid mutants of the MS_RHII-RSD protein. Non-overlapping primers 

incorporating the desired mutations were designed to amplify the sequence (listed in Table S4). 

The products were phosphorylated using T4 polynucleotide kinase (Thermo Scientific), ligated 

using T4 DNA ligase (NEB) and transformed into E. coli DH5α. The incorporation of the 

mutation was confirmed by sequencing the plasmids. For generation of the RHII-mutant 

containing four active site mutations, sequential mutagenesis was performed where each 

mutation was individually incorporated using the mutant plasmid generated in the previous round 

as a template. 
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Protein expression and purification 

Rel-NTD, full length MS_RHII-RSD, RNaseHII (RHII) and (p)ppGpp synthesis domain 

variant (RSD) were cloned in pET 21b and purified as carboxy-terminal hexahistidine-tagged 

proteins from E. coli BL21 (DE3) strain using nickel affinity chromatography as described 

before (Murdeshwar & Chatterji, 2012). RHII-mutant and all RSD-mutants were purified using 

the same protocol as that of MS_RHII-RSD protein. The purity of all the proteins was analyzed 

by SDS-PAGE and the concentration estimated spectrophotometrically using their extinction 

coefficients at 280 nm. 

In vitro R-loop synthesis 

To synthesize the R-loop, the first step was the mixing of equimolar concentration of  two 

custom synthesized deoxyribonuleotides D1 and D2 having 80 bases each (sequences listed in 

Table. 2) in an annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 1 mM EDTA). The mixture 

was kept at 93˚C for 5 minutes followed by gradual cooling to room temperature (RT) in 2 hours. 

The annealing of the oligonucleotides was confirmed by gel electrophoresis using 2% agarose in 

Tris Borate EDTA buffer (TBE). This annealed double-stranded DNA (D1-D2) and the 20 base 

ribonucleotide R3 (Table. 2) were then mixed in 1:3 molar ratio in R-loop synthesis buffer 

containing 83 mM PIPES, pH 7.8, 33 mM NaCl, 10 mM EDTA, and 70 % formamide (Landgraf 

et al., 1995). The mixture was incubated at 55˚C for 30 minutes, gradually cooled to 42˚C in 4 

hours and then cooled to RT. R-loops were purified from the reaction mixture using Qiagen PCR 

clean-up kit. The R-loop formation was confirmed by running the sample in 2% agarose in TBE. 

All oligonucleotides and reaction components were obtained from Sigma-Aldrich. R-loop 

concentration was estimated based on the D1-D2 concentration used in the R-loop synthesis 

reaction, assuming 100 percent conversion of D1-D2 to R-loop. 
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Dot-blot analysis for R-loop detection 

An anti-DNA-RNA hybrid mouse monoclonal antibody S9.6 (Kerafast, Inc., USA) was 

used for R-loop detection (Bhatia et al., 2014). For dot blot, 30 and 60 ng of R-loop was 

separately spotted onto a Hybond-XL nylon membrane (Amersham Pharmacia Biotech), air-

dried and UV cross-linked for 10 minutes in the transilluminator. The membrane was blocked in 

TBST (10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 0.1% Tween-20) containing 5% (w/v) Bovine 

serum albumin and incubated overnight at 4°C with 5 µg S9.6 antibody. After washing the 

membrane was probed with anti-mouse HRP-conjugated secondary antibody (Sigma Aldrich) for 

1 hour at RT and developed by chemiluminescence using Luminata HRP substrate (Millipore). 

The annealed double-stranded DNA (D1-D2) (60 ng) was used as a negative control. 

R-loop hydrolysis assay 

100 nM of the purified protein was taken and incubated with 400 nM of the R-loop in a 

buffer containing 50 mM Tris-Cl, pH 7.9, 60 mM KCl, 5 mM MnCl2 at 37°C for 1 hour. E. coli 

RNase HI (NEB) was used as a positive control. The products were analyzed by (2%) agarose 

gel electrophoresis using TBE buffer. 

In vivo R-loop detection 

E. coli GJ 12055 parent strain and complemented strains (with plasmids pET-MS_RHII-

RSD and  pSK760) were grown in LB broth at 42°C and normalized to OD600 of 0.6. The 

cultures were split into duplicates in which one set was allowed to grow normally and the other 

irradiated with UV light in the laminar hood for 30 minutes and allowed to grow at 42°C.  OD600 

was measured immediately after UV exposure and subsequently at 1 hour intervals. Aliquots 

were taken immediately after UV exposure (0
th

 hour) and at two time intervals (1 and 4 hours 

after UV exposure). The genomic DNA was isolated using a kit (Favorgen Biotech Corp.) as per 
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manufacturer’s instructions. 300 ng of genomic DNA was spotted onto a nylon membrane and  

dot-blotted as mentioned before. The experiments were repeated in triplicates and performed  

atleast twice. The same protocol was followed for M. smegmatis wild type and ∆ms_rhII-rsd  

except that the strains were grown at 37°C.  

RNase H fluorescence assay  

RNase H activity was determined by measuring the increase in fluorescence intensity of  

an artificially synthesized DNA:RNA hybrid (AH) following hydrolysis by RNase H as  

described previously (Murdeshwar & Chatterji, 2012). 100 µM of custom synthesized (Bioneer,  

Korea) 12-mers, 5’-fluorescein-polyA ribo-oligomucleotide and 3’-dabsyl-poly dT- 

deoxyribonucleotide were hybridized in annealing buffer (50 mM Tris-Cl. pH 7.5 at RT, 60 mM  

KCl) by incubating the mixture at 95°C for 5 minutes followed by slow cooling to RT. The  

hydrolysis reaction mixture contained 100 nM of the purified protein along with 500 nM AH in a  

reaction buffer (50 mM Tris-Cl. pH 7.5 at RT, 60 mM KCl, 5 mM MnCl2). A control mixture  

lacking any protein was used as the negative control and E. coli RNase HI (NEB) was used as  

the positive control. The excitation and emission wavelength used were 480 nm and 520 nm  

respectively. To analyse the RHII activity of various oligomeric forms of the MS_RHII-RSD  

protein, the assay was performed using the same reaction mixture as described before but with  

the addition of 0.2% (w/v) SDS.  

In vivo complementation assay  

E. coli GJ 12055 cells were electrotransformed with the plasmids (expressing MS-RHII- 

RSD or its active site mutants). E. coli GJ 12055 cells complemented with pSK760 and pET21b  

were used as positive and negative control respectively. Serial dilutions of the log phase cultures  
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were prepared and 5 µl spotted on duplicate LB plates containing ampicillin. One set of plates  

was incubated at 30°C and the other at 42°C. The growth was analysed after 12 hours.   

In vitro (p)ppGpp synthesis assay  

The (p)ppGpp synthesis activity of the various proteins was assayed as described before  

(15) using 10 µl reaction mixtures containing 1 mM ATP, 10 µCi ml
-1

 [ϒ-
32

P] ATP (3,000 Ci  

mmol
-1

, BRIT, Hyderabad, India),  1 mM of either GTP or GDP, 50 mM HEPES (pH 7.5), 1 mM  

DTT, 10 mM MgCl2 in the presence of 1 µM purified protein (Murdeshwar & Chatterji, 2012).  

To check the activity of various oligomeric forms of the MS_RHII-RSD protein, the (p)ppGpp  

synthesis assay was performed using the above mentioned reaction mixture but with the addition  

of 0.2% (w/v) SDS. Purified N-terminal domain of RelMsm was used as a positive control.  

Gel filtration chromatography  

Superdex 200 10/300 GL column (GE Health care) was preequilibrated with equilibration  

buffer (50 mM Tris-Cl. pH 7.9 at RT, 150 mM NaCl, 50 mM imidazole) and run at a flow rate of  

0.2 ml min
-1

. The detection wavelength used was 280 nm. The column was calibrated using  

molecular weight standards such as Thyroglobulin (670 kDa), Ferritin (440 kDa), ϒ Globulin  

(158 kDa), Ovalbumin (44 kDa), Myoglobin (17 kDa), Vitamin B12 (1.35 kDa) and a calibration  

curve was plotted using known standard protein mass and their elution volumes.  

Native-PAGE analysis  

Native PAGE was done in a manner similar to that of SDS-PAGE except for the absence  

of SDS in any of the gel components and electrophoresis buffer. The gel loading dye did not  

contain any SDS or β-ME and the samples were not boiled prior to loading. 20 µg of each  

protein taken from their peak fractions after gel filtration was loaded onto the gel.  

Electrophoresis was carried out at 20 mA at 20°C.   
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Circular dichroism analysis (CD)  

The purified proteins were used at a final concentration of 2 µM in 10 mM Tris-Cl (pH  

7.9 at 4°C). CD spectra were recorded from 190 nm to 250 nm on a Jasco J-715  

spectropolarimeter using a quartz cuvette of 2 mm path length. The instrument parameters used  

were: 2 nm bandwidth, 2 seconds response time, 0.2 nm data pitch and 50 nm min
-1

 scanning  

speed. The CD spectra were averaged over 3 scans and buffer subtracted. The helical content of  

the proteins were estimated using the K2D2 software (http://www.ogic.ca/projects/k2d2/)   

Quantitative Reverse Transcriptase assay (qRT-PCR)  

qRT-PCR was done to determine the expression levels of MS_RHII-RSD  

(MSMEG_5849), rnhA (MSMEG_5562), rnhB (MSMEG_2442), and rnh-cobC fusion  

(MSMEG_4305) using the specific set of primers (Table. 1). M. smegmatis wild type was grown  

to an OD600 of 0.6. The culture was split into two and one set was exposed to UV radiation for 30  

minutes in the laminar hood where as the other set was not given any UV exposure. The cultures  

were grown further for 4 hours. The cells were harvested; disrupted using BeadBeater (BioSpec)  

and the total RNA extracted using RNA isolation kit (Qiagen) as per manufacturer’s instructions.  

RNA concentration was determined by measuring absorbance at 260 nm and the A260/A280  

confirmed to be around 1.9. cDNA was synthesized using random primers with a kit from  

Applied Biosystems as per the manufacturers protocol. SYBR green was used as the indicator  

dye. The RNA levels were normalized with respect to rpoC gene. The threshold value for  

significant change in expression level was calculated by students 't' test. Four independent  

experiments were done with each reaction being performed in triplicates and the graph plotted  

using R studio.    

Generation of ∆ms_rhII-rsd strain  

Page 25 of 53 Molecular Microbiology

This article is protected by copyright. All rights reserved.



26 

 

The ms_rhII-rsd gene deletion from M. smegmatis was carried out using phage-mediated  

specialized transduction method (Bardarov et al., 2002). Approximately 1 kbp sequences  

upstream and downstream of the gene were amplified and cloned into the plasmid p0004S on  

either side of an apramycin resistance cassette. This generated the allele exchange substrate  

plasmid which was subsequently packaged in vitro (MaxPlax packaging kit) into a temperature- 

sensitive mycobacteriophage phAE159. M. smegmatis culture was transduced at 37°C and the  

colonies screened by PCR. The positive colonies were sequenced to confirm the gene deletion  

and one such colony was used for further experiments. All primers used are listed in  

supplementary table. S5.  
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Primer name Gene Sequence (5’ to 3’) 

5849_FP ms_rhII-rsd CACTCGACCTCGATCTGGAC 

5849_RP ms_rhII-rsd GCTTGGCCTTGTACTTCAGC 

5562_FP rnhA CACCTGTACACCGACAGCAC 

5562_RP rnhA CCACAGGTCGACATTCTTCA 

2442_FP rnhB GCACCGGTACTCGTATGTGA 

2442_RP rnhB CGTCGTACCTCTTCGGTCTC 

4305_FP rnh_cobC TGTCGATGGACTCCAAACTG 

4305_RP rnh_cobC CCACGTGTAGTCGACATGGT 
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Table 2: Sequences of oligonucleotides used for R-loop synthesis 

 

Figure Legends 

Figure. 1.  Pictorial representation of R-loop formation.  Two single-stranded DNA of 80 bases 

(D1 and D2) with 30 non-complementary bases in the middle were annealed to form double-

stranded DNA. 20 bases containing RNA (R3) complementary to template DNA (D1) was then 

added to form R-loop.  

Figure. 2. R-loop hydrolysis assay and dot blot analysis of synthesized R-loops. (A) R-loop was 

synthesized by annealing two single-stranded DNA (D1 and D2) to form a double stranded DNA 

(D1-D2) followed by mixing with complementary RNA (R3) in R-loop synthesis buffer. This 

was confirmed by band mobility shift in 2 % Agarose gel electrophoresis. R-loop (D1-D2-R3) 

was incubated with MS_RHII-RSD protein at 37°C for 1 hour in Tris buffer, pH 7.4 containing 

Oligo-nucleotide 

Name 

Length 

(bases) 

Type Sequence (5’ to 3’) 

D1 80 Deoxy 

ribonucleotide 

CTGGTTCACCACGCGGGAAACGGTCTGA

TACTCCTCTCCTCTCCTCTCCTCGAGACA

CCGGCATACTCTGCGACATCGTA 

D2 80 Deoxy 

ribonucleotide 

TACGATGTCGCAGAGTATGCCGGTGCAG

TACTAGTCATGTCTACGCTAATGCCAGG

ACCGTTTCCCGCGTGGTGAACCAG 

R3 20 Ribonucleotide AGG AGA GGA GAG GAG AGG AG 
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KCl and MnCl2 and analysed for R-loop hydrolysis. E. coli RNase HI (100 nM) was used as a 

positive control and the reaction mix lacking any protein and RNase HII activity dead mutant 

(RHII mutant) were used as a negative control.   Indicates R-loop;  indicates 

ds DNA product after R-loop hydrolysis. (B) Dot blotting to confirm R-loop (D1-D2-R3) 

synthesis. The synthesized R-loop was spotted onto nylon membrane and UV cross-linked. Anti 

DNA-RNA hybrid antibody S9.6 was used as primary antibody and HRP signal was developed 

using chemiluminescence. ds DNA (D1-D2) was used as a negative control. 

Figure. 3. Growth profile and in vivo R-loop analysis of UV-treated E. coli strains. (A) Growth 

curve of UV-treated and untreated E. coli GJ 12055, GJ complemented with MS_RHII-RSD and 

pSK 760 plasmids at 42°C. Strains were grown in LB and normalized to OD600 of 0.6. Cells were 

irradiated with UV for 30 minutes and OD600 was measured immediately after UV treatment and 

every hour from there on. Rectangular box represents impeded growth phase. Error bars 

represent the standard deviation (n=3). (B) Genomic DNA (300 ng) isolated from UV–treated 

E.coli GJ 12055, GJ complemented with MS_RHII-RSD and pSK 760 plasmids at three different 

time points (0, 1 and 4
 
hours post UV exposure) were dot blotted using anti DNA-RNA hybrid 

primary antibody S9.6.  

Figure. 4. qRT-PCR analysis of  M. smegmatis RNase H genes and in vivo detection of R-loop 

after UV-stress (A) RNA isolated from M. smegmatis at the 4
th

 hour post UV exposure was 

reverse transcribed to cDNA. qRT-PCR was performed to analyse the expression levels of four 

RNase H genes MSMEG_5562, MSMEG_2442, MSMEG_4305 and MSMEG_5849. The 

threshold cycle (Ct) values were normalized with respect to a house keeping gene, rpoC, 

encoding β′ subunit of RNA polymerase (Mukherjee & Chatterji, 2005). Fold change values are 

means ±SD of 4 different experiments performed in triplicates.   (B)  Genomic DNA (300 ng) 
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isolated from UV–treated and untreated M. smegmatis wild type and  ∆ms_rhII-rsd at three 

different time points (0, 1 and 4
 
hours post UV exposure) were dot blotted using anti DNA-RNA 

hybrid primary antibody S9.6.  

Figure. 5. Assays with RHII-mutant for RNAse H and (p)ppGpp synthetase activity. (A) In vitro 

fluorescence assay performed with Fluorescein-labeled-poly rA: Dabsyl-labeled poly dT 

annealed hybrid (AH) as the substrate. In this substrate, dabsyl moiety quenches the 

fluorescence. Hydrolysis of RNA:DNA hybrid leads to fluorescence. E. coli RNase HI was used 

as positive control. The maximum and minimum fluorescence are shown by Poly A and AH, 

respectively. (B) In vivo complementation assay using E. coli ∆rnhA ∆rnhB (ts) strain GJ12055 

(GJ) electrotransformed with plasmids pSK760 (plasmid containing E. coli rnhA gene, positive 

control), pET21b (empty vector, negative control), MS_RHII-RSD and RHII-mutant. Serially 

diluted samples (10
-1

 to 10
-6

) were plated in two sets; one set incubated at 30°C and another at 

42°C overnight. (C) In vitro (p)ppGpp synthesis assay. (p)ppGpp synthesis assay was performed  

with 1 µM of purified MS_RHII-RSD and RHII-mutant protein using GTP and [γ-
32

P]ATP as 

the substrate. Reaction mixture without any protein serves as a negative control. The reactions 

were spotted onto PEI-cellulose sheet, chromatography done using 1.5 M KH2PO4 as solvent. 

Figure. 6. Assays with RSD-mutants for (p)ppGpp synthesis and RNase H activity. (A) In vitro 

(p)ppGpp synthesis assay was performed as described in Fig. 5C with 1µM of purified 

MS_RHII-RSD and RSD-mutants. (B) In vitro fluorescence assay was performed as described in 

Fig. 5A. (C) In vivo complementation assay was performed as described in Fig. 5B using E. 

coli GJ 12055 (GJ) electrotransformed with plasmids of MS_RHII-RSD and RSD-mutants.  

with 0.2% SDS and 100 mM beta-mercaptoethanol (β-ME) in two different sample preparations.  
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Figure. 7. Effect of oligomerization on MS_RHII-RSD activity. (A) RNase H assay with native 

and 0.2% SDS-treated MS_RHII-RSD. In vitro fluorescence assay was performed as described 

in figure 5A. (B) (p)ppGpp synthesis assay was performed as described in Fig. 5C with native 

and 0.2 % SDS treated MS_RHII-RSD. N-terminal variant of RelMsm (Rel NTD) was used as a 

positive control.  

Figure. 8.  Model proposed for the physiological function of MS_RHII-RSD.  

UV stress leads to increased R-loop formation and replication-transcription conflicts. Under UV-

stress, MS_RHII-RSD expression is upregulated than the conventional RNase HI and HII. Its 

RHII activity removes the R-loops and the stalled RNA polymerase is destabilized indirectly by 

(p)ppGpp. Thus, MS_RHII-RSD plays an important role during R-loop induced replication stress 

response in M. smegmatis. 

Supplementary Table - S1. ESI-MS spectra mass of Iodoacetamide labelled MS_RHII-RSD  

Purified MS_RHII-RSD protein was treated with Iodoacetamide (57 Da) and the reaction 

mixture was then analyzed by LC-ESI-MS for any change in mass by 57 Da (per free Cysteine). 

64259 Da and 64203 Da denote the mass of the protein with 2 and 1 free Cysteine residues 

respectively. 64148 Da is the mass of the unlabeled protein. MS_RHII-RSD has only 2 cysteines 

and the labeling of both cysteines by iodoacetamide indicated the absence of any disulphide 

linkage.   

 Supplementary Table – S2 

Circular dichroism (CD) analysis of MS_RHII-RSD and its variants. Purified proteins (2 µM) in 

10 mM Tris-Cl were taken and the CD spectra recorded. The helical content of the proteins were 

estimated using the K2D2 software. The full length MS_RHII-RSD protein and its mutant 

variants showed a high alpha helicity whereas the individual domains had a low helicity. 
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Supplementary Table – S3. List of strains and plasmids used in this study 

Supplementary  Table – S4. List of primers used in site directed mutagenesis 

Supplementary Table – S5. List of primers used in generation and confirmation of ∆ms_rhII-

rsd strain. 

Supplementary Figure. S1. Growth profile of UV-treated E. coli strains. (A) Growth curve of 

UV-treated and untreated E. coli GJ 12055, GJ complemented with MS_RHII-RSD and pSK 760 

plasmids at 30°C. Strains were grown in LB and normalized to OD600 of 0.6. Cells were 

irradiated with UV for 30 minutes and OD600 was measured immediately after UV treatment and 

every hour from there on. Error bars represent the standard deviation (n=3). 

Supplementary Figure. S2. Growth profile of M. smegmatis wild type (WT) and ∆ms_rhII-rsd. 

Strains were grown in MB7H9 and normalized to OD600 of 0.6. Cells are irradiated with UV for 

30 minutes. Then OD600 was measured immediately after UV exposure, after 1 hour, and then at 

every 4 hour interval from there on. Error bars represent the standard deviation (n=3). 

Supplementary Figure. S3. SDS - PAGE analysis of the pure fractions of MS_RHII-RSD and 

its mutant variants. The recombinant protein MS_RHII-RSD wild type, RHII-mutant and RSD 

mutants (D356A, D357A, R358A, D359A) were purified to homogeneity using Ni-NTA and the 

normalized volume of the elutions were loaded in 12% gel. 

Supplementary Figure. S4. Oligomerization studies with MS_RHII-RSD and its mutant 

variants and analysis of interaction mode in hexameric MS_RHII-RSD. (A) Gel filtration 

chromatography profile of MS_RHII-RSD, RHII-mutant and RSD-mutant (D356A). All the wild 

type and mutant proteins eluted between 12.6 to 12.9 ml and the corresponding elution volumes 

were extrapolated to estimate the molecular weight from the standard curve. (B) Native PAGE 

analysis of MS_RHII-RSD, RHII-mutant and RSD-mutants. 20 µg of each protein was loaded 
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onto 8% Native PAGE. Native PAGE marker, BSA and ferritin were used as molecular markers. 

Isoelectric point (pI) of protein sample is mentioned below each lane. (C) Native PAGE analysis 

of 20 µg of MS_RHII-RSD untreated and treated with increasing percentage of SDS 

concentration (0.05, 0.1, 0.5, 1, 1.25, 1.5 and 2 in lanes 1-7 respectively)  were loaded onto 8% 

Native PAGE. BSA and ferritin were used as molecular markers. (D) Native PAGE analysis of 

MS_RHII-RSD treated with 0.2 % SDS and 100 mM beta-mercaptoethanol (β-ME) in two 

different sample preparations. 

 Supplementary Figure. S5. Circular Dichroism (CD) analysis of MS_RHII-RSD treated with 

0.2 % SDS. 

Supplementary Figure. S6. (p)ppGpp synthesis assay using GDP as the substrate was 

performed as described in Fig. 5C with native and 0.05 % SDS treated MS_RHII-RSD. N-

terminal variant of RelMsm (Rel NTD) was used as positive control. 

Supplementary Figure. S7. Circular Dichroism (CD) analysis of MS_RHII-RSD, RHII-mutant, 

RSD-mutants (D356A), RHII domain and RSD domain proteins.  

Supplementary Figure. S8. Western blotting for analysis of MS_RHII-RSD expression levels 

after UV stress. M. smegmatis was grown till OD600 0.6, exposed to 30 minutes UV stress and 

grown for 4 hours similar to the condition followed in qRT-PCR analysis. Crude lysates of M. 

smegmatis culture (UV treated and untreated) were blotted against anti-MS_RHII-RSD 

polyclonal antibodies as described before (Murdeshwar and Chatterji, 2012) . M. smegmatis 

sigmaA factor which is a house keeping gene was used as the internal loading control. 

Densitometric analysis was performed using MultiGauge software. Prof. B. Gopal, IISc., is 

acknowledged for the anti-sigA antibodies. 
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Figure. 1.  Pictorial representation of R-loop formation.  Two single-stranded DNA of 80 bases (D1 and D2) 
with 30 non-complementary bases in the middle were annealed to form double-stranded DNA. 20 bases 

containing RNA (R3) complementary to template DNA (D1) was then added to form R-loop.  
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Figure. 2. R-loop hydrolysis assay and dot blot analysis of synthesized R-loops. (A) R-loop was synthesized 
by annealing two single-stranded DNA (D1 and D2) to form a double stranded DNA (D1-D2) followed by 
mixing with complementary RNA (R3) in R-loop synthesis buffer. This was confirmed by band mobility shift 
in 2 % Agarose gel electrophoresis. R-loop (D1-D2-R3) was incubated with MS_RHII-RSD protein at 37°C 
for 1 hour in Tris buffer, pH 7.4 containing KCl and MnCl2 and analysed for R-loop hydrolysis. E. coli RNase 
HI (100 nM) was used as a positive control and the reaction mix lacking any protein and RNase HII activity 
dead mutant (RHII mutant) were used as a negative control.    Indicates R-loop;   indicates ds DNA product 
after R-loop hydrolysis. (B) Dot blotting to confirm R-loop (D1-D2-R3) synthesis. The synthesized R-loop 

was spotted onto nylon membrane and UV cross-linked. Anti DNA-RNA hybrid antibody S9.6 was used as 
primary antibody and HRP signal was developed using chemiluminescence. ds DNA (D1-D2) was used as a 

negative control.  
136x129mm (300 x 300 DPI)  
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Figure. 3. Growth profile and in vivo R-loop analysis of UV-treated E. coli strains. (A) Growth curve of UV-
treated and untreated E. coli GJ 12055, GJ complemented with MS_RHII-RSD and pSK 760 plasmids at 
42°C. Strains were grown in LB and normalized to OD600 of 0.6. Cells were irradiated with UV for 30 

minutes and OD600 was measured immediately after UV treatment and every hour from there on. 
Rectangular box represents impeded growth phase. Error bars represent the standard deviation (n=3). (B) 
Genomic DNA (300 ng) isolated from UV–treated E.coli GJ 12055, GJ complemented with MS_RHII-RSD and 
pSK 760 plasmids at three different time points (0, 1 and 4 hours post UV exposure) were dot blotted using 

anti DNA-RNA hybrid primary antibody S9.6.  
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Figure. 4. qRT-PCR analysis of  M. smegmatis RNase H genes and in vivo detection of R-loop after UV-stress 
(A) RNA isolated from M. smegmatis at the 4th hour post UV exposure was reverse transcribed to cDNA. 

qRT-PCR was performed to analyse the expression levels of four RNase H genes MSMEG_5562, 

MSMEG_2442, MSMEG_4305 and MSMEG_5849. The threshold cycle (Ct) values were normalized with 
respect to a house keeping gene, rpoC, encoding β′ subunit of RNA polymerase (Mukherjee & Chatterji, 

2005). Fold change values are means ±SD of 4 different experiments performed in 
triplicates.   (B)  Genomic DNA (300 ng) isolated from UV–treated and untreated M. smegmatis wild type 

and  ∆ms_rhII-rsd at three different time points (0, 1 and 4 hours post UV exposure) were dot blotted using 
anti DNA-RNA hybrid primary antibody S9.6.  
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Figure. 5. Assays with RHII-mutant for RNAse H and (p)ppGpp synthetase activity. (A) In vitro fluorescence 
assay performed with Fluorescein-labeled-poly rA: Dabsyl-labeled poly dT annealed hybrid (AH) as the 

substrate. In this substrate, dabsyl moiety quenches the fluorescence. Hydrolysis of RNA:DNA hybrid leads 
to fluorescence. E. coli RNase HI was used as positive control. The maximum and minimum fluorescence are 

shown by Poly A and AH, respectively. (B) In vivo complementation assay using E. coli ∆rnhA ∆rnhB (ts) 
strain GJ12055 (GJ) electrotransformed with plasmids pSK760 (plasmid containing E. coli rnhA gene, 

positive control), pET21b (empty vector, negative control), MS_RHII-RSD and RHII-mutant. Serially diluted 
samples (10-1 to 10-6) were plated in two sets; one set incubated at 30°C and another at 42°C overnight. 

(C) In vitro (p)ppGpp synthesis assay. (p)ppGpp synthesis assay was performed  with 1 µM of purified 
MS_RHII-RSD and RHII-mutant protein using GTP and [γ-32P]ATP as the substrate. Reaction mixture 
without any protein serves as a negative control. The reactions were spotted onto PEI-cellulose sheet, 

chromatography done using 1.5 M KH2PO4 as solvent.  
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Figure. 6. Assays with RSD-mutants for (p)ppGpp synthesis and RNase H activity. (A) In vitro (p)ppGpp 
synthesis assay was performed as described in Fig. 5C with 1µM of purified MS_RHII-RSD and RSD-mutants. 

(B) In vitro fluorescence assay was performed as described in Fig. 5A. (C) In vivo complementation assay 
was performed as described in Fig. 5B using E. coli GJ 12055 (GJ) electrotransformed with plasmids of 

MS_RHII-RSD and RSD-mutants.  
with 0.2% SDS and 100 mM beta-mercaptoethanol (β-ME) in two different sample preparations.  
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Figure. 7. Effect of oligomerization on MS_RHII-RSD activity. (A) RNase H assay with native and 0.2% SDS-
treated MS_RHII-RSD. In vitro fluorescence assay was performed as described in figure 5A. (B) (p)ppGpp 

synthesis assay was performed as described in Fig. 5C with native and 0.2 % SDS treated MS_RHII-RSD. N-

terminal variant of RelMsm (Rel NTD) was used as a positive control.  
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Figure. 8.  Model proposed for the physiological function of MS_RHII-RSD.  
UV stress leads to increased R-loop formation and replication-transcription conflicts. Under UV-stress, 

MS_RHII-RSD expression is upregulated than the conventional RNase HI and HII. Its RHII activity removes 

the R-loops and the stalled RNA polymerase is destabilized indirectly by (p)ppGpp. Thus, MS_RHII-RSD 
plays an important role during R-loop induced replication stress response in M. smegmatis. 
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Abbreviated Summary 

Due to the presence of a RNase HII domain and a (p)ppGpp synthesizing domain 

together in MS_RHII-RSD, R-loops are degraded and the interrupted RNA polymerase is 

destabilized by unknown mechanism to rescue the organism from replicative stress. Consistent 

with this observation, MS_RHII-RSD gene expression was upregulated under UV stress and 

increased R-loop accumulation was observed in this gene deleted strain. We have further 

elucidated its domain dependence for the optimal protein function.  
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